Long run rates and monetary policy Norges Bank-CAMP Conference on "Nonlinear Models in Macroeconomics and Finance for an Unstable World", Oslo, 01/26-27 2018

Gianni Amisano (FRB), Oreste Tristani (ECB)¹

Norges Bank Oslo 01/27/2018

¹Views expressed here are not those of the ECB or of the FRB Amisano (FRB), Tristani (ECB) LR rates and mon pol Norges Bar

Motivation

- ⇒ "Movements in the [...] yield spread are associated with movements in risk" (Atkeson and Kehoe, 2010; Cochrane, 2010)
 - In the conventional view, the short rate drops at the beginning of a recession, but it is expected to return the steady state within at least 10 years.

Motivation

- ⇒ "Movements in the [...] yield spread are associated with movements in risk" (Atkeson and Kehoe, 2010; Cochrane, 2010)
 - In the conventional view, the short rate drops at the beginning of a recession, but it is expected to return the steady state within at least 10 years.
 - In fact, taking account of risk premia, 10 year expected interest rates fall just as fast as the 1 year rate

Our questions

• If yield spreads are associated with movements in risk, what produces them? Are they caused by monetary policy or are they exogenous?

Our questions

- If yield spreads are associated with movements in risk, what produces them? Are they caused by monetary policy or are they exogenous?
- If long term yields net of risk premia are not constant, what do they imply for expectations of the future path of monetary policy rates ...

Our questions

- If yield spreads are associated with movements in risk, what produces them? Are they caused by monetary policy or are they exogenous?
- If long term yields net of risk premia are not constant, what do they imply for expectations of the future path of monetary policy rates ...
- ... and for inflation expectations?

- A single model-feature can reconcile the macro and the finance literature: heteroskedasticity (in the form of regime switching)
 - Uncertainty shocks also amount to variation in risk: during recessions volatility drives the increase in risk premia. Risk premia are countercyclical-as in the finance literature

- A single model-feature can reconcile the macro and the finance literature: heteroskedasticity (in the form of regime switching)
 - Uncertainty shocks also amount to variation in risk: during recessions volatility drives the increase in risk premia. Risk premia are countercyclical-as in the finance literature
 - "Uncertainty shocks" change precautionary saving: during recessions volatility increases and real rates fall. Nominal 10 year expected interest rates fall together with policy rates—as "observed" in the data

- The quantitative story
 - Risk-neutrality (EH holding) an artifax of linearization: we analyse the nonlinear solution of a DSGE model

- The quantitative story
 - Risk-neutrality (EH holding) an artifax of linearization: we analyse the nonlinear solution of a DSGE model
 - We estimate the nonlinear model on both macro and yields data for the U.S.

- The quantitative story
 - Risk-neutrality (EH holding) an artifax of linearization: we analyse the nonlinear solution of a DSGE model
 - We estimate the nonlinear model on both macro and yields data for the U.S.
 - We show that the model fits both sets of data reasonably well

Literature

• On heteroskedastic shocks in macroeconomic–Sims-Zha (2006), Primiceri (2005), Justiniano-Primiceri (2008) ...

Literature

- On heteroskedastic shocks in macroeconomic–Sims-Zha (2006), Primiceri (2005), Justiniano-Primiceri (2008) ...
- Papers suggesting that consumption-based models with exotic preferences are OK at fitting *unconditional* moments of yields–Piazzesi-Schneider (2006); HTV (2008); Rudebusch-Swanson (2012); Swanson (2014) ...

Literature

- On heteroskedastic shocks in macroeconomic–Sims-Zha (2006), Primiceri (2005), Justiniano-Primiceri (2008) ...
- Papers suggesting that consumption-based models with exotic preferences are OK at fitting *unconditional* moments of yields–Piazzesi-Schneider (2006); HTV (2008); Rudebusch-Swanson (2012); Swanson (2014) ...
- Few empirical applications in nonlinear models-van Bindesberger *et al.*(2012), Andreasen (2012) ...

