Estimation of Operational Macromodels at the Zero Lower Bound

Jesper Lindé, Junior Maih, and Raf Wouters

Updated version 25 January 2018

The views expressed are solely those of the authors and should not be interpreted as reflecting the views of the National Bank of Belgium, Norges Bank or Sveriges Riksbank

Challenges Posed by the Great Recession

- The Global Financial Crisis and the resulting Great Recession triggered leading CBs as the Fed, ECB, and the BoE to cut policy rates to zero or near zero.
- Estimation sample contains period with binding ZLB constraint:
 - compare alternative estimation methods that allow for occasionally binding ZLB in medium-scale macro-model;
 - discuss impact on estimated parameters, shocks, forecasts and irfs;
 - discuss estimates of the cost of the ZLB.

Challenges Posed by the Great Recession (Cont.)

- Not surprisingly, there is a rapidly expanding literature on assessing the empirical gains of the explicit treatment of the ZLB.
 - Fratto and Uhlig (2014), on the one hand, argue that the ZLB is seemingly unimportant to understand the behaviour of the U.S. economy in the workhorse Smets and Wouters model.
 - On the other hand, Kulish, Morley and Robinson (2014), Binning and Maih (2016), Guerrieri and Iacoviello (2013), Gust, Herbst, Lopez-Salido and Smith (2016), and Richter and Throckmorton (2016) suggest that ZLB is key to understand the dynamics of prices and quantities during the Great Recession.
 - Wu and Zhang (2016) use Shadow Rate as observable for estimating their DSGE model over the recent sample.

What We Do

- We impose the ZLB through two alternative approaches during estimation of the DSGE model:
 - With anticipated monetary policy shocks: the expected ZLB duration is endogenously determined by the model forecast given the state of the economy and the policy rule (~endogenous ZLB duration).
 - With a regime switching setup: the ZLB regime is characterized by a fixed interest rate rule. In the baseline RS-version, the regime switching is treated as exogenous (~exogenous ZLB duration) but alternatives with endogenous regime switching probabilities (and breaks in the natural real rate) are also considered.
 - Compare with models estimated without any treatment for the ZLB.
 - Estimation implemented in RISE.

What We Do

- Relative to the current literature, we differ by doing this in a large scale model with many shocks and observables.
 - Full nonlinear solution methods cannot easily be extended to setups with larger set of shocks (state variables) or observables.
- We pursue our analysis in an altogether linearized model, apart from the ZLB constraint.
 - To the extent the linearized model behaves very differently far off the steady state, the downside of this procedure can be considerable.
 - The benefit of this approach is that we can parse out the partial derivative of imposing the ZLB in a workhorse linearized macro model. Other studies have often mixed several mechanisms: non-linearities and ZLB.
- We estimate two models (SW-2007 & GSW-2011) with different views on output gap and recovery to test the robustness.

What We Do (Cont.)

- We assess the empirical implications of accounting for the ZLB in estimation on several key dimensions:
 - Parameter estimates: no systematic changes related to ZLB;
 - Estimates of the shocks: confusion between MP and RP shocks;
 - Bayesian ML: models with ZLB treatment fit much better;
 - Forecasts: point forecasts and prediction densities are very sensitive;
 - Impulse responses: important time variation for risk premium and wage markup shocks; less so for TFP and government spending shocks;
 - Macroeconomic costs of the ZLB: large with ZLB constraint explaining an important share of the output gap.

Remainder of Talk

- models and extensions
- estimation methodologies
- estimation results
- evaluation of the cost of the ZLB constraint

(Caveat: this is work in progress!)

Augmented SW and GSW Model

- original SW 2007: 7 US-time series & 7 exogenous shocks
- original GSW 2011: observe UR, two wage concepts and endogenous labor supply
- add 2 year Treasury yield to the list of observables
- include risk premium and term premium in the policy rule

Augmented SW and GSW Model (Cont.)

