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To fix ideas

y′t
(1×n)

A
(n×n)

= y′t−1F1
(n×n)

+ · · ·+ y′t−pFp + c
(1×n)

+ ε′t
(1×n)

, εt ∼ N(0, In)

Define

xt ≡ [y′t−1, . . . , y
′
t−p, 1]′ and F ≡ [F′1, . . . ,F

′
p, c
′]′

Write

y′tA = x′tF + ε′t

Want to infer (A,F) because they

• represent equilibrium relationships between variables

• determine response of yt to the mutually orthogonal
“structural” shocks in εt

But (A,F) don’t come for free.



The identification problem

Rewriting the SVAR

y′t = x′tFA−1 + ε′tA
−1 ,

Likelihood for yt

p(yt |A,F, yt−p:t−1) = Npdf (yt | x′tFA−1︸ ︷︷ ︸
µ

, (AA′)−1︸ ︷︷ ︸
Σ

)

But consider the alternative parameter point (Ã, F̃)

(Ã, F̃) = (AQ,FQ) for Q ∈ On

µ = F̃Ã−1 = FQ(AQ)−1 = FQQ−1A−1 = FA−1

Σ = ÃÃ′ = (AQ)(AQ)′ = AQQ′A′ = AA′

Hence, we cannot identify (A,F).



The reduced-form VAR

We can identify

g(A,F) = (FA−1,AA′) = (B,Σ)

y′t = xtB + u′t , ut ∼ N(0,Σ)

Key practical feature:

• Easy to estimate (B,Σ)

Key drawback:

• (Σ,B) are not (A,F)

Most traditional approaches to estimating (A,F) construct a
one-to-one mapping from (A,F) to (Σ,B).



The literature since then

1 Set identification (with static VAR parameters):
• Canova and de Nicolo (2002)
• Uhlig (2005)

2 Coefficients that change (with exact identification)
• Cogley and Sargent (2005)
• Primiceri (2005)
• Sims and Zha (2006), Sims, Waggoner and Zha (2008)

Not obvious how to coherently combine these approaches.



A Motivating Example

• Based on Baumeister and Peersman (2013, AEJ Macro)

• yt = [∆poilt ,∆qoil
t ,∆GDPt ,∆pCPIt ]′

• Identify time-varying IRFs of oil supply shocks

Their method:

• Estimate Primiceri (2005) VAR-TVP-SV

• Reassemble into “reduced-form VAR” parameters t-by-t

• Find structural parameters satisfying sign-restrictions

εoil ,st < 0⇒ ∆qoil
t+h < 0 < ∆poilt+h for h = 0, ..., 4

• RRWZ “algorithm” applied to “reduced-form” parameters
t-by-t.



“Reduced-form”

Primiceri (2005)

y′t = vec(Bt)
′(In ⊗ xt) + ε′tΞt∆

−1
t

where

Ξt =


ξ1,t 0 · · · 0

0 ξ2,t
. . .

...
...

. . . . . . 0
0 · · · 0 ξn,t

 , ∆t =


1 δ12,t · · · δ1n,t

0 1
. . .

...
...

. . . . . . δn−1n,t
0 · · · 0 1


and

Ξt = Ξt−1 diag(exp(ηt)) , ηt ∼ N(0n×1,Ση)

δt = δt−1 + ζt , ζt ∼ N(0 n(n−1)
2
×1,Σζ)

vec(Bt) = vec(Bt−1) + υt , υt ∼ N(0mn×1,Συ)



• Supply shock causing
∆qoil = −1%.

• “baseline” IRFs

• x-axis: time in
quarters

• poilt IRF:
contemporaneous
response at each t

• GDPt and ∆pt IRFs:
cumulative change
over 4 quarters at
each t



• Supply shock causing
∆qoil = −1%.