• Simple new Keynesian model with Rotemberg adj. costs and inflation indexation, (external) habits

- Simple new Keynesian model with Rotemberg adj. costs and inflation indexation, (external) habits
- Level and growth technology shocks

$$Y_t = (Z_t B_t) L_t^{\alpha}$$

- Simple new Keynesian model with Rotemberg adj. costs and inflation indexation, (external) habits
- Level and growth technology shocks

$$Y_t = (Z_t B_t) L_t^{\alpha}$$

• Resource constraint

$$Y_t = C_t + G_t + rac{\zeta}{2} \left(\Pi_t - (\Pi^*)^{1-\iota} \Pi_{t-1}^\iota
ight)^2 Y_t$$

• Policy rule

$$i_{t} = const. + \psi_{\Pi} \left(\pi_{t} - \pi^{*} \right) + \psi_{Y} \left(\widetilde{y}_{t} - \widetilde{y} \right) + \rho_{I} i_{t-1} + \eta_{t+1}$$

Amisano (FRB), Tristani (ECB)

• Policy rule

$$i_{t} = const. + \psi_{\Pi} \left(\pi_{t} - \pi^{*} \right) + \psi_{Y} \left(\widetilde{y}_{t} - \widetilde{y} \right) + \rho_{I} i_{t-1} + \eta_{t+1}$$

• Note: constant target π^*

Distinguishing feature: heteroskedasticity

• Shocks: productivity (stationary and integrated), gov. spending, mark-up, policy

Distinguishing feature: heteroskedasticity

- Shocks: productivity (stationary and integrated), gov. spending, mark-up, policy
- Two-state, independent Markov switching in the innovation variances:

$$arepsilon_{i,t+1} \sim N\left(0, \sigma_{i,s_{i,t}}
ight) \qquad ext{for } i = z, G, \eta$$
 $\sigma_{i,s_{i,t}} = \sigma_{i,0} s_{i,t} + \sigma_{i,1} \left(1 - s_{i,t}
ight)$

with constant transition probabilities

$$p(s_{i,t+1}=k,s_{i,t}=j)=p_{i,jk}$$

Distinguishing feature: preferences

• Epstein-Zin-Weil preferences

$$U\left[u_{t},\left(\mathrm{E}_{t}V_{t+1}^{1-\gamma}\right)\right] = \left\{\left(1-\beta\right)u_{t}^{1-\psi} + \beta\left(\mathrm{E}_{t}V_{t+1}^{1-\gamma}\right)^{\frac{1-\psi}{1-\gamma}}\right\}^{\frac{1}{1-\psi}}$$

Distinguishing feature: preferences

• Epstein-Zin-Weil preferences

$$U\left[u_{t},\left(\mathrm{E}_{t}V_{t+1}^{1-\gamma}\right)\right] = \left\{\left(1-\beta\right)u_{t}^{1-\psi} + \beta\left(\mathrm{E}_{t}V_{t+1}^{1-\gamma}\right)^{\frac{1-\psi}{1-\gamma}}\right\}^{\frac{1}{1-\psi}}$$

•
$$\gamma = \text{risk}$$
 aversion, $\psi = \text{inverse}$ of EIS

Distinguishing feature: preferences

• Epstein-Zin-Weil preferences

$$U\left[u_{t},\left(\mathrm{E}_{t}V_{t+1}^{1-\gamma}\right)\right] = \left\{\left(1-\beta\right)u_{t}^{1-\psi} + \beta\left(\mathrm{E}_{t}V_{t+1}^{1-\gamma}\right)^{\frac{1-\psi}{1-\gamma}}\right\}^{\frac{1}{1-\psi}}$$

- $\gamma = {\rm risk}$ aversion, $\psi = {\rm inverse}~{\rm of}~{\rm EIS}$
- Temporary utility with Trabandt and Uhlig (2011) specification

$$u = (C_t - h\Xi_t C_{t-1}) \left(1 - \eta (1 - \psi) N_t^{1 + \frac{1}{\phi}} \right)^{\frac{\psi}{1 - \psi}}$$

