A Macroeconomic Model of Equities and Real, Nominal, and Defaultable Debt

Eric T. Swanson

University of California, Irvine

Conference on Nonlinear Models in Macroeconomics and Finance Norges Bank January 26, 2018

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion and/or risk in model need to be so high?

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion and/or risk in model need to be so high?

- uncertainty: Weitzman (2007), Barillas-Hansen-Sargent (2010), et al.
- rare disasters: Rietz (1988), Barro (2006), et al.
- long-run risks: Bansal-Yaron (2004) et al.

Goal: Show that a simple macroeconomic model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts

- equity premium puzzle
- long-term bond premium puzzle (nominal and real)
- credit spread puzzle

Reduces separate puzzles in finance to a single, unifying puzzle: Why does risk aversion and/or risk in model need to be so high?

- uncertainty: Weitzman (2007), Barillas-Hansen-Sargent (2010), et al.
- rare disasters: Rietz (1988), Barro (2006), et al.
- long-run risks: Bansal-Yaron (2004) et al.
- heterogeneous agents: Mankiw-Zeldes (1991), Guvenen (2009), Schmidt (2015), et al.
- financial intermediaries: Adrian-Etula-Muir (2013)

Implications for Finance:

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Finance:

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price—macroeconomy feedback

Implications for Finance:

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price—macroeconomy feedback

Secondary theme: Keep the model as simple as possible

Implications for Finance:

- unifying explanation for asset pricing puzzles
- structural model of asset prices (provides intuition, robustness to breaks and policy interventions)

Implications for Macro:

- show how to match risk premia in DSGE framework
- start to endogenize asset price—macroeconomy feedback

Secondary theme: Keep the model as simple as possible

Two key ingredients:

- Epstein-Zin preferences
- nominal rigidities

Introduction

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

- additive separability between c and l
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Flow budget constraint:

$$a_{t+1} = e^{i_t}a_t + w_t I_t + d_t - c_t$$

Introduction

Period utility function:

$$u(c_t, l_t) \equiv \log c_t - \eta \frac{l_t^{1+\chi}}{1+\chi}$$

- additive separability between c and l
- SDF comparable to finance literature
- log preferences for balanced growth, simplicity

Flow budget constraint:

$$a_{t+1} = e^{i_t}a_t + w_tI_t + d_t - c_t$$

Calibration: (IES = 1),
$$\chi = 3$$
, $I = 1$ ($\eta = .54$)

Generalized Recursive Preferences

Introduction

Household chooses state-contingent $\{(c_t, l_t)\}$ to maximize

$$V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) - \beta \alpha^{-1} \log \left[E_t \exp(-\alpha V(a_{t+1}; \theta_{t+1})) \right]$$

Generalized Recursive Preferences

Household chooses state-contingent $\{(c_t, l_t)\}$ to maximize

$$V(a_t; \theta_t) = \max_{(c_t, l_t)} u(c_t, l_t) - \beta \alpha^{-1} \log \left[E_t \exp(-\alpha V(a_{t+1}; \theta_{t+1})) \right]$$

Calibration: $\beta = .992$, RRA (R^c) = 60 ($\alpha = 59.15$)

Firms

Introduction

Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability 1ξ)
- Cobb-Douglas production functions, $y_t(f) = A_t k^{1-\theta} I_t(f)^{\theta}$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to finance literature
- helps match equity premium

Introduction

Firms are very standard:

- continuum of monopolistic firms (gross markup λ)
- Calvo price setting (probability 1ξ)
- Cobb-Douglas production functions, $y_t(t) = A_t k^{1-\theta} I_t(t)^{\theta}$
- fixed firm-specific capital stocks k

Random walk technology: $\log A_t = \log A_{t-1} + \varepsilon_t$

- simplicity
- comparability to finance literature
- helps match equity premium

Fiscal and Monetary Policy

No government purchases or investment:

$$Y_t = C_t$$

No government purchases or investment:

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_{y}(y_t - \overline{y}_t)$$

Fiscal and Monetary Policy

No government purchases or investment:

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_{y}(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{y}_t \equiv \rho_{\overline{y}}\overline{y}_{t-1} + (1-\rho_{\overline{y}})y_t$$

Introduction

No government purchases or investment:

