Overview	Related Literature	Model	Calibration	Replicating U.S. Data	Simulations	Learning	Conclusion

Endogenous Regime Switching Near the Zero Lower Bound¹

Kevin J. Lansing Federal Reserve Bank of San Francisco

January 26, 2018 Conference on Nonlinear Models in Macroeconomics and Finance in a Nonlinear World

¹Any opinions expressed here do not necessarily reflect the views of the Federal Reserve Bank of San Francisco or the Board of Governors of the Federal Reserve System.

Overview Related Literature Model Calibration Replicating U.S. Data Simulations Learning Conclusion

- Taylor rule + Fisher Eqn. + ZLB ⇒ Two steady states. (Benhabib, Schmitt-Grohé & Uribe AER, JET 2001a,b).
 - (1) Targeted: $i = r^* + \pi^* > 0$.
 - (2) <u>Deflation</u>: i = 0 and $\pi = -r^*$.

 r* = "natural rate of interest." <u>Evidence</u>: r* shifts over time and can drop below zero (Laubach & Williams 2016, Eggertsson, Mehrotra & Robbins 2017).

Sumn	nary of na	ner					
Overview	Related Literature	Model	Calibration	Replicating U.S. Data	Simulations	Learning	Conclusion
○○○○○●	0	0000	0000000	0000	00000000	000	0

- NK model with two local equilibria. Agent employs weighted-average of the two sets of local linear forecast rules. Weight optimized to minimize *RMSFE* over past T_w quarters.
- Unlike Arouba et al. (2018), regime switching here is endogenous.
- <u>Results</u>: Adverse shock ⇒ more weight on deflation forecast rules ⇒ deflation can become self-fulfilling. Episode accompanied by severe recession (highly negative output gap) with nominal rate at ZLB. Similar to 2007-09 Great Recession.
- But even in normal times, agent may place nontrivial weight on deflation forecast rules, causing central bank to consistently undershoot π^* (like now: $\pi_t^{U.S.} < 0.02$ since mid-2012).

 Overview
 Related Literature
 Model
 Calibration
 Replicating
 U.S. Data
 Simulations
 Learning
 Conclusion

 00000
 0
 0000
 0000
 0000
 0000
 0000
 0000

 Related literature (partial list)

- Transition between regimes driven by exogenous sunpots Aruoba, Cuba-Borda, & Schorfheide (2018, *REStud forthcoming*) Aruoba & Schorfheide (2016, *FRBKC Jackson Hole Symposium*
- Infrequent but long-lived ZLB episodes in global data Dordal-i-Carreras, Coibion, Gorodnichenko & Wieland (2016))
- Adaptive learning to select among multiple equilibria Evans & Honkapohja (2005, *RED*), Eusepi (2007, *JME*) Benhabib, Evans & Honkapohja (2014, *JEDC*) Arifovic, Schmitt-Grohé & Uribe (2018, *JEDC*)
- Optimal monetary policy with shifting natural rate Eggertsson and Woodford (2003, *BPEA*) Evans, Fisher, Gourio & Krane (2015, *BPEA*) Hamilton, Harris, Hatzius, & West (2016. *IMF Econ. Rev.*) Gust, Johannsen, López-Salido (2017, *IMF Econ. Rev.*) Basu & Bundick (2015, NBER WP 21838)

Overview coococo Related Literature o Model cocococo Calibration cocococo Replicating U.S. Data cococococo Simulations cococococo Learning coco Conclusion coco New Keynesian model with zero lower bound (ZLB)

Fisher relationship

$$y_t = E_t y_{t+1} - \alpha \left[\overline{i_t - E_t \pi_{t+1} - r_t} \right] + v_t, \qquad v_t = \rho_v v_{t-1} + \epsilon_{v,t}$$

$$\pi_t = \beta E_t \pi_{t+1} + \kappa y_t + u_t, \qquad u_t = \rho_u u_{t-1} + \epsilon_{u,t}$$

$$i_{t}^{*} = \rho i_{t-1}^{*} + (1-\rho) \left[\frac{E_{t}r_{t}^{*}}{t} + \pi^{*} + g_{\pi} \left(\overline{\pi}_{t} - \pi^{*} \right) + g_{y} \left(y_{t} - y^{*} \right) \right]$$