Why recursive preferences and habits

• Habits

• Have first order effects (hump shaped IRFs). High risk aversion makes consumption insensitive to real rate

Why recursive preferences and habits

Habits

• Have first order effects (hump shaped IRFs). High risk aversion makes consumption insensitive to real rate

• Recursive preferences

• Have no effects to first order – dynamics as in a model with EU. Risk aversion parameter "free" to match yields. Solution I

• As usual

$\mathbf{E}_{t}\left[f\left\{\mathbf{x}_{t+1},\mathbf{y}_{t+1},\mathbf{x}_{t},\mathbf{y}_{t},;s_{t+1},s_{t}\right\}\right]=\mathbf{0}$

Solution I

• As usual

$$\mathbf{E}_{t}\left[f\left\{\mathbf{x}_{t+1},\mathbf{y}_{t+1},\mathbf{x}_{t},\mathbf{y}_{t},;s_{t+1},s_{t}\right\}\right]=\mathbf{0}$$

• We seek solutions of the form (Amisano and Tristani, JEDC 2011–a special case of recent Foerster *et al.*, 2016)

$$f(\mathbf{x}_{t},\sigma;s_{t}) = f(\overline{\mathbf{x}};0;s_{t}) + \mathbf{F}_{s_{t}}(\mathbf{x}_{t}-\overline{\mathbf{x}}_{s_{t}}) \\ + \frac{1}{2} \left(\mathbf{I}_{n_{y}} \otimes (\mathbf{x}_{t}-\overline{\mathbf{x}}_{s_{t}})' \right) \mathbf{E}_{s_{t}}(\mathbf{x}_{t}-\overline{\mathbf{x}}_{s_{t}}) + \mathbf{k}_{y,s_{t}}\sigma^{2}$$

Amisano (FRB), Tristani (ECB)

Solution II

• Only impact of heteroskedasticity in constant term

$$\widehat{y}_{t} = F\widehat{\mathbf{x}}_{t} + \frac{1}{2}\left(I_{n_{y}}\otimes\widehat{\mathbf{x}}_{t}'\right)E\widehat{\mathbf{x}}_{t} + k_{y,s_{t}}$$

Solution II

• Only impact of heteroskedasticity in constant term

$$\widehat{y}_{t} = F\widehat{\mathbf{x}}_{t} + \frac{1}{2}\left(I_{n_{y}}\otimes\widehat{\mathbf{x}}_{t}'\right)E\widehat{\mathbf{x}}_{t} + k_{y,s_{t}}$$

• Similarly for predetermined variables

Estimation I

• Model is nonlinear

$$\mathbf{y}_{t+1}^{o} = \mathbf{k}_{y,j} + F\mathbf{\hat{x}}_{t+1} + \frac{1}{2}\left(I_{n_{y}}\otimes\mathbf{\hat{x}}_{t+1}'\right)E\mathbf{\hat{x}}_{t+1} + D\mathbf{v}_{t+1}$$
$$\mathbf{x}_{t+1} = \mathbf{k}_{x,i} + P\mathbf{\hat{x}}_{t} + \frac{1}{2}\left(I_{n_{x}}\otimes\mathbf{\hat{x}}_{t}'\right)G\mathbf{\hat{x}}_{t} + \widetilde{\sigma}\Sigma_{i}\mathbf{w}_{t+1}$$

Estimation I

• Model is nonlinear

$$\mathbf{y}_{t+1}^{o} = \mathbf{k}_{y,j} + F\mathbf{\hat{x}}_{t+1} + \frac{1}{2}\left(I_{n_{y}} \otimes \mathbf{\hat{x}}_{t+1}'\right) E\mathbf{\hat{x}}_{t+1} + D\mathbf{v}_{t+1}$$
$$\mathbf{x}_{t+1} = \mathbf{k}_{x,i} + P\mathbf{\hat{x}}_{t} + \frac{1}{2}\left(I_{n_{x}} \otimes \mathbf{\hat{x}}_{t}'\right) G\mathbf{\hat{x}}_{t} + \widetilde{\sigma}\Sigma_{i}\mathbf{w}_{t+1}$$

