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This Paper

© Propose a method to consider a broader class of solutions to
stochastic linear models. Two generalizations:

e A novel way to introduce sunspots that yields drifting parameters and
stochastic volatility

e Include temporary unstable solutions: we allow for determinacy,
indeterminacy and instability

@ Develop an econometric strategy to verify if unstable paths are
empirically relevant

© Application:

e Example of U.S. Great inflation (Lubik and Schorfheide, 2004, model
and data)

e U.S. inflation dynamics in the 70's are better described by unstable
equilibrium paths.
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Motivation

RE generally implies multiple equilibria

e Explosive
e Stable

@ How can we get uniqueness? (Sargent and Wallace ,1973; Phelps and
Taylor, 1977; Taylor, 1977; Blanchard, 1979)

Stability Criterion: Transversality conditions
In saddle paths dynamics only one solution is stable

@ This became the standard in Macroeconomics (Blanchard and Kahn,
1980)
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Example: U.S. Great Inflation period
Is it appropriate to rule out unstable paths from the empirical analysis?

s T

e==US Inflation] |

Figure: CPl inflation, quarterly data. Sample: 1960Q1 - 1997Q4

Is there any evidence that inflation is described (at least for a while) by
unstable equilibria?
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A simple example: multiple RE solutions

Consider the following simple one equation model:

1
Ye = éEtYrJrl + &, ee ~ N(0,07) (1)
Equation (1) has an infinite number of solutions:

yir1 = Eyer1+1.
yivr = Oy —0er+1,4 (2)

where E;7,. , = 0.
Assume:

Miy1 = (1+M)ersr + Cry1

where (. ; = sunspot or non-fundamental error.

Two sources of multiplicity:
This paper considers the FIRST term: intrinsic multiplicity of RE solutions
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A simple example: multiple RE solutions
Assume (, = 0 Vt. All the solutions for y; are described by
Yt = Qyt,1 — 981-71 + (1 + M)St (3)

Degree of freedom: the solution is parameterized by M € (—o0, +0)

@ Two famous particular cases:
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A simple example: multiple RE solutions

Assume (, = 0 Vt. All the solutions for y; are described by

ye =0yr—1 —0er_1+ (1 + M)e;

(3)

Degree of freedom: the solution is parameterized by M € (—o0, +0)

@ Two famous particular cases:

o "pure" forward-looking solution: M =0 (1, = &)

}’f—e)’fq = g —0g_1
}’tF = g Vt

Ascari, Bonomolo and Lopes Oslo, January 2018 6 /

/ 35



A simple example: multiple RE solutions

Assume (, = 0 Vt. All the solutions for y; are described by

ye =0yr—1 —0er_1+ (1 + M)e;

(3)

Degree of freedom: the solution is parameterized by M € (—o0, +0)

@ Two famous particular cases:

o "pure" forward-looking solution: M =0 (1, = &)

}’f - 9}’[»’:71 = & —be 1
}’tF = g Vt
o "pure" backward-looking solution (M = —1)

yE=0yB | —6e 1
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The interpretation for M

@ For M # —1, the expected value = an exponentially weighted
average of the past observations (Muth, 1961)

t 0 i
E, =M —_— _
tYt+1 i;) (1+M) Ye+1—i

Natural interpretation for M: the way agents form expectations
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t 9 i
E, =M P — _
tYt+1 i;) (1+M) Ye+1—i

Natural interpretation for M: the way agents form expectations

@ M defines the importance the agents give to the past data, both in
absolute terms (M vs 0), and in relative terms.
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The interpretation for M

@ For M # —1, the expected value = an exponentially weighted
average of the past observations (Muth, 1961)

t 9 i
E, =M P — _
tYt+1 i;) (1+M> Ye+1—i

Natural interpretation for M: the way agents form expectations

@ M defines the importance the agents give to the past data, both in
absolute terms (M vs 0), and in relative terms.

@ Infinite solutions = infinite way we can set that weights => how to
choose?
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The stability criterion (e.g., Blanchard and Kahn, 1980)

ye =0yr—1 —0er_1 + (1 + M)e;

Is the stability criterion sufficient to identify a unique path?

