Rational Sunspots

Guido Ascari^a, Paolo Bonomolo^b, HedibertF.Lopes^c a University of Oxford, b Sveriges Riksbank¹, c INSPER

Nonlinear Models in Macroeconomics and Finance for an Unstable World Norges Bank, Oslo, 2018

¹The views expressed are solely the responsibility of the authors and should not to be interpreted as reflecting the views of Sveriges Riksbank. $(\Box) (\Box) ($

This Paper

- Propose a method to consider a broader class of solutions to stochastic linear models. Two generalizations:
 - A novel way to introduce sunspots that yields drifting parameters and stochastic volatility
 - Include temporary unstable solutions: we allow for determinacy, indeterminacy and instability
- Oevelop an econometric strategy to verify if unstable paths are empirically relevant
- Application:
 - Example of U.S. Great inflation (Lubik and Schorfheide, 2004, model and data)
 - U.S. inflation dynamics in the 70's are better described by unstable equilibrium paths.

(B)

3

Motivation

- RE generally implies multiple equilibria
 - Explosive
 - Stable
- How can we get uniqueness? (Sargent and Wallace ,1973; Phelps and Taylor, 1977; Taylor, 1977; Blanchard, 1979)
- Stability Criterion: Transversality conditions In saddle paths dynamics only one solution is stable
- This became the standard in Macroeconomics (Blanchard and Kahn, 1980)

Example: U.S. Great Inflation period

Is it appropriate to rule out unstable paths from the empirical analysis?

Figure: CPI inflation, quarterly data. Sample: 1960Q1 - 1997Q4

Is there any evidence that inflation is described (at least for a while) by unstable equilibria?

Consider the following simple one equation model:

$$y_t = \frac{1}{\theta} E_t y_{t+1} + \varepsilon_t, \qquad \varepsilon_t \sim N(0, \sigma_{\varepsilon}^2)$$
 (1)

Equation (1) has an infinite number of solutions:

$$y_{t+1} = E_t y_{t+1} + \eta_{t+1}$$

$$y_{t+1} = \theta y_t - \theta \varepsilon_t + \eta_{t+1}$$
(2)

where $E_t \eta_{t+1} = 0$. Assume:

$$\eta_{t+1} = (1+M)\varepsilon_{t+1} + \zeta_{t+1}$$

where $\zeta_{t+1} = \text{sunspot or non-fundamental error}$.

Two sources of multiplicity:

This paper considers the FIRST term: intrinsic multiplicity of RE solutions

Assume $\zeta_t = 0 \ \forall t$. All the solutions for y_t are described by

$$y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t \tag{3}$$

3

Degree of freedom: the solution is parameterized by $M \in (-\infty, +\infty)$

• Two famous particular cases:

Assume $\zeta_t = 0 \ \forall t$. All the solutions for y_t are described by

$$y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t \tag{3}$$

Degree of freedom: the solution is parameterized by $M \in (-\infty, +\infty)$

- Two famous particular cases:
 - "pure" forward-looking solution: $M = 0 \; (\eta_t = \varepsilon_t)$

$$y_t^F - \theta y_{t-1}^F = \varepsilon_t - \theta \varepsilon_{t-1}$$
$$y_t^F = \varepsilon_t \quad \forall t$$
(4)

Assume $\zeta_t = 0 \ \forall t$. All the solutions for y_t are described by

$$y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t \tag{3}$$

Degree of freedom: the solution is parameterized by $M \in (-\infty, +\infty)$

- Two famous particular cases:
 - "pure" forward-looking solution: $M=0~(\eta_t=arepsilon_t)$

$$y_t^F - \theta y_{t-1}^F = \varepsilon_t - \theta \varepsilon_{t-1}$$
$$y_t^F = \varepsilon_t \quad \forall t$$
(4)

• "pure" backward-looking solution $({\it M}=-1)$

$$y_t^B = \theta y_{t-1}^B - \theta \varepsilon_{t-1} \tag{5}$$

▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

The interpretation for M

 For M ≠ −1, the expected value = an exponentially weighted average of the past observations (Muth, 1961)

$$E_t y_{t+1} = M \sum_{i=0}^t \left(\frac{\theta}{1+M} \right)^i y_{t+1-i}$$

Natural interpretation for M: the way agents form expectations

The interpretation for M

 For M ≠ −1, the expected value = an exponentially weighted average of the past observations (Muth, 1961)

$$E_t y_{t+1} = M \sum_{i=0}^t \left(\frac{\theta}{1+M}\right)^i y_{t+1-i}$$

Natural interpretation for M: the way agents form expectations

• *M* defines the importance the agents give to the past data, both in *absolute* terms (*M* vs 0), and in *relative* terms.

