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Question

� Want to measure the marginal propensity to consume (MPC).

- Take a o�-the-shelf permanent-income, life-cycle model, solve it, and
derive implications for MPC.

- With quadratic preferences, constant interest rate, permanent and tran-
sitory exogenous labour income, the decision rules are

ct =
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yTt = �yTt�1 + eTt (3)

yPt = yPt�1 + ePt (4)

where yTt is transitory income, y
P
t is permanent income, ct consumption,

at asset holdings, �(1+r) = 1, and e
i
t iid (0; �

2
i ); i = T; P; yt = yPt +y

T
t .



Estimation of MPCyT I: neglecting model's restrictions

� Natural experiment: e.g. unexpected tax cut. In US MPCyT � [0:5 �
0:6] (Johnson, et al., 2006; Parker et al., 2013).

� Identify a permanent and a transitory shock in a VAR with (yt; at; ct).
Compute the e�ect of a transitory shock. MPCyT � [0:4� 0:6].

- Re�nement: if at not observable, use a bivariate VAR(k); k ! 1 with

(yt; ct).



Estimation of MPCyT II: conditioning on model's restrictions

� Assume all agents face the same ex-post real rate; use moments to
measure r (4% a year) and � (� 0:6�0:7). ThenMPCyT � [0:05�0:10].

- Re�nement: group data according to consumer characteristics; esti-

mate r; � and MPCyT for each group, take a (weighted) average. Then

MPCyT � [0:10� 0:15] (see Caroll, et al., 2014).

� Write down the likelihood function for (ct; at; yt), using the model re-
strictions. Estimate r; �. Then MPCyT � [0:10� 0:15].

�Why estimates obtained conditioning on the structural model are lower
than those obtained using the model only a guidance for the analysis?



Model is likely to be misspeci�ed.

� The real interest rate is not constant over time.

� Labor income is not exogenous. (Income) uncertainty may matter.

� Preferences may not be quadratic in consumption; they may feature non-
separable labor supply decisions. Home production, goods durability, etc.

may matter.

� Disregard heterogeneities: some agents may have zero assets (ROT);
others may be rich but liquidity constrained (HTM).

� Assets mismeasured.



� Moment-based and VAR-based estimates robust to some form of mis-

speci�cation, e.g. lack of dynamics, model incompleteness (Cogley and

Sbordone, 2010, Kim, 2002).

� Likelihood-based estimates invalid under misspeci�cation.

� Current econometric misspeci�cation literature (Cheng and Liao, 2015;
Thryphonides, 2016; Giacomini et al., 2017) does not employ likelihood

when a model is misspeci�ed.

� Robustness (Hansen and Sargent, 2008) more concerned in fending o�
a malevolent nature than reducing estimation biases.

How do you guard yourself against misspeci�cation if you insist in using

likelihood methods?



Existing approaches

1) Estimate a general model with potentially missing features. Computa-

tionally demanding; identi�cation issues; interpretation problems.

2) Capture misspeci�cation with ad-hoc features. For example, with habit

in consumption (h) we have

ct =
h
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yt = yPt + yTt (7)

yTt = �yTt�1 + eTt (8)

yPt = yPt�1 + ePt (9)



� Not all ad-hoc additions work. With preference shocks, we have

ct = (1� 1

kt
at + (y

P
t +
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yTt ) (10)

at+1 = (1 + r)(at � yt � ct) (11)

yt = yPt + yTt (12)

yTt = �yTt�1 + eTt (13)

yPt = yPt�1 + eP2t (14)

where kt = E[�t(1+r)
2]. It mimics the presence of a time varyingMPCa.

MPCyT unchanged.



3) Make the shock process more 
exible; use AR(p) (Del Negro and

Schorfheide, 2009); ARMA(1,1) (Smets and Wouters, 2007); correlated

structural shocks (Curdia and Reis, 2010).

4) Add measurement errors to the decision rules (Hansen and Sargent,

1980, Ireland, 2004, etc.).

5) Add wedges to FOC (Chari et al, 2008), margins to the model (Inoue et

al, 2016), or shocks to the decision rules (Den Haan and Drechsel 2017).

� Check the relevance of adds-on, via marginal likelihood (ML) comparison.

� Kocherlakota (2007): dangerous to use "�t" to select among misspeci�ed
models.



� All approaches condition on one model, but many potential model spec-
i�cations on the table.

� All approaches neglect that di�erent models may be more or less mis-
speci�ed in di�erent time periods (e.g. Del Negro et al., 2016).