• When unconstrained, monetary policy rule is

 $\widehat{R}_t \ = \ \rho_R \widehat{R}_{t-1} + (1-\rho_R) \left[r_\pi \widehat{\pi}_t \ + \ r_y (\widehat{ygap}_t) + r_{\Delta y} \Delta(\widehat{ygap}_t) + r_{tp} \widehat{\varepsilon}_t^{tp} + r_{rp} \widehat{\eta}_t^{rp} \right] \ + \widehat{\varepsilon}_t^r$

- When constrained by the **ZLB**:
 - The Endogenous ZLB duration depends on a shadow interest rate concept: lower for longer policy (RW, 2000, EW, 2003).

$$\widehat{R}_{t}^{*} = \rho_{R}\widehat{R}_{t-1}^{*} + (1 - \rho_{R}) \left[r_{\pi}\widehat{\pi}_{t} + r_{y}(\widehat{ygap}_{t}) + r_{\Delta y}\Delta(\widehat{ygap}_{t}) + r_{tp}\widehat{\varepsilon}_{t}^{tp} + r_{rp}\widehat{\eta}_{t}^{rp} \right]$$

$$\widehat{R}_{t} = \max \left(-\overline{r}, \widehat{R}_{t}^{*} \right) \qquad \text{with max-operator implemented via } E_{t}(\widehat{\eta}_{t+h}^{r})$$

- Model with **Exogenous ZLB Duration** (Regime-Switching):

$$\widehat{R}_t = -\overline{r} + \sigma(zlb) \cdot \widehat{\eta}_t^r$$

Augmented SW and GSW Model (Cont.)

• To enhance the consistency between the policy rule based expectation of the ZLB duration and market expectations, we include the 2-year Treasury yield as observable:

$$\widehat{R}_t^{2Y} = \sum_{h=0,7} \widehat{R}_{t+h}^G \text{ with } \widehat{R}_t^G = \widehat{R}_t \cdot \widehat{\varepsilon}_t^{tp}$$

- Allow for a feedback channel of term-premium shocks (ε_t^{tp}) by letting effective interest rate facing households and firms be determined as: $\widehat{R}_t^{hh\&f} = \left(\widehat{R}_t\right)^{1-\kappa} \left(\widehat{R}_t^G\right)^{\kappa} \widehat{\varepsilon}_t^{rp}$
- Distinguish between monetary policy (ε_t^r) , term-premium (ε_t^{tp}) and risk premium (ε_t^{rp}) shocks by including both R_t and R_t^G as observables (positive mp shock increases both R_t and R_t^G , positive tp shock induces higher wedge $R_t^G > R_t$, positive rp shock captures residual intert.wedge)

Data and One-sided Filtered Estimates in no ZLB model 66Q1-16Q4

Estimation Methodology: endogenous ZLB duration

- When estimating the models with anticipated monetary policy shocks to implement the ZLB constraint, we use the Sigma filter to approximate the asymmetry and the time-variation in predictive density (see Binning and Maih 2015).
 - The prediction step in the filter is not based on zero future innovations but is averaged over a set of sigma points: we use one period ahead shocks only, with large stdev to assess the impact of the expected ZLB-constraint.
 - The mean forecast depends on the asymmetry in the predictive density.
 - The covariance matrix for the one-step-ahead prediction errors at the ZLB features an increasing uncertainty for real/nominal variables and decreasing uncertainty around the interest rate as the probability of a ZLB-continuation goes to one.
 - The updating step also satisfies the ZLB constraint (~cond. forecasting).

Estimation Methodology: exogenous ZLB duration

- When estimating the models with a Regime-Switching approach to implement the ZLB:
 - ZLB incidence is approximated through RS-methods (see e.g. Farmer, Waggoner and Zha, 2011, and Maih, 2015).
 - ZLB regime is linearized around an imposed steady state (=normal regime steady state)
 - The estimated exogenous probability of switching from "ZLB" to "Normal" regime determines the expected ZLB duration: $p_{21} = 0.32$ ($p_{12} = 0.01$)
- Extensions:
 - Endogenous regime switching probability: p_{21} , p_{12} = logistic.f(R^*)
 - ZLB regime break also implies a break in the risk premium (increased preference for liquidity and safety see Del Negro et al 2017).

Estimation Results: parameters and shocks

- By and large, parameters are not much affected by the ZLB.
 - Higher price and wage stickiness when including the Great Recession in the estimation sample is independent of the ZLB-approach (⇔ LSW 2016).
- All models identify a similar mix of shocks to account for the Great Recession and the subsequent slow recovery:
 - An increase in the risk premium
 - Negative shocks to investment-specific technology
 - Positive MP shocks
 - Positive TFP shocks during recession
- The specific ZLB-treatment determines mainly the relative contribution of RP versus anticipated MP shock: these are close substitutes in SW-context.