$$\begin{array}{lll} \overline{\pi}_t &=& \omega \, \pi_t + (1 - \omega) \, \overline{\pi}_{t-1}, & \overline{\pi}_t \simeq \pi_{4,\,t} \equiv \, \text{4-qtr. inflation rate.} \\ i_t &=& \max \left\{ 0, \, \, i_t^* \right\}. \end{array}$$

$$\begin{array}{rcl} r_t & \equiv & -\log \underbrace{\left[\beta \exp\left(\zeta_t\right)\right]}_{\text{Discount factor}} & + & (1/\alpha) & \underbrace{E_t \Delta \bar{y}_{t+1}}_{\text{Expected potential output growth}} \\ r_t & = & \rho_r \, r_{t-1} + (1-\rho_r) \, r_t^* + \varepsilon_t, & \varepsilon_t \sim N\left(0, \, \sigma_{\varepsilon}^2\right) \\ r_t^* & = & r_{t-1}^* + \eta_t, & \eta_t \sim N\left(0, \, \sigma_{\eta}^2\right) \\ r_t^* & \equiv & \text{Natural rate of interest (long-run endpoint of } r_t) \end{array}$$

 Overview cooco
 Related Literature cooco
 Model coco
 Calibration coco
 Replicating U.S. Data coco
 Simulations coco
 Learning coco
 Conclusion coco

 Two long-run endpoints (steady states)

 $\begin{array}{l} \frac{\text{Targeted Endpoint}}{\pi_t = \pi^*} \\ y_t = y^* \equiv \pi^* \left(1 - \beta\right) / \kappa \\ i_t^* = r_t^* + \pi^* \\ i_t = i_t^* \end{array}$

 $\frac{\text{Deflation Endpoint}}{\pi_t = -r_t^*}$ $y_t = -r_t^* (1 - \beta) / \kappa$ $i_t^* = (r_t^* + \pi^*) \left[1 - g_\pi - \frac{g_y(1 - \beta)}{\kappa} \right]$ $i_t = 0$

 Overview occoo
 Related Literature o
 Model o
 Calibration occoo
 Replicating occoo
 U.S. Data occoo
 Simulations occoo
 Learning occoo
 Conclusion occoo

 Two long-run endpoints (steady states)

Shifting Endpoint Time Series Model (Kozicki-Tinsley, JMCB 2012)

$$E_t r_t^* = \lambda \left[\frac{r_t - \rho_r r_{t-1}}{1 - \rho_r} \right] + (1 - \lambda) E_{t-1} r_{t-1}^*$$

$$\begin{array}{ll} & \text{Kalman} \\ \text{gain} \end{array} \qquad \lambda \ = \ \frac{-(1-\rho_r)^2 \, \phi + (1-\rho_r) \sqrt{(1-\rho_r)^2 \phi^2 + 4\phi}}{2}, \qquad \phi \equiv \frac{\sigma_\eta^2}{\sigma_\varepsilon^2} \end{array}$$

 $E_t (r_{t+h} - r_{t+h}^*) = (\rho_r)^h (r_t - E_t r_t^*), \quad \rho_r = 0.86$

Two local rational expectations equilibria

Calibration

Model

0000

Overview

Targeted (Unique). Forecast rules assume $i_t^* = i_t > 0$ for all t

$$\begin{bmatrix} y_t - \pi^* (1 - \beta) / \kappa \\ \pi_t - \pi^* \\ i_t^* - (E_t r_t^* + \pi^*) \end{bmatrix} = \mathbf{A} \times \begin{bmatrix} r_t - E_t r_t^* \\ \overline{\pi}_{t-1} - \pi^* \\ i_{t-1}^* - (E_t r_t^* + \pi^*) \\ v_t \\ u_t \end{bmatrix}$$