• “baseline” IRFs

• Finding: oil demand
has become
increasingly inelastic
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A Motivating Example Revisited

• Based on Baumeister and Peersman (2013, AEJ Macro)

• yt = [∆poilt ,∆qoil
t ,∆GDPt ,∆pCPIt ]′

yt = [∆pCPIt ,∆GDPt ,∆qoil
t ,∆poilt ]′

• Identify time-varying IRFs of oil supply shocks

The method:

• Estimate Primiceri (2005) VAR-TVP-SV

• Reassemble into “reduced-form VAR” parameters t-by-t

• Find structural parameters satisfying sign-restrictions

εoil ,st < 0⇒ ∆qoil
t+h < 0 < ∆poilt+h for h = 0, ..., 4

• RRWZ “algorithm”



• Supply shock causing
∆qoil = −1%.

• “baseline” IRFs

• IRFs under alternative
variable ordering

• Time-variation in
IRFs is gone!

• Would have been a
different paper!



Takeaway from the exercise

• Not that Baumeister Peersman are “wrong.”
(Indeed, I will find something similar them).

But

• Methodologically, the BP method is deeply problematic.

• The “reduced-form” can be sensitive to variable ordering.

• Spills over into any inference based on the “reduced-form”

Key resulting shortcomings:

1 Results driven as much by an unacknowledged modeling
choice (variable ordering) as by the explicit identifying
assumptions.

2 n! different candidate reduced-forms.



Examining the posterior I

Let St = (At ,Ft) and St ∗Qt = (AtQt ,FtQt)

p(φ,S0:T |y1:T ) ∝ p(φ,S0)︸ ︷︷ ︸
prior

p(S1:T |φ,S0)︸ ︷︷ ︸
density of the S1:T
sequence under the

model’s law of motion

p(y1:T |φ,S0,S1:T )︸ ︷︷ ︸
data density given S0:T

where

p(y1:T |φ,S0,S1:T ) =
T∏
t=1

p(yt |yt−p:t−1,St)

=
T∏
t=1

pN(yt | x′tFtA
−1
t︸ ︷︷ ︸

x′tFtQtQ
−1
t A−1

t

, (AtA
′
t)
−1︸ ︷︷ ︸

(AtQtQ′tA
′
t)
−1

)

⇒ In each t, St ∗Qt gives same evaluation of this term as St .



Examining the posterior II

p(φ,S0:T |y1:T ) ∝ p(φ,S0)︸ ︷︷ ︸
prior

p(S1:T |φ,S0)︸ ︷︷ ︸
density of the S1:T
sequence under the

model’s law of motion

p(y1:T |φ,S0,S1:T )︸ ︷︷ ︸
data density given S0:T

where

p(S1:T |φ,S0) =
T∏
t=1

p(St |φ,St−1)

(This is the tricky part.)



This paper

• Let’s try something else.

• I define a class of models with laws of motion for St such
that:

1 whole sequences of S0:T have densities invariant to
orthogonal rotations

2 yield a shared reduced-form

Key benefits

• Time-varying parameter model amenable to identification
driven by RRWZ conditions/algorithms.

• (Also, more straightforward to estimate.)
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1 A new SVAR with dynamic parameters

2 Reduced-form Representation

3 Structural Inference Revisited

4 Revisiting the time-varying oil demand elasticity



Extending the SVAR

y′tAt = x′tFt + ε′t , εt ∼ N(0, In)

Law of motion and stochastic processes for (At ,Ft):

(At ,Ft) ∼ p(At−1,Ft−1,φ)



Extending the SVAR

y′tAt = x′tFt + ε′t , εt ∼ N(0, In)

Law of motion for (At ,Ft):

At = β−1/2 At−1Ωt

Ft = Ft−1A
−1
t−1At + Θt .

