The Model

Learning

Finding The Steady State

Results

Learning and Technology Growth Regimes

Andrew Foerster¹ Christian Matthes²

¹FRB Kansas City ²FRB Richmond

January 2018

The views expressed are solely those of the authors and do not necessarily reflect the views of the Federal Reserve Banks of Kansas City and Richmond or the Federal Reserve System.

- Markov-Switching used in a Variety of Economic Environments
 - Monetary or Fiscal Policy

- Markov-Switching used in a Variety of Economic Environments
 - Monetary or Fiscal Policy
 - Variances of Shocks

- Markov-Switching used in a Variety of Economic Environments
 - Monetary or Fiscal Policy
 - Variances of Shocks
 - Persistence of Exogenous Processes

Introduction	The Model	Learning	Finding The Steady S

- Markov-Switching used in a Variety of Economic Environments
 - Monetary or Fiscal Policy
 - Variances of Shocks
 - Persistence of Exogenous Processes
- Typically Models Assume Full Information about State Variables, Regime Perfectly Observed

Do We Always Know The Regime? - Empirical Evidence for Technology Growth Regimes

- Utilization-adjusted TFP (z_t)
- Investment-specific technology (u_t) measured as PCE deflator divided by nonresidential fixed investment deflator
- Estimate regime switching process

$$z_{t} = \mu_{z} \left(s_{t}^{\mu z} \right) + z_{t-1} + \sigma_{z} \left(s_{t}^{\sigma z} \right) \varepsilon_{z,t}$$
$$u_{t} = \mu_{u} \left(s_{t}^{\mu u} \right) + u_{t-1} + \sigma_{u} \left(s_{t}^{\sigma u} \right) \varepsilon_{u,t}$$

Two Regimes Each

Introduction	The Model	Learning	Finding The Steady State	Results

Table: Evidence for TFP Regimes from Fernald

	Mean	Std Dev
1947-1973	2.00	3.68
1974-1995	0.60	3.44
1996-2004	1.99	2.66
2005-2017	0.39	2.35

Estimated (Filtered) Regimes

Introduction	The Model	Learning	Finding The Steady State	Results

Table: Parameter Estimates

	$\mu_j(L)$	$\mu_j(H)$	$\sigma_j(L)$	$\sigma_j(H)$	$P_{LL}^{\mu j}$	$P_{HH}^{\mu j}$	$P_{LL}^{\sigma j}$	$P_{HH}^{\sigma j}$
TFP $(j = z)$	0.6872 (0.6823)	$\substack{1.8928 \\ (0.6476)}$	2.5591 (0.2805)	3.8949 (0.3744)	$\substack{0.9855 \\ (0.0335)}$	0.9833 (0.0295)	0.9803 (0.0215)	0.9796 (0.0232)
IST(j = u)	0.4128 (0.1112)	$\underset{\left(0.1694\right)}{2.0612}$	$\underset{\left(0.0745\right)}{1.1782}$	$\substack{\textbf{3.9969}\\(0.4091)}$	$\underset{\left(0.0049\right)}{0.9948}$	$\underset{\left(0.0162\right)}{0.9839}$	$\underset{\left(0.0197\right)}{0.9627}$	$\underset{\left(0.0463\right)}{0.9026}$

Introduction	The Model	Learning	Finding The Steady State	Results
	-	This Paper		

- Provide General Methodology for Perturbing MS Models where Agents Infer the Regime by Bayesian Updating
- Agents are Fully Rational

Introduction	The Model	Learning	Finding The Steady State	Results
	٦	This Paper		

- Provide General Methodology for Perturbing MS Models where Agents Infer the Regime by Bayesian Updating
- Agents are Fully Rational
- Extension of Work on Full Information MS Models (Foerster, Rubio, Waggoner & Zha)
- Key Issue: How do we Define the Steady State? What Point do we Approximate Around?
- Joint Approximations to Both Learning Process and Decision Rules

Introduction	The Model	Learning	Finding The Steady State	Results
	٦	This Paper		

- Provide General Methodology for Perturbing MS Models where Agents Infer the Regime by Bayesian Updating
- Agents are Fully Rational
- Extension of Work on Full Information MS Models (Foerster, Rubio, Waggoner & Zha)
- Key Issue: How do we Define the Steady State? What Point do we Approximate Around?
- Joint Approximations to Both Learning Process and Decision Rules
- Second- or Higher-Order Approximations Often Not Considered in Learning Literature