� Interpretation problems with 3)- 5) when adds-on are serially correlated.

� Alternative: Composite likelihood approach, Canova and Matthes (2016).



� Take all relevant speci�cations, combine likelihoods geometrically, and
jointly estimate the parameters for all speci�cations.

� Can design selection criteria for optimal selection.

� Posterior of model weights measure the extent of model misspeci�cation
(can be used as model selection criteria).

� Can be used to measure time varying misspeci�cation.

� Perform inference using geometric combination of models.



Advantages of CL approach

� May reduce misspeci�cation and provide more reliable estimates of pa-
rameters common across models.

� Robusti�es inference.

� Computationally as easy as Bayesian maximum likelihood (easier, if a

two-step approach is used).

� It can be used when models feature di�erent endogenous variables and
concern data of di�erent frequencies.

� It has a bunch of side bene�ts for estimation (see Canova and Matthes,
2016): it helps with identi�cation, it can deal with singularity, large scale

models, data of uneven quality, can be used with panel data, etc.



Logic

� When a model is misspeci�ed, information in additional (misspeci�ed)
models restricts the range parameter estimates can take. This improves the

quality of estimates (location and, possibly, magnitude of credible sets).

- DGP (ARMA(1,1)): yt = �yt�1 + �et�1 + et; et � (0; �2).

- Estimated model 1 (AR1): yt = �1yt�1 + ut; ut � (0; �2u)

- Estimated model 2 (MA1): yt = ut + �1ut�1; ut � (0; �2u).

- Focus on the relationship between �̂2u and �
2 (common parameter).

- Expect upward bias in �̂2u because part of the serial correlation of the

DGP is disregarded. Can CL reduce the bias?



� Simulate 150 data from DGP. Use T=[101,150] for estimation. Consider:

1) Fixed weights: ! (AR weight) = 1� ! = 0:5.

2) Fixed weights: based on relative MSEs in training sample T=[2,100]

3) Random weights. Prior on the weight is Beta with mean 0.5.



Table 1: Estimates of �2u

yt = �yt�1 + �et�1 + et; et � N(0; �2), T=50
DGP AR(1) MA(1) CL, Equal CL, MSE CL,Random

weights weights weights

�2 = 0:5; � = 0:6; � = 0:50.75(0.06)0.81 (0.07)0.73 (0.05)0.70 (0.06)0.71 (0.05)
�2 = 1:0; � = 0:6; � = 0:51.08(0.07)1.14 (0.08)1.07 (0.07)1.05 (0.07)1.05 (0.07)

�2 = 1:0; � = 0:3; � = 0:81.14(0.08)1.05 (0.08)1.06 (0.07)0.99 (0.07)0.98 (0.07)

�2 = 1:0; � = 0:9; � = 0:21.06(0.07)1.59 (0.10)1.21 (0.08)1.03 (0.07)1.04 (0.07)



Posterior of ! ( weight on AR(1))



� What if the DGP is one of the candidate models?
Table 2: Posterior of !, di�erent sample sizes

Mode Mean Median Standard
deviation

Prior NA 0.5 0.5 0.288

yt = 0:8yt�1 + et; et � N(0; �2), T=50
T=50 0.994 0.978 0.985 0.023
T=100 0.997 0.983 0.986 0.018
T=250 0.998 0.990 0.993 0.010
T=500 0.999 0.993 0.995 0.006

yt = 0:7et�1 + et; et � N(0; �2), T=50
T=50 0.356 0.468 0.432 0.187
T=100 0.007 0.220 0.147 0.177
T=250 0.003 0.048 0.030 0.050
T=500 0.002 0.034 0.021 0.030



Results

�When the DGP is among the estimated models, the posterior distribution
of ! clusters around 1 for that model, as T !1.

� When the DGP is NOT among the estimated models, the posterior

distribution of ! clusters around the value that minimize the Kullback-

Leibner distance between the composite model and the DGP, as T !1.



Intuition about CL estimation in misspeci�ed models

� Two misspeci�ed models: A, B; with implications for yAt and yBt,

yAt 6= yBt.

� Decision rules are:

yAt = �AyAt�1 + �Aet (15)

yBt = �ByBt�1 + �But (16)

et, ut are iid N(0,I);yAt and yBt scalars; samples:TA and TB; TB � TA.