Shocks:

Ωt = Lth(Γt)Rt , Γt ∼ Bn(β/(2(1− β)), 1/2)

Θt ∼ MNm,n(0,W, In)

where

β ∈ [(n − 1)/n, 1]

Lt ,Rt ∈ On



Detour: alternate form of SVAR

y′t = x′tBt + ε′tQ
′
th(Ht)

−1 , εt ∼ N(0, In)

Law of motion for (At ,Ft) = (Bt ,Ht ,Qt) :

h(Ht)Qt = β−1/2 h(Ht−1)Qt−1Ωt

Bth(Ht)Qt = Bt−1h(Ht−1)Qt + Θt

Qt = p(Qt |Bt ,Ht)

Shocks:

Ωt = h(Γt) Γt ∼ Bn(β/(2(1− β)), 1/2)

Θt ∼ MNm,n(0,W, In)

where

β ∈ [(n − 1)/n, 1]



Some notation

A Dynamic SVAR (call it DSVAR) denoted:

SU
0:T (L1:T ,R1:T )

and let

φ = (β,W)



Key result

Theorem (Theorem 1)

Let SU
0:T (L1:T ,R1:T ) have prior p(φ,S0) for which

p(φ,S0) = p(φ,S0 ∗ P) for any P ∈ On.

For any Q0:T such that each Qt ∈ On, the model
SU
0:T (L̃1:T , R̃1:T ) defined by (L̃t , R̃t) = (Q′t−1Lt ,RtQt) is such

that, for every point S0:T , the point S̃0:T = S0:T ∗Q0:T

satisfies

p(φ,S0:T |y1:T ,SU
0:T (L1:T ,R1:T ))

= p
(
φ, S̃0:T |y1:T ,SU

0:T (L̃1:T , R̃1:T )
)
.



Theorem 1: restatement and implications

For

1 any realization of the data,

2 any dynamic structural VAR,

3 and any Q1:T

there exists an alternative model with the “same posterior” as
the original model, but with each point rotated by Q1:T .

• Set of equivalent models does not depend on y1:T

• ⇒ All structural models in the class are observationally
equivalent.
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Reduced-form VAR with TVP-SV

Define (Ht ,Bt) = g(St) = (AtA′t ,FtA
−1
t )

y′t = x′tBt + u′t , ut ∼ N(0,H−1t )

Laws of motion for (Bt ,Ht):

Ht =
1

β
h(Ht−1)′ Γt h(Ht−1)

Bt = Bt−1 + Vt

distributions of shocks (Γt ,Vt)

Γt ∼ Betan(β/(2(1− β)), 1/2)

Vt ∼ MNm,n(0,W,H−1t )



A short history of the reduced-form

The reduced-form model is “a known quantity.”

• Uhlig (1994, 1997) – the stochastic volatility part

• Mike West and coauthors – “dynamic linear model with
discounted Wishart stochastic volatility,” (DLM-DWSV)



Why does this work?

Suppose I’ve estimated the reduced-form H0:T .
Shocks rationalizing movement from At−1 to At satisfy,

βA−1t−1 Ht︸︷︷︸
AtA′t

A−1
′

t−1 = Γt

Suppose instead my identification scheme said that in t − 1,
Ãt−1 = At−1Qt−1.
Shocks rationalizing movement to Ht :

βA−1t−1HtA
−1′
t−1 = Qt−1 Γt Q′t−1 = Γ̃t

Critical thing: Γt and Γ̃t have the same density!

A property of the multivariate Beta distribution:
Srivastava (2003) Corollary 4.1,

p(Γt) = p(QtΓtQ
′
t)



Estimation of reduced-form

Need to characterize

p(β,W,B0:T ,H0:T |y1:T ) .

• Can’t characterize it analytically.

• Can construct an MCMC algorithm.

Gibbs Sampler

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)



Gibbs sampler: block 1

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)

• Super easy.