QIf|g] >1 YES determinacy, by imposing M =0 = f.l.
solution y[ = &; (MSV solution)

QIflfl <1 NO indeterminacy

=> "Sunspot equilibria can often be constructed by randomizing over
multiple equilibria of a general equilibrium model” Benhabib and Farmer
(1999, p.390)
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Introducing sunspot equilibria

We have infinite equilibria because:

- there is an infinite number of ways of forming expectations
- parametrized by M

hence we introduce sunspots randomizing over M:
M, = Mt(Ct) (6)

where {, i.i.d., orthogonal to the fundamental shocks &s (s = 1,2,...), and
Etgt - O Vt
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Introducing sunspot equilibria: drifting parameters and

unstable paths
If M; is a stochastic process with E;M; 1 = M; then

Ve = Qeye—1 — Q€1 + (1 4+ Mp)e; (7)

M,

with ay = 6 (with M;_1 # 0 otherwise FL solution).

t—1

@ Same form as y; = Oy;—1 — 0e;—1 + (1 + M)e,
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Introducing sunspot equilibria: drifting parameters and

unstable paths
If M; is a stochastic process with E;M; 1 = M; then

Ve = Qeye—1 — Q€1 + (1 4+ Mp)e; (7)

M
with Ky = 0 t

(with M;_1 # 0 otherwise FL solution).
t-1

@ Same form as y; = 0y;—1 — g1 + (1 + M)e,
@ Drifting parameters and stochastic volatility within the rational

expectations framework. Cogley and Sargent (2005), Primiceri
(2005).
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Introducing sunspot equilibria: drifting parameters and

unstable paths
If M; is a stochastic process with E;M; 1 = M; then

Ve = Qeye—1 — Q€1 + (1 4+ Mp)e; (7)

. M;
tha; =0
Wi L2 M

(with M;_1 # 0 otherwise FL solution).
t-1

@ Same form as y; = 0y;—1 — g1 + (1 + M)e,

@ Drifting parameters and stochastic volatility within the rational
expectations framework. Cogley and Sargent (2005), Primiceri
(2005).

@ Intuition:agents can modify in every period the expectation formation
process
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Introducing sunspot equilibria: drifting parameters and

unstable paths
If M; is a stochastic process with E;M; 1 = M; then

Ve = Qeye—1 — Q€1 + (1 4+ Mp)e; (7)

M
with Ky = 0 t

(with M;_1 # 0 otherwise FL solution).
t-1

@ Same form as y; = 0y;—1 — g1 + (1 + M)e,

@ Drifting parameters and stochastic volatility within the rational
expectations framework. Cogley and Sargent (2005), Primiceri
(2005).

@ Intuition:agents can modify in every period the expectation formation
process

@ Reconsidering unstable paths: || > 1 and M, temporarily different
from zero
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Which process for M? RE Solutions

- With M; random variable the forecast error becomes:

1= 1+ Meer + (M — My (Zest ) (8)

- Under RE E; 17, = 0, then:

o Etfl(Mt) = Mtf]_ (Mt martingale)
Q@ Ei1[(1+ M;)e;] =0, (My must be uncorrelated with &)

if |6] <1 : Use conditions 1 and 2

if |§] > 1 : Unstable paths. Consider the role of transversality condition
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Temporarily explosive paths

@ All the paths corresponding to expected temporary deviations of M,
from 0 will not violate the transversality condition

@ RE requires M; martingale, but
if 0] > 1 and M; martingale, when M; # 0 the economy is expected
to remain on the unstable path, so transversality condition would be
violated

=> To allow for temporary unstable paths relax the martingale
assumption (and RE)
Deviation can be minimal without practical implications
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Example: Lubik and Schorfheide (2004) model

x¢ = Ei(xer1) — T(Re — Et(7Te11)) + &
e = BE (1) +x(xe — zt)
Re = ppRe—1+ (1= pg) (W7 +Po(xc — 2)) +€ryt
and
8t = Pg8t-1 1 &t Zy = 0,Zt—1 + €zt

allow for non-zero correlation between the two shocks: p,,

Compare two "models": Ms (stable solutions) and My (unstable
solutions).
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The estimation strategy