� Suppose �B = ��A; �B = 
�A



� The (normal) log-likelihood functions are

logLA / �TA log �A �
1

2�2A

TAX
t=1

(yAt � �AyAt�1)
2 (17)

logLB / �TB log �B �
1

2�2B

TBX
t=1

(yBt � �ByBt�1)
2 (18)

� Let weights be (!; 1� !), �xed. The composite log-likelihood is:

logCL = ! logLA + (1� !) logLB (19)

� Suppose we care about � = (�A; �A):



� Maximization of the composite likelihood leads to:

�A = (
TAX
t=1

y2At�1 + �2

TBX
t=1

y2Bt�1)
�1(

TAX
t=1

yAtyAt�1 + �1

TBX
t=1

yBtyBt�1)

(20)

�2A =
1

�
(
TAX
t=1

(yAt � �AyAt�1)
2 +

1� !

!
2

TBX
t=1

(yBt � ��AyBt�1)
2) (21)

where �1 =
1�!
!

�

2
; �2 = �1�; � = (TA + TB

1�!
!
2

) is "e�ective"sample

size.



� Shrinkage estimators for �. Formulas are same as in i) Least Square
problem with uncertain linear restrictions, ii) prior-likelihood approach, iii)

DSGE-VAR.

� For �, model B plays the role of a prior for model A.

� Informational content of model B data for � measured by (
; �; 1 � !).

The larger is 
 and the smaller is �, the lower is model B information.

� More weight given to data assumed to be generated by a model with
higher persistence and lower standard deviation.

� When constant, ! is the (a-priori) trust in model A information.



� For multiple models, equation (20) is

� = (
T1X
t=1

y21t�1 +
KX
i=2

�i2

TiX
t=1

y2it�1)
�1(

T1X
t=1

y1ty1t�1 +
KX
i=2

�i1

TiX
t=1

yityit�1)

(22)

where �i1 =
!i
!1

�i

2i
; �i2 = �i1�i.

� Robusti�cation: estimates of (�; �2) forced to be consistent with the
restrictions present in all models.



� yAt and yBt may be

- di�erent variables. Can use models with di�erent observables.

- the same variables with di�erent level of aggregation (say, aggregate vs.

individual consumption) or in di�erent subsamples ( pre and post �nancial

crisis)

� TA and TB may

- have di�erent length. Can combine models relevant at di�erent frequen-

cies (e.g. a quarterly and an annual model).

- be two samples for the same variables coming from di�erent cross sec-

tional units.



Di�erence from what you may know

� Di�erent from BMA (e.g. Giacomini, et al., 2017): averaging done

using estimates obtained using the restrictions present in each model;

yAt 6= yBt.

� Di�erent from ex-post averaging: common parameters � are jointly

estimated using the restrictions present in each model.

� Di�erent from �nite mixture (Waggoner and Zha, 2012): yAt may be

di�erent from yBt and of di�erent length.



Model selection and model misspeci�cation

� Posterior of ! informs us about model misspeci�cation.

� Can be used for model selection, but bad idea to pick a model if there

are data instabilities. Use prediction pools.



Choosing the composite likelihood combination

� How to choose the optimal combination of models entering (both the

dimensionality of the pool and the models in the pools)?

� Models not independent. Trade-o� between the number of models and
composite likelihood gains.

� Let S = PK�2
k=2

k!
r!(k�r)! be an index for the composite combination, allow

at least two models in the composite pool, and let y = y1 = : : : = yS.

� Under regularity conditions on the prior, (Lv and Liu, 2014):

GBICs;CL / �2CL(�CL; �s;CL; y)+2dim(�CL; �s;CL) log Ts+2I(Hs; Js)
(23)

I(Hs; Js) =
1
2(tr(Qs)� ln jQsj � dim( s)) , Qs = J�1s Hs



� I(Hs; Js) is the log of the KL divergence between two dim( s) vectors of
normal variables, one with zero mean and covariance Js (variability matrix)

and the other with zero mean and covariance Hs (the sensitivity matrix).

� GBIC: �t, dimensionality, misspeci�cation.

� If composite model �s is the DGP, J�s � H�s, I(J�s; H�s) � 0, GBIC= BIC.

� When models share the same observables, I(Hs; Js) measures the mis-
speci�cation in composite model s.

� Di�erent from ! (it informs us about the relative support of a model in

the estimated composite pool).



Prediction pools

- ~yt+l: future values of variables appearing in all models, l = 1; 2; :::.

- � Common parameters, �i model speci�c parameters.