Deflation (MSV). Forecast rules assume $i_t^* \leq 0$, $i_t = 0$ for all t

$$\begin{bmatrix} y_{t} - (-E_{t} r_{t}^{*}) (1-\beta) / \kappa \\ \pi_{t} - (-E_{t} r_{t}^{*}) \\ i_{t}^{*} - (E_{t} r_{t}^{*} + \pi^{*}) [1 - g_{\pi} - g_{y} (1-\beta) / \kappa] \end{bmatrix} = \\ \mathbf{B} \times \begin{bmatrix} r_{t} - E_{t} r_{t}^{*} \\ \overline{\pi}_{t-1} - (-E_{t} r_{t}^{*}) \\ i_{t-1}^{*} - (E_{t} r_{t}^{*} + \pi^{*}) [1 - g_{\pi} - g_{y} (1-\beta) / \kappa] \\ v_{t} \\ u_{t} \end{bmatrix}$$

Overview Related Literature Model Calibration Replicating U.S. Data Simulations Learning Conclusion 00000 000000 000000 0000000 0000000 0000000 0000000 0000000 Two local rational expectations equilibria

Targeted (Unique). Forecasts assume $i_t^* = i_t > 0$ for all t

	0.594	-0.153	-0.386	3.221	-0.174
A =	0.069	-0.017	-0.033	0.275	1.396
	0.128	0.129	0.718	0.682	0.158

Deflation (MSV). Forecasts assume $i_t^* \leq 0$, $i_t = 0$ for all t

	1.247	0	0	5.397	0.092
B =	0.213	0	0	0.661	1.429
	0.279	0.162	0.8	1.171	0.215

Local solution coefficients for state variable $r_t - E_t r_t^*$:

$$\frac{\mathbf{B}_{11}}{\mathbf{A}_{11}} = 2.1 \qquad \frac{\mathbf{B}_{21}}{\mathbf{A}_{21}} = 3.1 \qquad \frac{\mathbf{B}_{31}}{\mathbf{A}_{31}} = 2.2$$

 \Rightarrow Deflation equilibrium exhibits much more volatility.

Mode	el paramete	er val	ues				
Overview	Related Literature	Model	Calibration	Replicating U.S. Data	Simulations	Learning	Conclusion
000000	O	0000	●000000	0000	00000000	000	O

α	0.15	Interest rate coefficient in Euler equation.
β	0.995	Discount factor in Phillips curve.
κ	0.025	Output gap coefficient in Phillips curve.
σ_{v}	0.010	Std. dev. of demand shock.
σ_u	0.005	Std. dev. of cost push shock.
ρ_v	0.8	Persistence of demand shock.
ρ_u	0.3	Persistence of cost push shock.
π^*	0.02	Central bank inflation target.
ω	0.459	$\overline{\pi}_t \simeq$ 4-quarter inflation rate.
g_{π}	1.5	Policy rule response to inflation.
g _y	1.0	Policy rule response to output gap.
ρ	0.80	Interest rate smoothing parameter.
ρ_r	0.858	Persistence parameter for r_t .
σ_{ε}	0.010	Std. dev. temporary shock to r_t .
σ_{η}	0.002	Std. dev. permanent shock to r t.
$\lambda^{'}$	0.025	Optimal Kalman gain for $E_t r_t^*$.

 Overview
 Related Literature
 Model
 Calibration
 Replicating U.S. Data
 Simulations
 Learning
 Conclusion

 00000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t

Bounds for simulations: $-0.004 \le r_t^* \le 0.037$

Overview 000000 Related Literature 0 Model 0000 Calibration 000 Replicating U.S. Data 0000 Simulations 00000000 Learning 000 Conclusion 0 Real federal funds rate versus efficient real rate

Efficient real rate: Cúrdia, Ferrero, Ng & Tambalotti (JME, 2015)

Variables that the agent must forecast: y_{t+1} and π_{t+1}

$$\begin{aligned} \widehat{E}_t \, y_{t+1} \; &= \; \mu_t E_t^{\text{targ}} \, y_{t+1} \; + \; (1 - \mu_t) \, E_t^{\text{defl}} \, y_{t+1} \\ \widehat{E}_t \, \pi_{t+1} \; &= \; \mu_t E_t^{\text{targ}} \, \pi_{t+1} \; + \; (1 - \mu_t) \, E_t^{\text{defl}} \, \pi_{t+1} \end{aligned}$$