Introduction	The Model	Learning	Finding The Steady State	Results
	٦	This Paper		

- Provide General Methodology for Perturbing MS Models where Agents Infer the Regime by Bayesian Updating
- Agents are Fully Rational
- Extension of Work on Full Information MS Models (Foerster, Rubio, Waggoner & Zha)
- Key Issue: How do we Define the Steady State? What Point do we Approximate Around?
- Joint Approximations to Both Learning Process and Decision Rules
- Second- or Higher-Order Approximations Often Not Considered in Learning Literature
- Use a RBC Model as a Laboratory

duction The Model

Learning

Finding The Steady State

Results

The Model

$$\tilde{\textit{\textit{E}}}_0 \sum_{t=0}^\infty \beta^t \left[\log c_t + \xi \log \left(1 - \textit{\textit{I}}_t\right) \right]$$

The Model

Learning

Finding The Steady State

Results

The Model

$$\begin{split} \tilde{E}_0 \sum_{t=0}^{\infty} \beta^t \left[\log c_t + \xi \log \left(1 - l_t \right) \right] \\ c_t + x_t &= y_t \\ y_t &= \exp \left(z_t \right) k_{t-1}^{\alpha} l_t^{1-\alpha} \\ k_t &= \left(1 - \delta \right) k_{t-1} + \exp \left(u_t \right) x_t \\ z_t &= \mu_z \left(s_t^{\mu z} \right) + z_{t-1} + \sigma_z \left(s_t^{\sigma z} \right) \varepsilon_{z,t} \\ u_t &= \mu_u \left(s_t^{\mu u} \right) + u_{t-1} + \sigma_u \left(s_t^{\sigma u} \right) \varepsilon_{u,t} \end{split}$$

Bayesian Learning

$$\tilde{\mathbf{y}}_t = \tilde{\lambda}_{s_t} \left(\mathbf{x}_{t-1}, \varepsilon_t \right) = [u_t \ z_t]'$$

Bayesian Learning

$$\mathbf{\tilde{y}}_t = \tilde{\lambda}_{s_t} \left(\mathbf{x}_{t-1}, \varepsilon_t \right) = [u_t \ z_t]'$$

$$\varepsilon_{t} = \lambda_{s_{t}}\left(\mathbf{\tilde{y}}_{t}, \mathbf{x}_{t-1}\right)$$

The Model

Learning

Bayesian Learning

$$\mathbf{\tilde{y}}_t = \tilde{\lambda}_{s_t} \left(\mathbf{x}_{t-1}, \varepsilon_t \right) = [u_t \ z_t]'$$

$$\varepsilon_{t} = \lambda_{s_{t}} \left(\mathbf{\tilde{y}}_{t}, \mathbf{x}_{t-1} \right)$$

Bayesian Learning

• To Keep Probabilities between 0 and 1, Define

$$\eta_{i,t} = \log\left(\frac{\psi_{i,t}}{1-\psi_{i,t}}\right)$$

$$\tilde{E}_{t}\mathbf{f}\left(\ldots\right) = \sum_{s=1}^{n_{s}} \sum_{s'=1}^{n_{s}} \frac{p_{s,s'}}{1 + \exp\left(-\eta_{s,t}\right)} \int \widetilde{\mathbf{f}}\left(\ldots\right) \phi_{\varepsilon}\left(\varepsilon'\right)$$

Issues When Applying Perturbation to MS Models

- What Point Should we Approximate Around?
- What Markov-Switching Parameters Should be Perturbed?
- Best Understood in an Example Let's Assume we are Only Interested in Approximating (a Stationary) TFP Process

The Mode

Learning

Finding The Steady State

Results

Equilibrium Conditions

Equilibrium Conditions

duction	The	Model
---------	-----	-------

Learning

Steady State

- Steady State of TFP Independent of σ_z
- (In RBC Model We Rescale all Variables to Make Everything Stationary)
- The First Equation Would Also Appear in a Full Information Version of the Model
- So Under Full Information Perturbing σ_z is not Necessary and Leads to Loss of Information - Partition Principle of Foerster, Rubio, Waggoner & Zha
- What About Learning?

Introduction	The Model	Learning	Finding The Steady State	Resu

Steady State

• Steady State with Naive Perturbation

$$\begin{bmatrix} \bar{\mu} - z_{\text{SS}} \\ \log \left(\frac{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{\text{SS}} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,\text{SS}})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,\text{SS}})}\right)}{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{\text{SS}} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,\text{SS}})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,\text{SS}})}\right)}{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{\text{SS}} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,\text{SS}})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,\text{SS}})}\right)}{\frac{1}{\bar{\tau}} \phi_{\varepsilon} \left(\frac{z_{\text{SS}} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,\text{SS}})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,\text{SS}})}\right)}{\frac{1}{1 + \exp(-\eta_{1,\text{SS}})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,\text{SS}})}}\right)} \right) - \eta_{2,\text{SS}} \end{bmatrix} = 0$$