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_{y}(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{y}_t \equiv \rho_{\overline{y}}\overline{y}_{t-1} + (1 - \rho_{\overline{y}})y_t$$

Rule has no inertia:

- simplicity
- Rudebusch (2002, 2006)

Fiscal and Monetary Policy

No government purchases or investment:

$$Y_t = C_t$$

Taylor-type monetary policy rule:

$$i_t = r + \pi_t + \phi_{\pi}(\pi_t - \overline{\pi}) + \phi_{y}(y_t - \overline{y}_t)$$

"Output gap" $(y_t - \overline{y}_t)$ defined relative to moving average:

$$\overline{y}_t \equiv \rho_{\overline{y}}\overline{y}_{t-1} + (1-\rho_{\overline{y}})y_t$$

Rule has no inertia:

- simplicity
 - Rudebusch (2002, 2006)

Calibration: $\phi_{\pi} = 0.5, \ \phi_{V} = 0.75, \ \overline{\pi} = .008, \ \rho_{\overline{V}} = 0.9$

Solution Method

Write equations of the model in recursive form

Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

Solve using perturbation methods around nonstoch. steady state

Solution Method

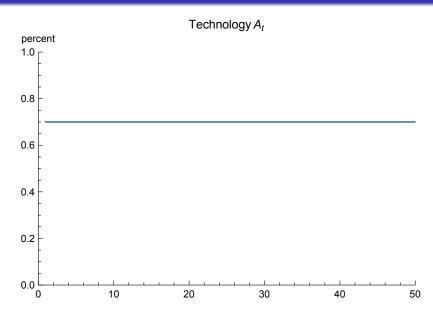
Write equations of the model in recursive form

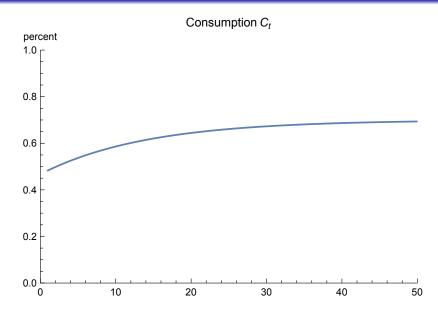
Divide nonstationary variables (Y_t , C_t , w_t , etc.) by A_t

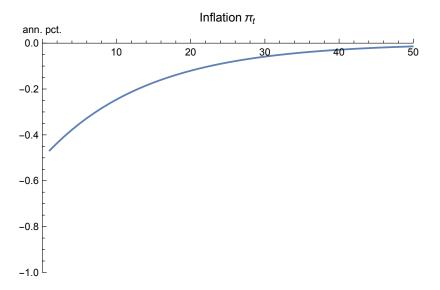
Solve using perturbation methods around nonstoch. steady state

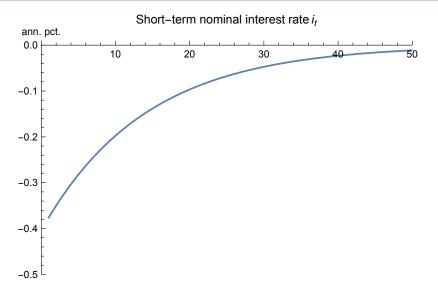
- first-order: no risk premia
- second-order: risk premia are constant
- third-order: time-varying risk premia
- higher-order: more accurate over larger region

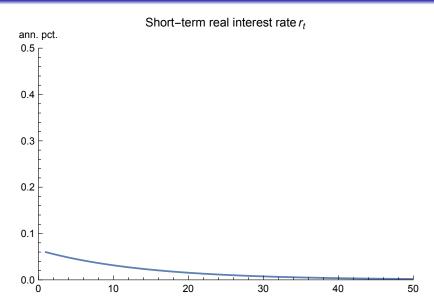
Model has 2 state variables (\bar{y}_t, Δ_t) , one shock (ε_t)