Choose μ_t to minimize $RMSFE_{t-1}$ for moving window of recent data

$$\begin{split} \min_{\mu_{t}} \frac{1}{T_{w}} \sum_{j=1}^{T_{w}} \left\{ \left[y_{t-j} - \mu_{t} E_{t-j-1}^{\text{targ}} y_{t-j} - (1-\mu_{t}) E_{t-j-1}^{\text{defl}} y_{t-j} \right]^{2} \\ + \left[\pi_{t-j} - \mu_{t} E_{t-j-1}^{\text{targ}} \pi_{t-j} - (1-\mu_{t}) E_{t-j-1}^{\text{defl}} \pi_{t-j} \right]^{2} \right\}^{0.5} \end{split}$$

For simulations, impose $0 \le \mu_t \le 1$, with $T_w = 8$ qtrs.

Variables that the agent must forecast: y_{t+1} and π_{t+1}

$$\begin{aligned} \widehat{E}_t \, y_{t+1} \; &= \; \mu_t E_t^{\text{targ}} \, y_{t+1} \; + \; (1 - \mu_t) \, E_t^{\text{defl}} \, y_{t+1} \\ \widehat{E}_t \, \pi_{t+1} \; &= \; \mu_t E_t^{\text{targ}} \, \pi_{t+1} \; + \; (1 - \mu_t) \, E_t^{\text{defl}} \, \pi_{t+1} \end{aligned}$$

Choose μ_t to minimize $RMSFE_{t-1}$ for moving window of recent data

$$\begin{split} \min_{\mu_{t}} \frac{1}{T_{w}} \sum_{j=1}^{T_{w}} \left\{ \left[y_{t-j} - \mu_{t} E_{t-j-1}^{\mathrm{targ}} y_{t-j} - (1-\mu_{t}) E_{t-j-1}^{\mathrm{defl}} y_{t-j} \right]^{2} \\ + \left[\pi_{t-j} - \mu_{t} E_{t-j-1}^{\mathrm{targ}} \pi_{t-j} - (1-\mu_{t}) E_{t-j-1}^{\mathrm{defl}} \pi_{t-j} \right]^{2} \right\}^{0.5} \end{split}$$

For simulations, impose $0 \le \mu_t \le 1$, with $T_w = 8$ qtrs.

Alternative (Binning and Maih 2017):

 $\mu_t = \exp{(\psi i_{t-1}^*)} / [1 + \exp{(\psi i_{t-1}^*)}]$, $\psi = 2000$.

Overview Related Literature Model Calibration Replicating U.S. Data Simulations Learning Conclusion occore occore

$$y_t = \widehat{E}_t y_{t+1} - \alpha \left[i_t - \widehat{E}_t \pi_{t+1} - r_t \right] + v_t$$

$$\pi_t = \beta \widehat{E}_t \pi_{t+1} + \kappa y_t + u_t$$

$$i_{t}^{*} = \rho i_{t-1}^{*} + (1-\rho) \left[E_{t} r_{t}^{*} + \pi^{*} + g_{\pi} \left(\overline{\pi}_{t} - \pi^{*} \right) + g_{y} \left(y_{t} - y^{*} \right) \right]$$

$$i_t = 0.5 i_t^* + 0.5 \sqrt{(i_t^*)^2}$$

$$\overline{\pi}_t = \omega \pi_t + (1-\omega) \overline{\pi}_{t-1}$$

Given forecasts $\hat{E}_t y_{t+1}$, $\hat{E}_t \pi_{t+1}$, and $E_t r_t^*$, solve nonlinear system each period for y_t , π_t , and i_t^* .

Measures of expected inflation declined after 2008.Q4

Overview 000000 Related Literature 0 Model 0000 Calibration 0000000 Replicating U.S. Data 0000 Simulations 0000000 Learning 000 Conclusion 0 Replicating U.S. data with the switching model

Given r_t , $E_t r_t^*$, i_t , i_t^* , y_t , π_t in U.S. data, solve for v_t , u_t , and μ_t .

"With the exception of 2011:Q4, when the probability of the deflation regime increased to about 70%, the U.S. has been in the targeted inflation regime."

U.S.