Introduction	The Model	Learning	Finding The Steady State	Results

Steady State

• Steady State with Naive Perturbation

$$\begin{bmatrix} \bar{\mu} - z_{ss} \\ \log \left(\frac{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})}\right)}{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,ss})}\right)}{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,ss})}\right)}{\frac{1}{\bar{\sigma}} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\bar{\sigma}}\right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})}\right)}{1 + \exp(-\eta_{2,ss})}\right) - \eta_{2,ss} \end{bmatrix} = 0$$

• $\eta_{2,ss} = \eta_{1,ss}$ if Probability of Staying in a Regime is the Same Across Regimes

• in general $\eta_{j,ss} = f(P) \ \forall j = 1, 2$

The Model

Learning

Finding The Steady State

Results

• Steady State with Partition Principle

$$\begin{bmatrix} \bar{\mu} - z_{ss} \\ \log \left(\frac{\frac{1}{\sigma(1)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(1)} \right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{\sigma(2)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(2)} \right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{\sigma(2)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(2)} \right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{\sigma(1)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(1)} \right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})} \right)} \right) - \eta_{2,ss} \end{bmatrix} = 0$$

The Model

Learning

Finding The Steady State

Results

• Steady State with Partition Principle

$$\begin{bmatrix} \bar{\mu} - z_{ss} \\ \log \left(\frac{\frac{1}{\sigma(1)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(1)} \right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{\sigma(2)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(2)} \right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{\sigma(1)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(1)} \right) \left(\frac{P_{1,2}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,2}}{1 + \exp(-\eta_{2,ss})} \right)}{\frac{1}{\sigma(1)} \phi_{\varepsilon} \left(\frac{z_{ss} - \overline{\mu}}{\sigma(1)} \right) \left(\frac{P_{1,1}}{1 + \exp(-\eta_{1,ss})} + \frac{P_{2,1}}{1 + \exp(-\eta_{2,ss})} \right)} \right) - \eta_{2,ss}} \end{bmatrix} = 0$$

- η_{2,ss} ≠ η_{1,ss}, but only because of σ_z and P steady state model probabilities not account for differences in means of regimes
- Note that we can generally solve for the steady state of those variables that appear in the full information version of the model *independently* of model probabilities

Partition Principle Refinement

- We Find Model Probabilities That are Consistent With The Full Information Steady State Under the Partition Principle, but Take Into Account All Differences Between the Parameters of the Regimes
- Then we Apply the Methods from Foerster, Rubio, Waggoner & Zha

Back To The RBC Model

Table: Accuracy Check of Simple RBC Model

Method	MSE of Beliefs	Euler Eqn Error	
Partition Principle			
First Order	0.3989	-3.0298	
Second Order	0.3753	-2.4253	
Third Order Order	0.3770	-2.2715	
Refinement			
First Order	0.3200	-4.3101	
Second Order	0.0511	-3.4995	
Third Order Order	0.0519	-3.6722	
Policy Function Iteration	0	-4.3042	

• Why is First Order Doing so Well in Terms of EE? Expectations are Computed Using Different Model Probabilities for Each Order.

The Mode

Learning

Results

The Mode

Learning

Finding The Steady State

Results

Introduction	The Model	Learning	Finding The Steady State	Results

Table: Economic Effects of Learning

	Full Info		Lea	Learning		Pct Difference	
	Mean	Std Dev	Mean	Std Dev	Mean	Std Dev	
Growth Variables							
Output $(400 \cdot \Delta \log y)$	2.2630	4.3014	2.2630	3.5405	0	-17.69	
Consumption $(400 \cdot \Delta \log c)$	2.2630	2.8258	2.2630	3.3344	0	17.99	
Investment $(400 \cdot \Delta \log x)$	2.2630	13.6136	2.2630	6.2904	0	-53.79	
Detrended Variables							
Output (\tilde{y})	0.8689	0.0204	0.8789	0.0203	1.15	-0.49	
Consumption (\tilde{c})	0.6703	0.0249	0.6746	0.0231	0.64	-7.23	
Investment (\tilde{x})	0.1986	0.0131	0.2037	0.0094	2.57	-28.24	
Labor (1)	0.3305	0.0047	0.3316	0.0036	0.33	-23.40	
Capital (\tilde{k})	6.1430	0.5151	6.3156	0.5138	2.81	-0.25	

- A Framework for the Nonlinear Approximation of Limited Information Rational Expectations Models
- Example Provides a Lower Bound for the Importance of Learning: No Feedback Effects (Think About an Endogenous Variable Multiplying a Regime-Dependent Coefficient)
- Opens up Avenues to Think About Multiple Equilibria in Learning Models
- Could be Extended to Allow for Disperse Beliefs Across Agents