The interpretation for M

 For M ≠ −1, the expected value = an exponentially weighted average of the past observations (Muth, 1961)

$$E_t y_{t+1} = M \sum_{i=0}^t \left(\frac{\theta}{1+M}\right)^i y_{t+1-i}$$

Natural interpretation for M: the way agents form expectations

- *M* defines the importance the agents give to the past data, both in *absolute* terms (*M* vs 0), and in *relative* terms.
- Infinite solutions = infinite way we can set that weights => how to choose?

The stability criterion (e.g., Blanchard and Kahn, 1980)

$$y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t$$

Is the stability criterion sufficient to identify a unique path?

• If $|\theta| > 1$ YES determinacy, by imposing M = 0 = f.l. solution $y_t^F = \varepsilon_t$ (MSV solution)

2 If $|\theta| < 1$ NO indeterminacy

=> "Sunspot equilibria can often be constructed by randomizing over multiple equilibria of a general equilibrium model" Benhabib and Farmer (1999, p.390)

★ E ★ E ★ E ♥ Q @

Introducing sunspot equilibria

We have infinite equilibria because:

- there is an infinite number of ways of forming expectations - parametrized by ${\cal M}$

hence we introduce sunspots randomizing over M:

$$M_t = M_t(\zeta_t) \tag{6}$$

where ζ_t i.i.d., orthogonal to the fundamental shocks ε_s (s = 1, 2, ...), and $E_t \zeta_t = 0 \ \forall t$.

If M_t is a stochastic process with $E_t M_{t+1} = M_t$ then

$$y_t = \alpha_t y_{t-1} - \alpha_t \varepsilon_{t-1} + (1 + M_t) \varepsilon_t \tag{7}$$

★ E ► ★ E ► _ E

with $\alpha_t = \theta \frac{M_t}{M_{t-1}}$ (with $M_{t-1} \neq 0$ otherwise FL solution).

• Same form as $y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t$

If M_t is a stochastic process with $E_t M_{t+1} = M_t$ then

$$y_t = \alpha_t y_{t-1} - \alpha_t \varepsilon_{t-1} + (1 + M_t) \varepsilon_t \tag{7}$$

with $\alpha_t = \theta \frac{M_t}{M_{t-1}}$ (with $M_{t-1} \neq 0$ otherwise FL solution).

• Same form as
$$y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t$$

• Drifting parameters and stochastic volatility within the rational expectations framework. Cogley and Sargent (2005), Primiceri (2005).

If M_t is a stochastic process with $E_t M_{t+1} = M_t$ then

$$y_t = \alpha_t y_{t-1} - \alpha_t \varepsilon_{t-1} + (1 + M_t) \varepsilon_t \tag{7}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

with $\alpha_t = \theta \frac{M_t}{M_{t-1}}$ (with $M_{t-1} \neq 0$ otherwise FL solution).

• Same form as
$$y_t = \theta y_{t-1} - \theta \varepsilon_{t-1} + (1+M)\varepsilon_t$$

- Drifting parameters and stochastic volatility within the rational expectations framework. Cogley and Sargent (2005), Primiceri (2005).
- Intuition:agents can modify in every period the expectation formation process

If M_t is a stochastic process with $E_t M_{t+1} = M_t$ then

$$y_t = \alpha_t y_{t-1} - \alpha_t \varepsilon_{t-1} + (1 + M_t) \varepsilon_t \tag{7}$$

with $\alpha_t = \theta \frac{M_t}{M_{t-1}}$ (with $M_{t-1} \neq 0$ otherwise FL solution).