• but main source of nonlinearity are intercept shifts. Hence extended Kalman filter

$$\mathbf{y}_{t+1}^{o} = \widetilde{k}_{y,t+1}^{(i,j)} + \widetilde{F}_{t+1}^{(i,j)} \mathbf{\hat{x}}_{t+1} + Dv_{t+1}$$
$$\widehat{\mathbf{x}}_{t+1} = \widetilde{k}_{x,t}^{(i)} + \widetilde{\mathbf{P}}_{t}^{(i)} \widehat{\mathbf{x}}_{t} + \Sigma_{i} \mathbf{w}_{t+1}$$

Estimation II

• We use Kim's (1994) approximate filter to compute the likelihood

Estimation II

- We use Kim's (1994) approximate filter to compute the likelihood
- Combine the likelihood with a prior and sample using a tuned Metropolis-Hastings algorithm

Estimation II

- We use Kim's (1994) approximate filter to compute the likelihood
- Combine the likelihood with a prior and sample using a tuned Metropolis-Hastings algorithm
- tried unscented KF and particle filter without changes in the results

• Quarterly US data: 1966:q1 to 2009:q1

Data

- Quarterly US data: 1966:q1 to 2009:q1
- Six observables: real per-capita GDP; real personal per-capita consumption; consumption deflator; 3-month nominal rate; 3-year and 10-year zero-coupon yields

Data

- Quarterly US data: 1966:q1 to 2009:q1
- Six observables: real per-capita GDP; real personal per-capita consumption; consumption deflator; 3-month nominal rate; 3-year and 10-year zero-coupon yields
- "Measurement errors" on all variables

• Monetary policy rule:

$$\widehat{i_t} = 0.09 \; [3.09 \; (\pi_t - \pi^*) + 0.57 \; (\widetilde{y}_t - \widetilde{y})] + 0.91 \; \widehat{i_{t-1}} + \eta_{t+1}.$$

• Monetary policy rule:

$$\widehat{i_t} = 0.09 \; [3.09 \; (\pi_t - \pi^*) + 0.57 \; (\widetilde{y}_t - \widetilde{y})] + 0.91 \; \widehat{i_{t-1}} + \eta_{t+1}.$$

• High inertia

	post mean	post sd	prior mean	prior sd
П	1.0061	0.0007	1.0062	0.0007
ψ_{π}	0.2676	0.0241	0.1990	0.1001
ψ_{y}	0.0497	0.0075	0.0200	0.0010
ρ_i	0.9135	0.0169	0.8494	0.1002
Ξ	1.0045	0.0004	1.0050	0.0010
ι	0.7333	0.1116	0.5003	0.1899
ϕ	0.6156	0.0846	1.0022	0.5049
γ	11.5185	3.6747	10.9537	6.9730
ψ	1.3075	0.0868	1.2035	0.2830
ζ	33.8071	3.1344	14.9744	6.9819
h	0.8619	0.0261	0.4996	0.1886
β	0.9984	0.0006	0.9986	0.0014

	post mean	post sd	prior mean	prior sd
$p_{G,11}$	0.8760	0.0556	0.8997	0.0657
$p_{G,00}$	0.9413	0.0351	0.8994	0.0662
$p_{\eta,11}$	0.9595	0.0196	0.8996	0.0657
$p_{\eta,00}$	0.9079	0.0447	0.8998	0.0658
$p_{z,11}$	0.9728	0.0091	0.9013	0.0651
$p_{z,00}$	0.9317	0.0190	0.8993	0.0662
ρ_{μ}	0.5487	0.0581	0.8552	0.0916
ρ_z	0.9889	0.0018	0.8582	0.0899
$ ho_{{\sf G}}$	0.9091	0.0298	0.8559	0.0906

	post mean	post sd	prior mean	prior sd
$\sigma_{me,\pi}$	1.4E-06	1.6E-06	1.4E-06	1.3E-06
$\sigma_{me,\Delta c}$	1.3E-06	6.8E-07	1.4E-06	1.1E-06
$\sigma_{me,\Delta y}$	0.0036	0.0006	0.0005	0.0003
$\sigma_{me,i}$	1.3E-06	7.5E-07	1.4E-06	1.0E-06
$\sigma_{me,i_{12}}$	0.0007	7.6E-05	0.0014	0.0010
$\sigma_{me,i40}$	0.0004	5.0E-05	0.0014	0.0010