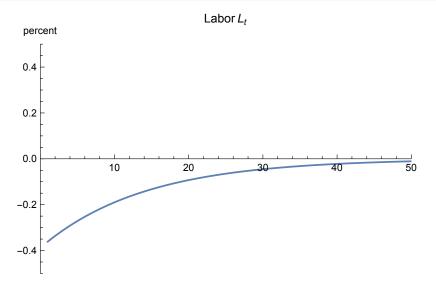












Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Realized gross return:

$$R_{t+1}^e \equiv \frac{C_{t+1}^{\nu} + p_{t+1}^e}{p_t^e}$$

Equity price

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Realized gross return:

$$R_{t+1}^e \equiv \frac{C_{t+1}^{\nu} + \rho_{t+1}^e}{\rho_t^e}$$

Equity premium

$$\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t}$$

Equity price

Introduction

$$p_t^e = E_t m_{t+1} (C_{t+1}^{\nu} + p_{t+1}^e)$$

where ν is degree of leverage

Realized gross return:

$$R_{t+1}^e \equiv \frac{C_{t+1}^{
u} + p_{t+1}^e}{p_t^e}$$

Equity premium

$$\psi_t^e \equiv E_t R_{t+1}^e - e^{r_t}$$

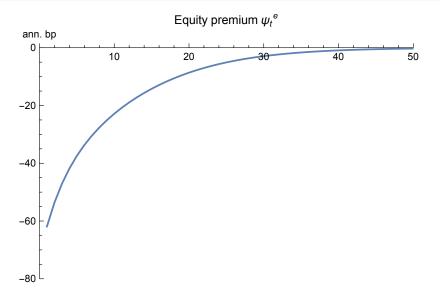
Calibration: $\nu = 3$

Risk aversion R ^c	Shock persistence ρ_A	Equity premium $\psi^{\it e}$
10	1	0.62
30	1	1.96
60	1	4.19
90	1	6.70

Risk aversion R^c	Shock persistence ρ_A	Equity premium ψ^e
10	1	0.62
30	1	1.96
60	1	4.19
90	1	6.70

Risk aversion R ^c	Shock persistence ρ_A	Equity premium ψ^{e}
10	1	0.62
30	1	1.96
60	1	4.19
90	1	6.70
60	.995	1.86
60	.99	1.08
60	.98	0.53
60	.95	0.17

Equity Premium



Real *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

Real *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

Real *n*-period zero-coupon bond price:

$$p_t^{(n)} = E_t m_{t+1} p_{t+1}^{(n-1)},$$

$$p_t^{(0)} = 1, \quad p_t^{(1)} = e^{-r_t}$$

Real yield:

Introduction

$$r_t^{(n)} = -\frac{1}{n} \log p_t^{(n)}$$

Real term premium:

$$\psi_t^{(n)} = r_t^{(n)} - \hat{r}_t^{(n)}$$

where

$$\hat{r}_{t}^{(n)} = -\frac{1}{n} \log \hat{\rho}_{t}^{(n)}$$

$$\hat{\rho}_{t}^{(n)} = e^{-r_{t}} E_{t} \hat{\rho}_{t+1}^{(n-1)}$$

Nominal Government Debt

Introduction

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} \, = \, E_t \, m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$

Nominal *n*-period zero-coupon bond price:

$$p_t^{\$(n)} = E_t m_{t+1} e^{-\pi_{t+1}} p_{t+1}^{\$(n-1)},$$

$$p_t^{\$(0)} = 1, \quad p_t^{\$(1)} = e^{-i_t}$$

Nominal yield:

$$i_t^{(n)} = -\frac{1}{n} \log p_t^{\$(n)}$$

Nominal term premium:

$$\psi_t^{\$(n)} = i_t^{(n)} - \hat{i}_t^{(n)}$$

where

Introduction

$$\hat{l}_{t}^{(n)} = -\frac{1}{n} \log \hat{p}_{t}^{\$(n)}$$
$$\hat{p}_{t}^{\$(n)} = e^{-i_{t}} E_{t} \hat{p}_{t+1}^{\$(n-1)}$$

Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(3y)
US TIPS, 1999–2016 ^a			1.22	1.48	1.75	
US TIPS, 2004–2016 ^a	0.11	0.24	0.56	0.84	1.16	0.92
US TIPS, 2004–2007 ^a	1.42	1.53	1.75	1.92	2.10	0.57
UK indexed gilts, 1983–1995 ^b	6.12	5.29	4.34		4.12	-1.17
UK indexed gilts, 1985–2015 ^c		1.91	2.05	2.16	2.25	0.34
UK indexed gilts, 1990–2007 ^c		2.79	2.78	2.79	2.80	0.01