• Same form as
$$y_t = heta y_{t-1} - heta arepsilon_{t-1} + (1+M)arepsilon_t$$

- Drifting parameters and stochastic volatility within the rational expectations framework. Cogley and Sargent (2005), Primiceri (2005).
- Intuition:agents can modify in every period the expectation formation process
- Reconsidering unstable paths: $|\theta| > 1$ and M_t temporarily different from zero

Which process for M? RE Solutions

- With M_t random variable the forecast error becomes:

$$\eta_t = (1 + M_t)\varepsilon_t + (M_t - M_{t-1})\left(\sum_{i=1}^{t-1} \theta^i \varepsilon_{t-i}\right)$$
(8)

- Under RE
$$E_{t-1}\eta_t = 0$$
, then:

•
$$E_{t-1}(M_t) = M_{t-1}$$
 (M_t martingale)
• $E_{t-1}[(1 + M_t)c_t] = 0$ (M_t must be uncorrelated

• $E_{t-1}[(1+M_t)\varepsilon_t] = 0$, $(M_t \text{ must be uncorrelated with } \varepsilon_t)$

if $|\theta| < 1$: Use conditions 1 and 2

if | heta| > 1 : Unstable paths. Consider the role of transversality condition

-▲臣▶ ▲臣▶ 臣 のへ⊙

Temporarily explosive paths

- All the paths corresponding to expected temporary deviations of M_t from 0 will not violate the transversality condition
- RE requires M_t martingale, but if $|\theta| > 1$ and M_t martingale, when $M_t \neq 0$ the economy is expected to remain on the unstable path, so transversality condition would be violated

=> To allow for temporary unstable paths relax the martingale assumption (and RE) Deviation can be minimal without practical implications

► Mprocess

Example: Lubik and Schorfheide (2004) model

$$\begin{aligned} x_t &= E_t(x_{t+1}) - \tau(R_t - E_t(\pi_{t+1})) + g_t \\ \pi_t &= \beta E_t(\pi_{t+1}) + \kappa(x_t - z_t) \\ R_t &= \rho_R R_{t-1} + (1 - \rho_R)(\psi_1 \pi_t + \psi_2(x_t - z_t)) + \varepsilon_{R,t} \end{aligned}$$

and

$$g_t = \rho_g g_{t-1} + \varepsilon_{g,t}; \qquad z_t = \rho_z z_{t-1} + \varepsilon_{z,t}$$

allow for non-zero correlation between the two shocks: $ho_{_{gz}}$

Compare two "models": M_S (stable solutions) and M_U (unstable solutions).

🕨 Eig

(B)

3

The estimation strategy

- The model has stochastic volatility, then the likelihood distribution is not Gaussian
- Common practice in non linear DSGE literature: use particle filter to approximate the likelihood in MCMC (Fernandez-Villaverde and Rubio-Ramirez, 2007)
- **Different approach**: Particle filter to approximate the posterior distribution of the parameters and M_t
- Sequential Learning on the parameters: how inference evolves over time gives additional information about the role of sunspots and unstable paths

→ Ξ →

Particle filter

Marginalization. I: all latent states different from M; y: data

$$p(I, M|y) = \underbrace{p(I|y, M)}_{\text{Kalman Filter}} \underbrace{p(M|y)}_{\text{Particle Filter}}$$

Parameter learning, combining:

Particle Learning by Carvalho, Johannes, Lopes and Polson (2010):

2 Liu and West (2001)

See also Chen, Petralia and Lopes (2010)

ヨト イヨト

Priors and Distributions: same as in LS

Parameter	Density	Mean	Standard Deviation
ψ_1	Gamma	1.1	0.5
ψ_2	Gamma	0.25	0.15
ρ_R	Beta	0.5	0.2
π^*	Gamma	4	2
r^*	Gamma	2	1
κ	Gamma	0.5	0.2
τ^{-1}	Gamma	2	0.5
ρ_q	Beta	0.7	0.1
ρ_z	Beta	0.7	0.1
γ	Beta	0.8	0.15
σ_R	Inverse Gamma	0.31	0.16
σ_{ζ}	Inverse Gamma	0.1	0.05
Variance Covariance	Density	Scale	Degrees of freedom
Σ_{gz}	Inverse Wishart	$3\begin{bmatrix} 0.38^2 & 0\\ 0 & 1\end{bmatrix}$	8