• If prior is W ∼ IW (Ψ0 , ν0),

W|y1:T , β,B0:T ,H0:T ∼ IW (Ψ̄ , ν̄)

where

Ψ̄ = Ψ(y1:T ,B0:T ,H0:T ) + Ψ0

ν̄ = Tn + ν0



Gibbs sampler: block 2

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)

• Factor joint density as

p(β,B0:T ,H0:T |y1:T ,W)

= p(β|y1:T ,W)︸ ︷︷ ︸
Block 2a

· p(B0:T ,H0:T |y1:T , β,W)︸ ︷︷ ︸
Block 2b



Gibbs sampler: block 2

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)
• 2a. p(β|y1:T ,W)
• 2b. p(B0:T ,H0:T |y1:T , β,W)



Gibbs sampler: block 2a

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)
• 2a. p(β|y1:T ,W)
• 2b. p(B0:T ,H0:T |y1:T , β,W)

Random-walk Metropolis-Hastings,

• “Propose” a β∗ ∼ q(β∗|β(i−1)) = Npdf (β(i−1), σ2
β)

• Set β∗ = β(i) with probability

α(β∗|y1:T ,W) = min

{∝p(β∗,W(i))·p(y1:T |β∗,W(i))︷ ︸︸ ︷
p
(
β∗,W(i)|y1:T

)
p (β(i−1),W(i)|y1:T )

, 1

}



Gibbs sampler: block 2a

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)
• 2a. p(β|y1:T ,W)
• 2b. p(B0:T ,H0:T |y1:T , β,W)

Evaluating α(β∗|y1:T ,W) requires pointwise evaluation of

p(y1:T |β∗,W(i))

=

∫
(H0:T ,B0:T )

p(y1:T |β∗,W(i),H0:T ,B0:T )p(H0:T ,B0:T )d(H0:T ,B0:T )



Block 2a: evaluating p(y1:T |β∗,W(i))



Block 2b: simulation smoother

• Block 1. p(W|y1:T , β,B0:T ,H0:T )

• Block 2. p(β,B0:T ,H0:T |y1:T ,W)
• 2a. p(β|y1:T ,W)
• 2b. p(B0:T ,H0:T |y1:T , β,W)

Analogous to Kalman smoother.
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From reduced-form back to structural

Given

1 restriction regions Rt for each t

2 and posterior samples {H(i)
0:T ,B

(i)
0:T ,φ

(i)}Nsimi=1

one can

1 construct a sequence of arbitrary (A(i)
0:T ,F

(i)
0:T ) consistent

with (H(i)
0:T ,B

(i)
0:T ) period-by-period

2 t-by-t, find Q(i)
t ∈ On such that (A(i)

t Q(i)
t ,F

(i)
t Q(i)

t ) ∈ Rt .

3 Set (Ã(i)
t , F̃

(i)
t ) = (A(i)

t Q(i)
t ,F

(i)
t Q(i)

t )

Note, Q(i)
t can be constructed via:

• Algorithm 1 of RRWZ (exact id), or

• Algorithm 2 of RRWZ (set id)
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Prior vs. Posterior: β

β
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• Supply shock causing
∆qoil = −1%.

• “baseline” IRFs

• IRFs under alternative
variable ordering

• Results from my
model.



Concluding Remarks

Main contributions:

1 Developed a new class of SVAR with time-varying
parameters amenable to a variety of identification
methods.
• All models in the class have the same reduced-form
representation.

2 Developed an MCMC algorithm for the fully-Bayesian
estimation of the reduced-form model.

3 Applied to set identification of a time-varying object of
interest about the effect of oil supply shocks.



Appendix



Outline

5 More on the Density of latent states



Dynamic parameters

Now suppose

(At ,Ft) ∼ p(φ,At−1,Ft−1)

We lose everything.

1 No easy “reduced-form” to estimate or analyze.

2 (Without part 1 who cares?).

But most importantly, the same basic approach isn’t on the
table anymore. Why?

Lack of observational equivalence between alternative rotated
sequences of structural parameters.

Some notatation before we go on:

St = (At ,Ft)

St ∗Qt = (AtQt ,FtQt)



Multivariate Beta



Chol(Multivariate Beta)
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