Real Yield Curve

Table 3: Real Zero-Coupon Bond Yields

	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(3y)
US TIPS, 1999–2016 ^a US TIPS, 2004–2016 ^a US TIPS, 2004–2007 ^a UK indexed gilts, 1983–1995 ^b UK indexed gilts, 1985–2015 ^c UK indexed gilts, 1990–2007 ^c	0.11 1.42 6.12	0.24 1.53 5.29 1.91 2.79	1.22 0.56 1.75 4.34 2.05 2.78	1.48 0.84 1.92 2.16 2.79	1.75 1.16 2.10 4.12 2.25 2.80	0.92 0.57 -1.17 0.34 0.01
macroeconomic model	1.94	1.93	1.93	1.93	1.93	0.00

^aGürkaynak, Sack, and Wright (2010) online dataset ^bEvans (1999)

^cBank of England web site

Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2016 ^a	5.19	5.41	5.60	5.88	6.10		
US Treasuries, 1971–2016 ^a	5.31	5.55	5.75	6.08	6.33	6.60	1.29
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2015 ^b	6.92	7.10	7.26	7.51	7.70	7.89	0.96
UK gilts, 1990–2007 ^b	6.20	6.29	6.38	6.47	6.50	6.48	0.28

Nominal Yield Curve

Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)-(1y)
US Treasuries, 1961–2016 ^a US Treasuries, 1971–2016 ^a	5.19 5.31	5.41 5.55	5.60 5.75	5.88 6.08	6.10 6.33	6.60	1.29
US Treasuries, 1990–2007 ^a	4.56	4.84	5.06	5.41	5.68	5.98	1.42
UK gilts, 1970–2015 ^b UK gilts, 1990–2007 ^b	6.92 6.20	7.10 6.29	7.26 6.38	7.51 6.47	7.70 6.50	7.89 6.48	0.96 0.28
macroeconomic model	5.35	5.59	5.80	6.09	6.27	6.44	1.09

^aGürkaynak, Sack, and Wright (2007) online dataset

^bBank of England web site

Nominal Yield Curve

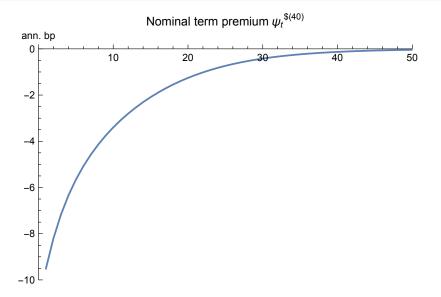
Table 4: Nominal Zero-Coupon Bond Yields

	1-yr.	2-yr.	3-yr.	5-yr.	7-yr.	10-yr.	(10y)—(1y)
US Treasuries, 1961–2016 ^a US Treasuries, 1971–2016 ^a US Treasuries, 1990–2007 ^a UK gilts, 1970–2015 ^b UK gilts, 1990–2007 ^b	5.19 5.31 4.56 6.92 6.20	5.41 5.55 4.84 7.10 6.29	5.60 5.75 5.06 7.26 6.38	5.88 6.08 5.41 7.51 6.47	6.10 6.33 5.68 7.70 6.50	6.60 5.98 7.89 6.48	1.29 1.42 0.96 0.28
macroeconomic model	5.35	5.59	5.80	6.09	6.27	6.44	1.09

^aGürkaynak, Sack, and Wright (2007) online dataset

^bBank of England web site

Nominal Term Premium



Defaultable Debt

Default-free depreciating nominal consol:

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Default-free depreciating nominal consol:

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Default-free depreciating nominal consol:

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}_{t+1}^d)(1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \right]$$

Defaultable Debt

Default-free depreciating nominal consol:

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t m_{t+1} e^{-\pi_{t+1}} \left[(1 - \mathbf{1}_{t+1}^d)(1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \omega_{t+1} p_t^d \right]$$