- f(~yt+ljyit; �; �i) = prediction of ~yt+k made with model i. Let

fcl(~yt+ljy1t; : : : ; yKt; �; �1; : : : ; �K; !1; : : : !K) =
KY
i=1

f(~yt+ljyit; �; �i)!i

(24)
The composite predictive distribution of ~yt+l, given the weights is

p(~yt+ljy1t; : : : ; yKt; !1; : : : !K) /
Z
f cl(~yt+ljy1t; : : : ; yKt; �; �1; : : : ; �K; !1; : : : ; !K)

p(�; �1; : : : ; �Kj!1; : : : ; !K; y1t; : : : ; yKt)d�d�1 : : : d�K (25)



Comparison with other pooling devices

� Linear pooling (�nite mixtures predictive densities, BMA , static pools)
(Amisano and Geweke, 2011; Waggoner and Zha, 2012; del Negro et al.

2016).

� Logarithmic pooling (CL). Predictive densities generally unimodal and
less dispersed than linear pooling; invariant to the arrival of new informa-

tion (updating the components of the composite likelihood commutes with

the pooling operator).

� Exponential tilting (ET) Under certain conditions CL produces ET results
(see Cover and Thomas, 2006).



Composite impulse responses and counterfactuals

� Same logic.

� Compute responses/ counterfactuals for each model, compute a geomet-
ric pool, integrate with respect to the composite posterior of the parame-

ters.



Measuring MPCTy (preliminary!)

� BASIC:Quadratic preferences, constant real rate, �(1 + r) = 1, exoge-

nous permanent (RW) and AR(1) transitory income.

� PRECAUTIONARY: Exponential preferences, constant real rate, �(1 +
r) = 1; exogenous permanent (RW) and AR(1) transitory income, time

varying income risk (AR(1)).

� RBC: non-separable CRRA preferences, labor supply, endogenous real

rate, permanent (RW) and AR(1) transitory TFP shocks.

� ROT: Two agents, CRRA preferences, exogenous permanent (RW) and
AR(1) transitory income, constant interest rate �(1 + r)=G
�1 = 1, G

growth rate of permanent income, zero saving for agents 2 (share 0.25).



� Sample 1980:1-2016:4; use real per-capita detrended (Ct; yt; at).

� Prior on ! Dirichlet mean:[0.25, 0.25, 0.25, 0.25].

� Estimate each model by ML. Estimate persistence of transitory income
(TFP) and model weights (!) by Bayesian CL.

- Dynamic MPCTy (l):

Pl
j=1 ct+jjeTtPl
j=1 yt+jjeTt

; l = 1; 2; :::40.



Table 3: Posterior of �, ML and CL

Model 16th 50th 84th
Basic 0.44 0.57 0.66
Precautionary 0.90 0.91 0.91
RBC 0.41 0.52 0.63
ROT 0.46 0.56 0.65
CL 0.85 0.90 0.96
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Measuring the slope of the Phillips curve

� Conventional wisdom (SW, 2007, ACEL, 2011): slope small ' 0:012.

� Schorfheide (2008): Estimates depend on model speci�cation.

� Employ CL to estimate the slope of the Phillips curve using:

i) Small scale NK model with sticky prices, non-observable marginal costs

are (use: detrended Y, � � ��;R� �R): (Rubio-Rabanal, JME, 2005)

ii) Small scale NK model with sticky prices and wages, observable marginal

costs (use: detrended Y, �� ��;R� �R, detrended w) (Rubio and Rabanal,

JME, 2005)



iii) Medium scale NK model with capital adjustment costs (Justiniano et

al., JME, 2010) (use: detrended Y, �� ��;R� �R; detrended C, detrended

I, detrended w,detrended N).

iv) Search and matching NK model (Christo�el and Kuester, JME,2008)

(use: detrended Y, � � ��;R� �R, detrended w/p)

v) A �nancial friction NK model ( NK version of Bernanke, et al., AER,

1999)(use: detrended Y, � � ��;R� �R)

- Sample 1960:1-2005:4; quadratic detrended data.

- Prior mean for ! = (0:20; 0:20; 0:20; 0:20; 0:20).



Percentiles of the posterior of the slope of the Philips curve

5% 50% 95%
Prior 0.01 0.80 1.40
Basic NK 0.06 0.18 0.49
Basic NK with nominal wages 0.05 0.06 0.07
SW with capital and adj.costs 0.04 0.05 0.07
Search 0.44 0.62 0.86
BGG 0.13 0.21 0.35
CL 0.18 0.26 0.40
CL (corrected) 0.18 0.28 0.44





White distance

Model Distance
Basic NK 4700
Basic NK with nominal wages 57300
SW with capital and adj.costs 43500
Search 415
BGG 2070
CL (loose prior) 1433
CL (tight prior) 744






