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Do We Always Know The Regime? - Empirical Evidence
for Technology Growth Regimes

• Utilization-adjusted TFP (zt)

• Investment-specific technology (ut) measured as PCE deflator divided
by nonresidential fixed investment deflator

• Estimate regime switching process

zt = µz

(
s

µz
t

)
+ zt−1 + σz (s

σz
t ) εz,t

ut = µu

(
s

µu
t

)
+ ut−1 + σu (s

σu
t ) εu,t

• Two Regimes Each
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Table: Evidence for TFP Regimes from Fernald

Mean Std Dev

1947-1973 2.00 3.68
1974-1995 0.60 3.44
1996-2004 1.99 2.66
2005-2017 0.39 2.35



Introduction The Model Learning Finding The Steady State Results

Estimated (Filtered) Regimes
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Table: Parameter Estimates

µj (L) µj (H) σj (L) σj (H) P
µj
LL P

µj
HH P

σj
LL P

σj
HH

TFP (j = z) 0.6872
(0.6823)

1.8928
(0.6476)

2.5591
(0.2805)

3.8949
(0.3744)

0.9855
(0.0335)

0.9833
(0.0295)

0.9803
(0.0215)

0.9796
(0.0232)

IST (j = u) 0.4128
(0.1112)

2.0612
(0.1694)

1.1782
(0.0745)

3.9969
(0.4091)

0.9948
(0.0049)

0.9839
(0.0162)

0.9627
(0.0197)

0.9026
(0.0463)
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This Paper

• Provide General Methodology for Perturbing MS Models where Agents
Infer the Regime by Bayesian Updating

• Agents are Fully Rational

• Extension of Work on Full Information MS Models (Foerster, Rubio,
Waggoner & Zha)

• Key Issue: How do we Define the Steady State? What Point do we
Approximate Around?

• Joint Approximations to Both Learning Process and Decision Rules

• Second- or Higher-Order Approximations - Often Not Considered in
Learning Literature

• Use a RBC Model as a Laboratory
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The Model
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Bayesian Learning

ỹt = λ̃st (xt−1, εt) = [ut zt ]
′

εt = λst (ỹt , xt−1)

ψi ,t =

likelihood︷ ︸︸ ︷
Jst=i (yt , xt−1) ϕε (λst=i (yt , xt−1))

prior︷ ︸︸ ︷
ns

∑
s=1

ps,iψs,t−1

∑ns
j=1 Jst=j (yt , xt−1) ϕε (λst=j (yt , xt−1))∑ns

s=1 ps,jψs,t−1
.
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Bayesian Learning

• To Keep Probabilities between 0 and 1, Define

ηi ,t = log

(
ψi ,t

1− ψi ,t

)
•

Ẽtf (...) =
ns

∑
s=1

ns

∑
s ′=1

ps,s ′

1+ exp (−ηs,t)

∫
f̃ (...) ϕε

(
ε′
)
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Issues When Applying Perturbation to MS Models

• What Point Should we Approximate Around?

• What Markov-Switching Parameters Should be Perturbed?

• Best Understood in an Example - Let’s Assume we are Only Interested
in Approximating (a Stationary) TFP Process
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Equilibrium Conditions

• Equilibrium Conditions

µ (st) + σ (st) εt − zt

log

 1
σ(1)

ϕε

(
zt−µ(1)

σ(1)

)(
p1,1

1+exp(−η1,t−1)
+

p2,1
1+exp(−η2,t−1)

)
1

σ(2)
ϕε

(
zt−µ(2)

σ(2)

)(
p1,2

1+exp(−η1,t−1)
+

p2,2
1+exp(−η2,t−1)

)
− η1,t

log

 1
σ(2)

ϕε

(
zt−µ(2)

σ(2)

)(
p1,2

1+exp(−η1,t−1)
+

p2,2
1+exp(−η2,t−1)

)
1

σ(1)
ϕε

(
zt−µ(1)

σ(1)

)(
p1,1

1+exp(−η1,t−1)
+

p2,1
1+exp(−η2,t−1)

)
− η2,t


= 0
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Steady State

• Steady State of TFP Independent of σz

• (In RBC Model We Rescale all Variables to Make Everything Stationary)

• The First Equation Would Also Appear in a Full Information Version of
the Model

• So Under Full Information Perturbing σz is not Necessary and Leads to
Loss of Information - Partition Principle of Foerster, Rubio, Waggoner
& Zha

• What About Learning?
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Steady State

• Steady State with Naive Perturbation

µ̄ − zss

log

 1
σ ϕε( zss−µ

σ )
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1+exp(−η1,ss )
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1+exp(−η1,ss )
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p1,1
1+exp(−η1,ss )

+
p2,1

1+exp(−η2,ss )

)
− η2,ss


= 0

• η2,ss = η1,ss if Probability of Staying in a Regime is the Same Across
Regimes

• in general ηj ,ss = f (P) ∀j = 1, 2
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• Steady State with Partition Principle
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• η2,ss ̸= η1,ss , but only because of σz and P - steady state model
probabilities not account for differences in means of regimes

• Note that we can generally solve for the steady state of those variables
that appear in the full information version of the model independently of
model probabilities
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Partition Principle Refinement


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• We Find Model Probabilities That are Consistent With The Full
Information Steady State Under the Partition Principle,but Take Into
Account All Differences Between the Parameters of the Regimes

• Then we Apply the Methods from Foerster, Rubio, Waggoner & Zha
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Back To The RBC Model

Table: Accuracy Check of Simple RBC Model

Method MSE of Beliefs Euler Eqn Error

Partition Principle
First Order 0.3989 −3.0298
Second Order 0.3753 −2.4253
Third Order Order 0.3770 −2.2715

Refinement
First Order 0.3200 −4.3101
Second Order 0.0511 −3.4995
Third Order Order 0.0519 −3.6722

Policy Function Iteration 0 −4.3042

• Why is First Order Doing so Well in Terms of EE? Expectations are
Computed Using Different Model Probabilities for Each Order.
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Table: Economic Effects of Learning

Full Info Learning Pct Difference
Mean Std Dev Mean Std Dev Mean Std Dev

Growth Variables
Output (400 · ∆ log y ) 2.2630 4.3014 2.2630 3.5405 0 −17.69
Consumption (400 · ∆ log c) 2.2630 2.8258 2.2630 3.3344 0 17.99
Investment (400 · ∆ log x) 2.2630 13.6136 2.2630 6.2904 0 −53.79

Detrended Variables
Output (ỹ ) 0.8689 0.0204 0.8789 0.0203 1.15 −0.49
Consumption (c̃) 0.6703 0.0249 0.6746 0.0231 0.64 −7.23
Investment (x̃) 0.1986 0.0131 0.2037 0.0094 2.57 −28.24
Labor (l) 0.3305 0.0047 0.3316 0.0036 0.33 −23.40
Capital

(
k̃
)

6.1430 0.5151 6.3156 0.5138 2.81 −0.25
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Conclusions

• A Framework for the Nonlinear Approximation of Limited Information
Rational Expectations Models

• Example Provides a Lower Bound for the Importance of Learning: No
Feedback Effects (Think About an Endogenous Variable Multiplying a
Regime-Dependent Coefficient)

• Opens up Avenues to Think About Multiple Equilibria in Learning
Models

• Could be Extended to Allow for Disperse Beliefs Across Agents
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