Table 1: Prior Distributions

▶ Models

16 / 35

< ∃ > < ∃ >

2

Estimates Great Inflation sample

	Pre- Volcker 1960:I - 1979:II			
Parameter	M_S	M_U	LS	
ψ_1	0.80	0.76	0.77	
	[0.66 0.92]	[0.61 0.91]	[0.64 0.91]	
ψ_2	$\begin{array}{c} 0.16\\ \left[0.11 \ 0.20 ight] \end{array}$	0.20 [0.16 0.34]	$\begin{array}{c} 0.17\\ \left[0.04 \ 0.30 ight] \end{array}$	
ρ_R	0.68 [0.65 0.71]	0.60 [0.53 0.68]	$\begin{array}{c} 0.60 \\ 0.42 \ 0.78 \end{array}$	
π^*	1.90	1.73	4.28	
	[1.62 2.25]	[1.31 2.47]	[2.21 6.21]	
r^*	1.41	1.23	1.13	
	[1.29 1.58]	[0.93 1.74]	[0.63 1.62]	
κ	0.14	0.10	0.77	
	[0.10 0.18]	[0.07 0.14]	[0.39 1.12]	
τ^{-1}	3.41	3.02	1.45	
	[2.65 4.51]	[2.46 3.74]	[0.85 2.05]	
$ ho_g$	0.64	0.68	0.68	
	[0.59 0.69]	[0.63 0.74]	[0.54 0.81]	
$ ho_z$	0.76	0.75	0.82	
	[0.72 0.80]	[0.67 0.81]	[0.72 0.92]	
ρ_{gz}	0.26	0.16	0.14	
	[0.19 0.37]	[0.06 0.25]	[-0.4 0.71]	
γ	-	0.96 [0.85 0.99]	-	
σ_R	0.22 [0.2 0.26]	0.19 [0.16 0.22]	0.23 [0.19 0.27]	
σ_g	0.35	0.31	0.27	
	[0.3 0.4]	[0.24 0.37]	[0.17 0.36]	
σ_z	1.11	1.00	1.13	
	[0.97 1.29]	[0.85 1.31]	[0.95 1.30]	
σ_{ς}	0.08	0.06 [0.05 0.08]	0.20 [0.12 0.27]	

90% credibility interval in brackets

▶ **4 ⊡ ▶ 4** 17 / 35 3

- ▲ 臣 ▶ - ▲ 臣 ▶ -

Stable Model, Great Inflation:

Estimated path for M_t and sequential inference on the parameter ψ_1 .

Unstable Model, Great Inflation

The behavior of M_t

▶ IRFs

Models

Comparing the relative fit of Ms/Mu

Cumulative Bayes Factor: $2\ln(W_t)$ and the inflation rate

The Bayes Factor strongly favours the unstable model

Ascari, Bonomolo and Lopes Oslo, January 2018

Estimates Great Moderation sample

	Post-82 1982:IV - 1997:IV			
Parameter	M_S	M_U	LS	
ψ_1	2.07 [1.50 2.81]	2.12 [1.07 3.65]	2.19 [1.38 2.99]	
ψ_2	0.16 [0.06 0.39]	0.51 [0.19 1.38]	0.30 [0.07 0.51]	
ρ_R	0.86 [0.81 0.90]	0.85 [0.80 0.89]	0.84 [0.79 0.89]	
π^*	3.18 [2.73 3.74]	3.22 [2.74 3.74]	3.43 [2.84 3.99]	
r^*	2.65 [1.87 3.56]	2.81 [2.17 3.60]	3.01 [2.21 3.80]	
κ	0.28 [0.20 0.40]	0.64 [0.38 1.09]	0.58 [0.27 0.89]	
τ^{-1}	2.52 [1.90 3.41]	1.28 [0.85 1.88]	1.86 [1.04 2.64]	
$ ho_g$	0.77 [0.68 0.84]	0.81 [0.74 0.87]	0.83	
$ ho_z$	$\begin{array}{c} 0.71 \\ \left[0.62 \ 0.80 \right] \end{array}$	0.78 [0.70 0.84]	0.85 [0.77 0.93]	
ρ_{gz}	$\begin{array}{c} 0.03 \\ \left[0.00 \ 0.07 \right] \end{array}$	$\begin{array}{c} 0.04 \\ \left[0.01 \ 0.08 \right] \end{array}$	0.36 [0.06 0.67]	
γ	-	0.05 [0.02 0.11]	-	
σ_R	$\begin{array}{c} 0.16\\ \left[0.13 \ 019 ight] \end{array}$	0.16 [0.14 0.2]	0.18 [0.14 0.21]	
σ_g	0.20 [0.15 0.26]	0.22 [0.18 0.27]	0.18 [0.14 0.23]	
σ_z	0.71 [0.56 0.92]	0.59 [0.51 0.70]	0.64 [0.52 0.76]	
σ_{ς}	-	_	—	