Filtered Shocks SW

Filtered Shocks GSW

Estimation Results: marginal likelihood

• ML improves considerably when explicitly accounting for ZLB:

	SW	GSW
No ZLB	-1290.5	-1269.5
Endogenous ZLB duration	-1242.7	-1232.2
Exogenous ZLB duration	-1248.1	-1234.4

- Smoothing over the shadow rate is crucial for improved ML in endogenous ZLB model (⇔ LSW 2016).
- Further gains are possible for RS with endogenous switching probabilities & break in risk premium during ZLB period.
- What is the source of this gain? Not parameters, not shocks, but changes in the propagation mechanism during ZLB period!

Estimation Results: SW Post. Pred. Dens. given 09Q1

15

14

3

2

.

0

10

2008

allared Output Growth A

Annualized PFR

2009

2008

-

-65

1.6

-10

-1.5

-20

-2.5

30

Actual

2008

2010

Annualized Output Growth

Filtered Output Gap

2010

2011

50% Band

2009

Mecha

2008 2009 2010 2011

90% Band

Annualized Output Growth

- 95% Band

2010

Annualized Inflation

2011

3 12

2011

-1 -2 -31 2008 2009 2010

2009

2011

Annualized Output Growth

Annualized FFR

-10

Estimation Results: Comparison with the Fed

• The endogenous duration ZLB model predicts long ZLB durations in 2009-2010H1, and quicker lift-off afterwards. OIS rates imply exactly the opposite with long zlb-durations first in 2011H2-2012. Our model results are in between OIS (Shadow Rate) and Fed Greenbook forecasts in December 2008.

Estimation Results: Shadow rate series

• Shadow rate implied by Endogenous ZLB duration models and the yield curve based models (Wu&Xia 2015) behave very differently:

Estimation Results: Shadow rate series

Constrained vs. Unconstrained Monetary Policy (2 Percent Inflation Goal)

Estimation Results: Shadow rate series

Estimation Results: SW endogenous ZLB duration - irfs

• To document the time variation of the propagation mechanism induced by the ZLB, we simulate the impulse response functions of the various shocks period by period:

Estimation Results: SW endogenous ZLB duration - irfs

Estimation Results: SW endogenous ZLB duration - irfs

Estimation Results: SW exogenous ZLB duration - irfs

Estimation Results: SW exogenous ZLB duration - irfs

Evaluate costs of the ZLB

- Compute cost of ZLB by making a counterfactual dynamic simulation of how much higher output would have been without constraints on monetary policy from 2008Q4 and onwards.
 - No ZLB model, no mp shocks from this quarter.
 - In the endogenous ZLB model, we turn off the max operator (i.e. all current and anticipated mp shocks) and simulate the impact of all other shocks as if policy was unconstrained.
 - In R-S model, we assume "Normal" regime prevails and turn off policy shocks but use all other shocks in counterfactual simulation.
- Cost = Counterfactual with No ZLB / Unconstrained Path
 - Simulated path with constraints and all shocks (~history).

Evaluate cost of ZLB: SW with alternative methods

Evaluate cost of ZLB: GSW with alternative methods

Cost of ZLB in SW: posterior distr. for Endo. ZLB

Cost of ZLB in GSW: uncertainty under endo. ZLB

Cost of ZLB in SW: decomposition to shocks

Cost of ZLB in SW: decomposition to shocks (cont.)

Cost of ZLB in GSW: decomposition to shocks

Cost of ZLB in GSW: decomposition to shocks (cont.)

Tentative Conclusions

- We have presented and applied techniques that can be used to take ZLB incidents into account in operational large-scale macro models.
- Our results suggest that explicit treatment of the ZLB is important, but its exact influence depends on the experiments and in particular on how the CB behaves during ZLB incidents.
- A robust finding, across different estimation methods and across different models, is the substantial change in the propagation of shocks: risk premium and wage markup shocks are most affected.
- Also, our results indicate that the macro-economic cost of the interest rate lower bound is substantial and explains a major share of the negative output gap since the beginning of the GR.

Tentative Conclusions

- In our model specification, the potential of UMP to offset these costs is weak.
- Given the importance of the non-linear dynamics, it is questionable whether we can abstract from other non-linear adjustment dynamics elsewhere in the model. Both our approaches have the flexibility to incorporate non-linear constraints in other blocks as well. But RS is computationally more efficient.