Dynamic correlations: macro variables

Amisano (FRB), Tristani (ECB)

LR rates and mon pol

Norges Bank-CAMP 21 / 30

Dynamic correlations: yields

Amisano (FRB), Tristani (ECB)

LR rates and mon pol

Norges Bank-CAMP 22 / 30

Forward rates

Amisano (FRB), Tristani (ECB)

Probability of low-variance regimes

Amisano (FRB), Tristani (ECB)

LR rates and mon pol

Expected excess holding period returns

Amisano (FRB), Tristani (ECB)

• "Risk " or "uncertainty" shocks important for Ei

- "Risk " or "uncertainty" shocks important for Ei
- With recessions, uncertainty \uparrow and drives up risk premia. Forward rates $\uparrow,$ but not Ei

- "Risk " or "uncertainty" shocks important for Ei
- With recessions, uncertainty \uparrow and drives up risk premia. Forward rates $\uparrow,$ but not Ei
- Indeed, Ei \downarrow because demand for precautionary saving \uparrow , consumption \downarrow and adds \downarrow pressure on y and π

- "Risk " or "uncertainty" shocks important for Ei
- With recessions, uncertainty \uparrow and drives up risk premia. Forward rates $\uparrow,$ but not Ei
- Indeed, Ei \downarrow because demand for precautionary saving \uparrow , consumption \downarrow and adds \downarrow pressure on y and π
- After recession "confidence" returns. Uncertainty dynamics are reversed. It becomes clear that *i* will rise quickly. Risk premia ↓ and forward rates become closer to E*i*

Narrative: expectations

Amisano (FRB), Tristani (ECB)

LR rates and mon pol

Norges Bank-CAMP 27 / 30

Determinants of long-term inflation expectations

• Anchoring in the 1980s?

Determinants of long-term inflation expectations

- Anchoring in the 1980s?
- A sequence of highly persistent, adverse shocks led to an increase in trend inflation in the 1970s. The shocks were slowly reabsorbed over the 1980s. Long-term inflation expectations moved accordingly

Determinants of long-term inflation expectations

- Anchoring in the 1980s?
- A sequence of highly persistent, adverse shocks led to an increase in trend inflation in the 1970s. The shocks were slowly reabsorbed over the 1980s. Long-term inflation expectations moved accordingly
- Inflation was never conquered. Prolonged deviations of inflation from price stability can happen again

Conclusions

• Estimated model to account for key features of the transmission of monetary policy to long-term rates. Uncertainty/volatility shocks are important to explain observed variations in yields

Conclusions

- Estimated model to account for key features of the transmission of monetary policy to long-term rates. Uncertainty/volatility shocks are important to explain observed variations in yields
- In the early parts of recessions, forward spreads are high because uncertainty and risk premia ↑ not due to E*i*. When recession ends, uncertainty and risk premia fall, and E*i* rise; changes in forward rate reflect expected future interest rates.

Conclusions (II)

• Movements in risk affecting spreads are not caused by monetary policy actions. But monetary policy responds to changes in risk, because of changes in precautionary saving

Conclusions (II)

- Movements in risk affecting spreads are not caused by monetary policy actions. But monetary policy responds to changes in risk, because of changes in precautionary saving
- Changes in real interest rates and in risk premia are important determinants of long term rates

Conclusions (II)

- Movements in risk affecting spreads are not caused by monetary policy actions. But monetary policy responds to changes in risk, because of changes in precautionary saving
- Changes in real interest rates and in risk premia are important determinants of long term rates
- 10-year inflation expectations are less firmly anchored than one would conclude, based on survey data