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This Paper

1 Propose a method to consider a broader class of solutions to
stochastic linear models. Two generalizations:

A novel way to introduce sunspots that yields drifting parameters and
stochastic volatility
Include temporary unstable solutions: we allow for determinacy,
indeterminacy and instability

2 Develop an econometric strategy to verify if unstable paths are
empirically relevant

3 Application:

Example of U.S. Great inflation (Lubik and Schorfheide, 2004, model
and data)
U.S. inflation dynamics in the 70’s are better described by unstable
equilibrium paths.
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Motivation

RE generally implies multiple equilibria

Explosive
Stable

How can we get uniqueness? (Sargent and Wallace ,1973; Phelps and
Taylor, 1977; Taylor, 1977; Blanchard, 1979)

Stability Criterion: Transversality conditions
In saddle paths dynamics only one solution is stable

This became the standard in Macroeconomics (Blanchard and Kahn,
1980)
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Example: U.S. Great Inflation period
Is it appropriate to rule out unstable paths from the empirical analysis?
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Figure: CPI inflation, quarterly data. Sample: 1960Q1 - 1997Q4

Is there any evidence that inflation is described (at least for a while) by
unstable equilibria?
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A simple example: multiple RE solutions

Consider the following simple one equation model:

yt =
1
θ
Etyt+1 + εt , εt ∼ N(0, σ2ε ) (1)

Equation (1) has an infinite number of solutions:

yt+1 = Etyt+1 + ηt+1
yt+1 = θyt − θεt + ηt+1 (2)

where Etηt+1 = 0.
Assume:

ηt+1 = (1+M)εt+1 + ζt+1

where ζt+1 = sunspot or non-fundamental error.

Two sources of multiplicity:
This paper considers the FIRST term: intrinsic multiplicity of RE solutions
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A simple example: multiple RE solutions

Assume ζt = 0 ∀t. All the solutions for yt are described by

yt = θyt−1 − θεt−1 + (1+M)εt (3)

Degree of freedom: the solution is parameterized by M ∈ (−∞,+∞)

Two famous particular cases:

"pure" forward-looking solution: M = 0 (ηt = εt )

yFt − θyFt−1 = εt − θεt−1

yFt = εt ∀t (4)

"pure" backward-looking solution (M = −1)

yBt = θyBt−1 − θεt−1 (5)

Ascari, Bonomolo and Lopes Oslo, January 2018 6 / 35



A simple example: multiple RE solutions

Assume ζt = 0 ∀t. All the solutions for yt are described by

yt = θyt−1 − θεt−1 + (1+M)εt (3)

Degree of freedom: the solution is parameterized by M ∈ (−∞,+∞)

Two famous particular cases:

"pure" forward-looking solution: M = 0 (ηt = εt )

yFt − θyFt−1 = εt − θεt−1

yFt = εt ∀t (4)

"pure" backward-looking solution (M = −1)

yBt = θyBt−1 − θεt−1 (5)

Ascari, Bonomolo and Lopes Oslo, January 2018 6 / 35



A simple example: multiple RE solutions

Assume ζt = 0 ∀t. All the solutions for yt are described by

yt = θyt−1 − θεt−1 + (1+M)εt (3)

Degree of freedom: the solution is parameterized by M ∈ (−∞,+∞)

Two famous particular cases:

"pure" forward-looking solution: M = 0 (ηt = εt )

yFt − θyFt−1 = εt − θεt−1

yFt = εt ∀t (4)

"pure" backward-looking solution (M = −1)

yBt = θyBt−1 − θεt−1 (5)

Ascari, Bonomolo and Lopes Oslo, January 2018 6 / 35



The interpretation for M

For M 6= −1, the expected value = an exponentially weighted
average of the past observations (Muth, 1961)

Etyt+1 = M
t

∑
i=0

(
θ

1+M

)i
yt+1−i

Natural interpretation for M: the way agents form expectations

M defines the importance the agents give to the past data, both in
absolute terms (M vs 0), and in relative terms.

Infinite solutions = infinite way we can set that weights => how to
choose?
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The stability criterion (e.g., Blanchard and Kahn, 1980)

yt = θyt−1 − θεt−1 + (1+M)εt

Is the stability criterion suffi cient to identify a unique path?

1 If |θ| > 1 YES determinacy, by imposing M = 0 = f.l.
solution yFt = εt (MSV solution)

2 If |θ| < 1 NO indeterminacy

=> "Sunspot equilibria can often be constructed by randomizing over
multiple equilibria of a general equilibrium model" Benhabib and Farmer
(1999, p.390)
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Introducing sunspot equilibria

We have infinite equilibria because:

- there is an infinite number of ways of forming expectations
- parametrized by M

hence we introduce sunspots randomizing over M:

Mt = Mt (ζt ) (6)

where ζt i.i.d., orthogonal to the fundamental shocks εs (s = 1, 2, ...), and
Etζt = 0 ∀t.

Ascari, Bonomolo and Lopes Oslo, January 2018 9 / 35



Introducing sunspot equilibria: drifting parameters and
unstable paths
If Mt is a stochastic process with EtMt+1 = Mt then

yt = αtyt−1 − αt εt−1 + (1+Mt )εt (7)

with αt = θ
Mt

Mt−1
(with Mt−1 6= 0 otherwise FL solution).