Figure 5: Filtered Probability of Targeted-Inflation Regime

Japan

Weight on targeted forecast rules can decline rapidly

Duration of ZLB Episode (Quarters)

Quan		compar	con: D	lata vorcue r	nodola		
000000		0000	0000000	0000	00000000	000	
Overview	Related Literatu	ire Model	Calibration	Replicating U.S. Data	Simulations	Learning	Conclusion

\sim	N 1 1 1	1 C						
	JUSPTITS	$\Delta T I V \Delta$	comp	aricon	LISTS	VArclic	modele	
5	vuaiilila		COLLD	anson.	Dala	versus	Inoucis)

	U.S. Data Model Simul			ations		
Statistic	1988.Q1-2017.Q2	Targeted	Deflation	Switching		
% periods $i_t = 0$	24.6%	2.52%	80.2%	19.6%		
Mean ZLB duration	29 qtrs.	5.3 qtrs.	34.7 qtrs.	12.5 qtrs.		
Max. ZLB duration	29 qtrs.	37 qtrs.	346 qtrs.	133 qtrs.		
Mean <u>y_t</u>	-1.44%	0.40%	-0.38%	0.42%		
Std. Dev.	1.75%	1.65%	3.21%	2.19%		
Mean $\pi_{4,t}$	2.16%	1.99%	-1.70%	0.93%		
Std. Dev.	1.09%	0.85%	1.58%	1.46%		

Model results computed from 300,000 period simulation.

Duana	ution of use			· · · · · · · · ·			
000000		0000	0000000	0000	00000000	000	
Overview	Related Literature	Model	Calibration	Replicating U.S. Data	Simulations	Learning	Conclusion

Properties of representative agent's forecast errors

Statistic	Targeted	Deflation	Switching
$Corr(err_{t+1}^y, err_t^y)$	0.002	-0.007	0.019
$Corr(err_{t+1}^{\pi}, err_t^{\pi})$	0.003	0.002	0.074
$E\left(err_{t+1}^{y}\right)$	-0.001%	-0.045%	0.008%
$E\left(err_{t+1}^{\pi}\right)$	-0.003%	-0.004%	0.003%
$\sqrt{E[(err_{t+1}^y)^2]}$	1.11%	1.87%	1.35%
$\sqrt{{\it E}[\left({\it err}_{t+1}^{\pi} ight)^2]}$	1.31%	1.35%	1.34%

Model results computed from 300,000 period simulation.

•
$$err_{t+1}^x = x_{t+1} - F_t x_{t+1}$$
 for $x_{t+1} \in \{y_{t+1}, \pi_{t+1}\}$.

- Agent employs linear forecast rules in a nonlinear environment with an occasionally binding ZLB.
- Nevertheless, agent's forecast errors in all three model versions are close to white noise.

Effect	of natura	l rate	range	in switching	model		
Overview	Related Literature	Model	Calibration	Replicating U.S. Data	Simulations	Learning	Conclusion
000000	O	0000	0000000	0000		000	O

Statistic	$-0.004 \le r_t^* \le 0.037$	$-0.015 \le r_t^* \le 0.037$
% periods $i_t = 0$	19.6%	23.2%
Mean ZLB duration	12.5 qtrs.	12.4 qtrs.
Mean <mark>y</mark> t	0.42%	0.38%
Std. Dev.	2.19%	2.23%
Mean $\pi_{4,t}$	0.93%	1.08%
Std. Dev.	1.46%	1.40%

Model results computed from 300,000 period simulation.

- Wide uncertainty bands around empirical estimates of r_t^*
- Eggertsson, Mehrotra, & Robbins (2017): Steady state r* in a life cycle model calibrated to U.S. data in 2015 is -1.5%.
- Endpoint of π_t in deflation equilibrium is $-r_t^*$. So negative r_t^* \Rightarrow positive inflation in the "deflation" equilibrium.