@ The model has stochastic volatility, then the likelihood distribution is
not Gaussian

@ Common practice in non linear DSGE literature: use particle filter to
approximate the likelihood in MCMC (Fernandez-Villaverde and
Rubio-Ramirez, 2007)

o Different approach: Particle filter to approximate the posterior
distribution of the parameters and M,

@ Sequential Learning on the parameters: how inference evolves over
time gives additional information about the role of sunspots and
unstable paths
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Particle filter

@ Marginalization. /: all latent states different from M; y: data
p(l,Mly) =" p(lly,M)  p(Mly)
— ——
Kalman Filter Particle Filter

@ Parameter learning, combining:
@ Particle Learning by Carvalho, Johannes, Lopes and Polson (2010):
® Liu and West (2001)

See also Chen, Petralia and Lopes (2010)
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Priors and Distributions: same as in LS

Table 1: Prior Distributions

Parameter Density Mean Standard Deviation
Uy Gamma 1.1 0.5
[ Gamma 0.25 0.15
PR Beta 0.5 0.2
T Gamma 4 2
r* Gamma 1
K Gamma 0.5 0.2
7t Gamma 2 0.5
Py Beta 0.7 0.1
Pz Beta 0.7 0.1
¥ Beta 0.8 0.15
oR Inverse Gamma 0.31 0.16
o Inverse Gamma 0.1 0.05
Variance Covariance Density Scale Degrees of freedom

pIp

Inverse Wishart

038 0
[

8
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Estimates Great Inflation sample

| Pre- Volcker
1960:1 - 1979:1T

Parameter Mg My LS

I 0.80 0.76 0.77
[0.66 0.92] [0.61 0.91]  [0.64 0.91]

1y 0.16 0.20 0.17
[0.11 0.20] [0.16 0.34]  [0.04 0.30]

R 0.68 0.60 0.60
[0.65 0.71] [0.53 0.68]  [0.42 0.78]

™ 1.90 1.73 498
[1.62 2.25]  [1.31 2.47] [221 6.21]

r 1.41 1.23 1.13
[1.20 1.58] [0.03 1.74] [0.63 1.62]

K 0.14 0.10 0.77
[0.10 0.18]  [0.07 0.14]  [0.39 1.12]

1 3.41 3.02 1.45
[2.65 4.51]  [2.46 3.74]  [0.85 2.05]

Py 0.64 0.68 0.68
[0.59 0.69] [0.63 0.74]  [0.54 0.81]

pe 0.76 0.75 0.82
[0.72 0.80] [0.67 0.81]  [0.72 0.92]

. 0.26 0.16 0.14
[0.19 0.37]  [0.06 0.25] [-0.4 0.71]

v - 0.96 -
[0.85 0.99]

or 0.22 0.19 0.23
[0.20.26] [0.16 0.22]  [0.19 0.27]

o, .35 0.31 0.27
[0.304] [0.240.37] [0.17 0.36]

o, 111 1.00 1.13
[0.97 1.29] [0.85 1.31]  [0.95 1.30]

o, 0.08 0.06 0.20
[0.07 0.1]  [0.050.08] [0.12 0.27]

90% credibility interval in brackets
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Stable Model, Great Inflation:

Estimated path for M; and sequential inference on parameter ;.
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Unstable Model, Great Inflation

The behavior of M;

2 L L L L L 1 1 L
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Comparing the relative fit of Ms/Mu

Cumulative Bayes Factor: 2In(W;) and the inflation rate

30 115
. s '

20t o o

T

1

1N ! \'l‘v,

10+ ~ h ' 15
N v M)
LN v\’

W ™ .