90% credibility interval in brackets

æ

< 行

21 / 35

Unstable Model, Great Inflation

Estimated path for M_t and sequential inference on the parameter γ .

Model M_U selects the unique stable solution

22 / 35

Comparing the relative fit of Ms/Mu

Cumulative Bayes Factor: $2\ln(W_t)$ and the inflation rate

Ascari, Bonomolo and Lopes Oslo, January 2018 23 / 35

• We broaden the class of solutions to linear models

E ► < E ►

æ

- We broaden the class of solutions to linear models
 - Drifting parameters and stochastic volatility

э

- ∢ ∃ ▶

- We broaden the class of solutions to linear models
 - Drifting parameters and stochastic volatility
 - Temporary unstable paths

- ∢ ∃ →

э

- We broaden the class of solutions to linear models
 - Drifting parameters and stochastic volatility
 - Temporary unstable paths
- Our methodology allows the data to choose between different possible alternatives: determinacy, indeterminacy and instability

- We broaden the class of solutions to linear models
 - Drifting parameters and stochastic volatility
 - Temporary unstable paths
- Our methodology allows the data to choose between different possible alternatives: determinacy, indeterminacy and instability
- When the data are allowed this possibility, they unambiguously select the unstable model to explain the stagflation period in the '70s

- We broaden the class of solutions to linear models
 - Drifting parameters and stochastic volatility
 - Temporary unstable paths
- Our methodology allows the data to choose between different possible alternatives: determinacy, indeterminacy and instability
- When the data are allowed this possibility, they unambiguously select the unstable model to explain the stagflation period in the '70s
- **Temporary unstable paths** can be empirically relevant and should not be excluded a priori

EXTRA

Ascari, Bonomolo and Lopes Oslo, January 2018 25 / 35

イロン イヨン イヨン イヨン

3

Which process for M? Temporary unstable paths

To guarantee the transversality condition relax the martingale assumption (and RE):

$$M_t = N_t A_{t-1}$$

- N_t martingale

2

- $A_t \in \{0,1\}$ non increasing random sequence

Indicate with \overline{T} random variable: $\overline{T} = \inf \{t : A_t = 0\}$ Properties of M_t :

$$E_t(M_{t+1}) = M_t \quad \text{for } t < \bar{T} \text{ and } t > \bar{T} \\ E_t(M_{t+1}) = 0 \quad \text{for } t = \bar{T}$$

In general $E_t(\eta_{t+1}) = 0.$

$$\lim_{h\to\infty}E_tM_{t+h}=0$$

The transversality condition holds

3

◆□> ◆□> ◆豆> ◆豆> ・豆 ・ のへぐ

ヘロト 人間 とくほ とくほ とう

3

э.

イロト イ理ト イヨト イヨト

э.

イロン イ理と イヨン イヨン

A = A = A

2

Compare two "models": M_S (stable solutions) and M_U (unstable solutions).

► Model

Assumption on M

- UNDER STABILITY M_{S} If Taylor principle respected (determinacy) $= M_t = 0 \ \forall t$ If Taylor principle **not** respected (indeterminacy): $M_t = M_{t-1} + \zeta_t$
- UNDER INSTABILITY M_{II}

$$M_t = N_t A_{t-1}$$

with

$$N_{t} = \begin{cases} N_{t-1}/\gamma + \zeta_{t} & \text{with probability } \gamma \\ 0 & \text{with probability } 1 - \gamma \end{cases}$$
Model • MuGl • MuGM • priors

Unstable Model, Great Inflation

Transmission mechanism of structural shocks: GIRF in the M_U model

э

э

Unstable Model, Great Inflation

Transmission mechanism of sunspot shock: GIRF in the M_U model: solid line: M = 0, dashed line: M = 0.52