Overview 000000	Related Literature O	Model 0000	Calibration 0000000	Replicatin 0000	g U.S. Data	Simulations	Learning 000	Conclusior O
Effect Yellen, 6	t of higher 5-14-2017: "This	inflat	of the mos	g <mark>et ir</mark> t import	n switch	ing mo	del nonetary	policy."
	Statistic		$\pi^*=0$	0.02	$\pi^{*} = 0.03$	$\pi^*=0$	0.04	
	% periods i_t	= 0	19.6	5%	14.2%	9.5	%	
	Mean ZLB dı	iration	12.5 c	qtrs.	12.4 qtrs.	11.7 c	ltrs.	
	Std. Dev. yt		2.19	%	2.12%	2.04	.%	

1.46% 1.56%

1.61% 2.75% 2.04%

Loss value, $ heta=1$	2.84%	2.66%	2
Loss value, $ heta=$ 0.25	2.12%	1.91%	2

Model results computed from 300,000 period simulation.

Std. Dev. π_{4t}

- Higher π^{*} can reduce switching to volatile deflation equilibrium where recessions are more severe.
- Similar to Kiley and Roberts (BPEA, 2017):

Loss =
$$E\left\{\left[\pi_{4,t} - 0.02\right]^2 + \theta \left[y_t - 0.02 \left(1 - \beta\right) / \kappa\right]^2\right\}$$
.

Overview Related Literature Model Calibration Replicating U.S. Data Simulations Learning Conclusion occore occore coore coore

Statistic	$\pi^* = 0.02$	$\pi^*=$ 0.03	$\pi^*=$ 0.04
ho = 0.8			
% periods $i_t = 0$	19.6%	14.2%	9.5%
Mean ZLB duration	12.5 qtrs.	12.4 qtrs.	11.7 qtrs.
ho=0			
% periods $i_t = 0$	30.0%	24.4%	19.6%
Mean ZLB duration	4.9 qtrs.	5.0 qtrs.	5.0 qtrs.

Model results computed from 300,000 period simulation..

- No smoothing ($\rho = 0$) implies higher frequency of hitting ZLB, but episodes are shorter on average.
- From ZLB perspective, no clear advantage from reducing the degree of interest rate smoothing in the policy rule.

Overview coccoo Related Literature coccoo Model coccoo Calibration coccoo Replicating cocco U.S. Data coccoo Simulations coccoo Learning coccoo Conclusion coccoo Adaptive learning in a simplified model

- Impose $\rho = \rho_v = \rho_u = 0$ (no persistence), $\omega = 1$ (policy targets quarterly inflation), and $\sigma_\eta = 0$ (r^* is constant).
- <u>Version 1</u>: Agent estimates correctly-specified decision rules:

$$y_t = c_{0,t} + c_{1,t} (r_t - r^*) + c_{2,t} v_t + c_{3,t} u_t$$

$$\pi_t = d_{0,t} + d_{1,t} (r_t - r^*) + d_{2,t} v_t + d_{3,t} u_t$$

• <u>Version 2</u>: Agent estimates misspecified decision rules:

$$y_t = c_{0,t} + c_{1,t} (r_t - r^*)$$

$$\pi_t = d_{0,t} + d_{1,t} (r_t - r^*)$$

Subjective forecasts:

$$\widehat{E}_t y_{t+1} = c_{0,t-1} + c_{1,t-1} \rho_r (r_t - r^*) \widehat{E}_t \pi_{t+1} = d_{0,t-1} + d_{1,t-1} \rho_r (r_t - r^*)$$

 c_{i,t} and d_{i,t} estimated each period using OLS for a rolling window of 16 quarters (4 years) of model-generated data.

Learning with correctly specified decision rules

Learning with misspecified decision rules

Overview 000000	Related Literature O	Model 0000	Calibration 0000000	Replicating U.S. Data	Simulations 00000000	Learning 000	Conclusion	
Conclusion								

- Most NK studies ignore the deflation equilibrium. But no clear reason why this equilibrium should be ruled out.
- Switching model can produce Great Recessions when $r_t E_t r_t^*$ is persistently negative, causing agent to place large weight on deflation forecast rules. Escape from ZLB occurs endogenously when $r_t E_t r_t^*$ eventually starts rising.
- In normal times, non-trivial weight on deflation forecast rules may cause central bank to undershoot π^{*} (like today?).
- Model (with shocks) can replicate U.S. data since 1988.
- A simple loss function approach favors a modest increase in π^* to around 3%. But even with $\pi^* = 4\%$, the ZLB binding frequency is 9.5% and the average duration of a ZLB episode is 11.7 quarters.