-10 - 1-5
-20 - ~-10
-30 - 1-15

-40 -20
1960 1962 1964 1966 1968 1970 1972 1974 1976 1978 1980

Weak Positive Strong Very strong

The Bayes Factor strongly favours the unstable model
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Estimates Great Moderation sample

Post-82
1982:1V - 1997:1V

Parameter Ms My LS

Uy 2.07 2.12 2.19
(150 2.81] [1.07 365 [1.38 2.99]

o 0.16 0.51 0.30
[0.06 0.30] [0.16 1.38] [0.07 0.51]

PR 0.86 .85 0.84
051 090] [0.50 0.89] [0.79 0.89]

* 3.18 3.22 3.43
273 374) [274374) [2.84 3.00]

™ 2.65 2.81 3.01
(157 356] [2.17 3.60] [2.21 3.50]

K 0.28 0.64 0.58
[0.200.40] [0.38 1.00] [0.27 0.89]

1 2.52 1.28 1.86
(190 341] [0.85 1.88] [1.04 2.64]

Py 0.77 0.81 0.83
[0.68 0.84] [0.74 0.87) [0.77 0.89]

P2 0.71 0.78 0.85
062 0.80] [0.70 0.84]  [0.77 0.93]

Pz 0.03 0.04 0.36
[0.00 0.07] [0.00 0.08] [0.06 0.67]

¥ - 0.05 —
[0.03 0.11]

oR 0.16 0.16 0.18
[012010]  [0120.2] [0.14 0.21]

og 0.20 . 0.18
[0.15026] [0.18 027 [0.14 0.23]

0. 0.71 0.59 0.64
[0.560.02] [0.51 0.70] [0.53 0.76]

o — - _

90% credibility interval in brackets
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Unstable Model, Great Inflation
Estimated path for M; and sequential inference on the parameter 7.
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Comparing the relative fit of Ms/Mu

Cumulative Bayes Factor: 2In(W;) and the inflation rate
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Conclusions

@ We broaden the class of solutions to linear models
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Conclusions

@ We broaden the class of solutions to linear models
e Drifting parameters and stochastic volatility

e Temporary unstable paths

@ Our methodology allows the data to choose between different possible
alternatives: determinacy, indeterminacy and instability

@ When the data are allowed this possibility, they unambiguously select
the unstable model to explain the stagflation period in the ‘70s
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Conclusions

@ We broaden the class of solutions to linear models
e Drifting parameters and stochastic volatility

e Temporary unstable paths

@ Our methodology allows the data to choose between different possible
alternatives: determinacy, indeterminacy and instability

@ When the data are allowed this possibility, they unambiguously select
the unstable model to explain the stagflation period in the ‘70s

o Temporary unstable paths can be empirically relevant and should
not be excluded a priori
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EXTRA
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Which process for M? Temporary unstable paths

To guarantee the transversality condition relax the martingale assumption
(and RE):

M; = N:A: 1
- N; martingale
- A € {0, 1} non increasing random sequence
Indicate with T random variable: T = inf{t: A; = 0}
Properties of M, :

o E;(Miy1) =M, fort<Tandt>T
Et(Mt+1) =0 fort= T
In general E;(7,,,) = 0.
e ||mh_,oo EtMt+h =0

The transversality condition holds
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\ My =0 stable
21 My £0 unstable
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\ My =0 stable
21 My £0 unstable

Taylor
Principle
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\ My =0 stable
21 My £0 unstable

Al Taylor
Principle

My whatever
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\ My =0 stable
21 My £0 unstable

A1 _ Taylor A { My =0 stable

M whatever TTineiple My #£0 unstable
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A\ My, =0 stable
21 My £0 unstable

41 _ Taylor A { My =0 stable

o B
M whatever Frinciple My #0 unstable

Compare two "models": Ms (stable solutions) and My (unstable
solutions).
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Assumption on M

o UNDER STABILITY Mg
If Taylor principle respected (determinacy) => M, =0 Vt
If Taylor principle not respected (indeterminacy): My = My—1 + {,

o UNDER INSTABILITY My

M; = N:A: 1
with
N — Ni—1/v+ ¢, with probability ¢
710 with probability 1 — v
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Unstable Model, Great Inflation

Impulse reosgonses to a monetary policy1shock
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Transmission mechanism of structural shocks: GIRF in the M;; model
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Unstable Model, Great Inflation

Impulse resgonses to a monetary policy]shock
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