Same form as yt = θyt−1 − θεt−1 + (1+M)εt

Drifting parameters and stochastic volatility within the rational
expectations framework. Cogley and Sargent (2005), Primiceri
(2005).

Intuition:agents can modify in every period the expectation formation
process

Reconsidering unstable paths: |θ| > 1 and Mt temporarily different
from zero
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Which process for M? RE Solutions

- With Mt random variable the forecast error becomes:

ηt = (1+Mt )εt + (Mt −Mt−1)

(
t−1
∑
i=1

θi εt−i

)
(8)

- Under RE Et−1ηt = 0, then:

1 Et−1(Mt ) = Mt−1 (Mt martingale)
2 Et−1 [(1+Mt )εt ] = 0, (Mt must be uncorrelated with εt)

if |θ| < 1 : Use conditions 1 and 2
if |θ| > 1 : Unstable paths. Consider the role of transversality condition
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Temporarily explosive paths

All the paths corresponding to expected temporary deviations of Mt

from 0 will not violate the transversality condition

RE requires Mt martingale, but
if |θ| > 1 and Mt martingale, when Mt 6= 0 the economy is expected
to remain on the unstable path, so transversality condition would be
violated

=> To allow for temporary unstable paths relax the martingale
assumption (and RE)
Deviation can be minimal without practical implications Mprocess
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Example: Lubik and Schorfheide (2004) model

xt = Et (xt+1)− τ(Rt − Et (πt+1)) + gt
πt = βEt (πt+1) + κ(xt − zt )
Rt = ρRRt−1 + (1− ρR )(ψ1πt + ψ2(xt − zt )) + εR ,t

and
gt = ρggt−1 + εg ,t ; zt = ρzzt−1 + εz ,t

allow for non-zero correlation between the two shocks: ρgz

Compare two "models": MS (stable solutions) and MU (unstable
solutions).
Eig
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The estimation strategy

The model has stochastic volatility, then the likelihood distribution is
not Gaussian

Common practice in non linear DSGE literature: use particle filter to
approximate the likelihood in MCMC (Fernandez-Villaverde and
Rubio-Ramirez, 2007)

Different approach: Particle filter to approximate the posterior
distribution of the parameters and Mt

Sequential Learning on the parameters: how inference evolves over
time gives additional information about the role of sunspots and
unstable paths
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Particle filter

1 Marginalization. l : all latent states different from M; y : data

p(l ,M |y) = p(l |y ,M)︸ ︷︷ ︸
Kalman Filter

p(M |y)︸ ︷︷ ︸
Particle Filter

2 Parameter learning, combining:

1 Particle Learning by Carvalho, Johannes, Lopes and Polson (2010):

2 Liu and West (2001)

See also Chen, Petralia and Lopes (2010)
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Priors and Distributions: same as in LS

Models

Ascari, Bonomolo and Lopes Oslo, January 2018 16 / 35



Estimates Great Inflation sample
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Stable Model, Great Inflation:
Estimated path for Mt and sequential inference on the parameter ψ1.

Indeterminacy plays a role from the mid 70’
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Unstable Model, Great Inflation

The behavior of Mt

IRFs Models
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Comparing the relative fit of Ms/Mu

Cumulative Bayes Factor: 2 ln(Wt ) and the inflation rate

The Bayes Factor strongly favours the unstable model
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Estimates Great Moderation sample
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Unstable Model, Great Inflation
Estimated path for Mt and sequential inference on the parameter γ.

Model MU selects the unique stable solution Models
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Comparing the relative fit of Ms/Mu

Cumulative Bayes Factor: 2 ln(Wt ) and the inflation rate
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Conclusions

We broaden the class of solutions to linear models

Drifting parameters and stochastic volatility

Temporary unstable paths

Our methodology allows the data to choose between different possible
alternatives: determinacy, indeterminacy and instability

When the data are allowed this possibility, they unambiguously select
the unstable model to explain the stagflation period in the ‘70s

Temporary unstable paths can be empirically relevant and should
not be excluded a priori
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EXTRA
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Which process for M? Temporary unstable paths

To guarantee the transversality condition relax the martingale assumption
(and RE):

Mt = NtAt−1

- Nt martingale
- At ∈ {0, 1} non increasing random sequence

Indicate with T̄ random variable: T̄ = inf {t : At = 0}
Properties of Mt :

1 Et (Mt+1) = Mt for t < T̄ and t > T̄
Et (Mt+1) = 0 for t = T̄

In general Et (ηt+1) = 0.

2 limh→∞ EtMt+h = 0

The transversality condition holds backl
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Compare two "models": MS (stable solutions) and MU (unstable
solutions).

Model
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Assumption on M

UNDER STABILITY MS

If Taylor principle respected (determinacy) => Mt = 0 ∀t
If Taylor principle not respected (indeterminacy): Mt = Mt−1 + ζt

UNDER INSTABILITY MU

Mt = NtAt−1

with

Nt =
{
Nt−1/γ+ ζt with probability γ
0 with probability 1− γ

Model MuGI MuGM priors
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Unstable Model, Great Inflation

Transmission mechanism of structural shocks: GIRF in the MU model
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Unstable Model, Great Inflation

Transmission mechanism of sunspot shock: GIRF in the MU model:
solid line: M = 0, dashed line: M = 0.52

back

Ascari, Bonomolo and Lopes Oslo, January 2018 35 / 35


	Introduction
	The Approach
	A Simple Example

	NK example
	Results