Yield to maturity:

$$i_t^d = \log\left(\frac{1}{p_t^d} + \delta\right)$$

Default-free depreciating nominal consol:

$$p_t^c = E_t m_{t+1} e^{-\pi_{t+1}} (1 + \delta p_{t+1}^c)$$

Yield to maturity:

$$i_t^c = \log\left(\frac{1}{p_t^c} + \delta\right)$$

Nominal consol with default:

$$p_t^d = E_t \, m_{t+1} e^{-\pi_{t+1}} \Big[(1 - \mathbf{1}_{t+1}^d) (1 + \delta p_{t+1}^d) + \mathbf{1}_{t+1}^d \, \omega_{t+1} \, p_t^d \Big]$$

Yield to maturity:

$$i_t^d = \log\left(\frac{1}{p_t^d} + \delta\right)$$

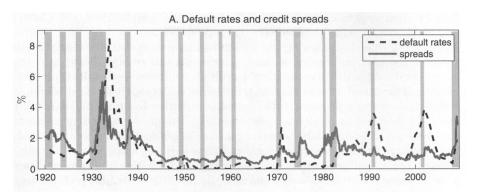
The credit spread is $i_t^d - i_t^c$

average ann.	cyclicality of	average	cyclicality of	credit
default prob.	default prob.	recovery rate	recovery rate	spread (bp)
.006	0	.42	0	34.0

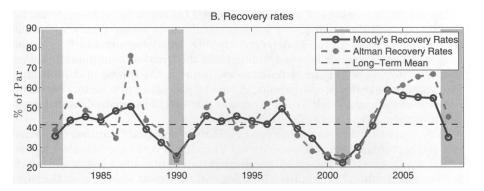
average ann.	cyclicality of	average	cyclicality of	credit
default prob.	default prob.	recovery rate	recovery rate	spread (bp)
.006	0	.42	0	34.0

If default isn't cyclical, then it's not risky

Default Rate is Countercyclical



Recovery Rate is Procyclical



source: Chen (2010)

average ann. default prob.		average recovery rate	cyclicality of recovery rate	credit spread (bp)
.006	0	.42	0	34.0
.006	-0.3	.42	0	130.9

average ann. default prob.	cyclicality of default prob.	average recovery rate	cyclicality of recovery rate	credit spread (bp)
.006	0	.42	0	34.0
.006	-0.3	.42	0	130.9
.006	-0.3	.42	2.5	143.1

average ann. default prob.	cyclicality of default prob.	average recovery rate	cyclicality of recovery rate	credit spread (bp)
.006	0	.42	0	34.0
.006	-0.3	.42	0	130.9
.006	-0.3	.42	2.5	143.1
.006	-0.15	.42	2.5	78.9
.006	-0.6	.42	2.5	367.4
.006	-0.3	.42	1.25	137.0
.006	-0.3	.42	5	155.2

Discussion

- IES < 1 vs. IES > 1
- Volatility shocks
- Endogenous conditional heteroskedasticity
- Monetary and fiscal policy shocks
- Financial accelerator

Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Intertemporal Elasticity of Substitution

Long-run risks literature typically assumes IES > 1, for two reasons:

- ensures equity prices rise (by more than consumption) in response to an increase in technology
- ensures equity prices fall in response to an increase in volatility

However, IES > 1 is not necessary for these criteria to be satisfied, particularly when equity is a levered consumption claim.

Model here satisfies both criteria with IES = 1 (or even < 1).

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

Monetary and Fiscal Policy Shocks

Rudebusch and Swanson (2012) consider similar model with

- technology shock
- government purchases shock
- monetary policy shock

All three shocks help the model fit macroeconomic variables

But technology shock is most important (by far) for fitting asset prices:

- technology shock is more persistent
- technology shock makes nominal assets risky

No Financial Accelerator

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

No Financial Accelerator

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets

No Financial Accelerator

With model-implied stochastic discount factor m_{t+1} , we can price any asset

Economy affects $m_{t+1} \Rightarrow$ economy affects asset prices

However, asset prices have no effect on economy

Clearly at odds with financial crisis

To generate feedback, want financial intermediaries whose net worth depends on assets

...but not in this paper

Conclusions

- The standard textbook New Keynesian model (with Epstein-Zin preferences) is consistent with a wide variety of asset pricing facts/puzzles
- Unifies asset pricing puzzles into a single puzzle—Why does risk aversion and/or risk in macro models need to be so high? (Literature provides good answers to this question)
- Provides a structural framework for intuition about risk premia
- Suggests a way to model feedback from risk premia to macroeconomy