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Fed Funds Rate and Taylor Rule: 1954-Present

Clear time variation (regime changes) in monetary policy intervention.
What are the drivers?



What Is the Paper About?
This work introduces threshold-type switching with endogenous
feedback into DSGE models

I how agents form expectations on future regime change
I shed empirical light on how & why policy regime shifts

Substantive finding
I post-WWII U.S. monetary policy shifts have been largely

driven by non-policy shocks

Methodological contribution
I derive analytical solution for endogenous switching

Fisherian model
I develop an endogenous switching Kalman filter



Main Results

Endogenous switching in Fisherian model

I structural shocks drive regime change through

endogenous feedback mechanism

I endogenous feedback induces expectational effect, which

helps stabilize price level

Endogenous switching in a New Keynesian model

I we show empirically that U.S. monetary policy shifts are

mainly driven by non-policy shocks

I in particular, the markup shocks associated with oil crises

were the main driver of monetary policy in 70’s, and

preference shocks indicating the strong economic recovery

in early 80’s drove monetary policy regime back to active.



Endogenous Switching in Fisherian Model



Model
Fisher equation:

it = Etπt+1 + Etrt+1

Real rate process:
rt = ρrrt−1 + σrε

r
t

Monetary policy with endogenous feedback:

it = α(st)πt + σeε
e
t

st = 1{wt ≥ τ}

wt+1 = φwt + vt+1,(
εe

t
vt+1

)
=d iid N

(
0,
(

1 ρ
ρ 1

))

as considered in Chang, Choi and Park (2017).



Information Structure

I Agents don’t observe the level of latent regime factor wt,
but observe whether or not it crosses the threshold, as
reflected in st = 1{wt ≥ τ}.

I Agents form expectations on future inflation as

Etπt+1 = E(πt+1|Ft), Ft = {iu, πu, ru, ε
r
u, ε

e
u, su}t

u=0

I Monetary authority observes all information in Ft and also
the history of policy regime factor (wt).



Endogenous Feedback Mechanism

To see the endogenous feedback mechanism, rewrite

wt+1 = φwt + ρεe
t +

√
1− ρ2ηt+1︸ ︷︷ ︸

vt+1

, ηt+1 ∼ i.i.d.N(0, 1)

From variance decomposition, we see that ρ2 is the contribution
of past intervention to regime change

I ρ = 0 : fully driven by exogenous non-structural shock

wt+1 = φwt + ηt+1

I |ρ| = 1 : fully driven by past monetary policy shock

wt+1 = φwt + εe
t



Time-Varying Transition Probabilities

Agents infer TVTP by integrating out the latent factor wt using

its invariant distribution, N(0, 1/(1− φ2)), and obtain

p00(εe
t ) =

∫ τ
√

1−φ2

−∞
Φρ

(
τ − φx√

1− φ2
− ρεe

t

)
ϕ(x)dx

Φ(τ
√

1− φ2)

p10(εe
t ) =

∫ ∞
τ
√

1−φ2
Φρ

(
τ − φx√

1− φ2
− ρεe

t

)
ϕ(x)dx

1− Φ(τ
√

1− φ2)

where Φρ(x) = Φ(x/
√

1− ρ2).



Time-Varying Transition Probabilities

I If ρ = 0, reduce to exogenous switching model
I ρ governs the fluctuation of transition probabilities



Analytical Solution

We solve the system of expectational nonlinear difference
equations using the guess and verify method.

Davig and Leeper (2006) show that the analytical solution for
the model with fixed regime monetary policy process is

πt+1 = a1rt+1 + a2ε
e
t+1

with some constants a1 and a2.

Motivated by this, we start with the following guess

πt+1 = a1(st+1, pst+1,0(εe
t+1))rt+1 + a2(st+1)εe

t+1



Analytical Solution

I Solution derivation

πt+1 =
ρr

α(st+1)

(α1 − α0)pst+1,0(εe
t+1) + α1

(
α0

ρr
− Ep00(εe

t+1)

)
+ α0Ep10(εe

t+1)

(α1 − ρr)

(
α0

ρr
− Ep00(εe

t+1)

)
+ (α0 − ρr)Ep10(εe

t+1)︸ ︷︷ ︸
a1(st+1,pst+1,0(εe

t+1))

rt+1

−
σe

α(st+1)︸ ︷︷ ︸
a2(st+1)

εe
t+1

I Limiting case 1: exogenous switching solution (ρ = 0)

πt+1 =
ρr

α(st+1)

(α1 − α0)p̄st+1,0 + α1

(
α0

ρr
− p̄00

)
+ α0p̄10

(α1 − ρr)

(
α0

ρr
− p̄00

)
+ (α0 − ρr)p̄10︸ ︷︷ ︸

a1(st+1)

rt+1−
σe

α(st+1)︸ ︷︷ ︸
a2(st+1)

εe
t+1



Analytical Solution

I Solution derivation

πt+1 =
ρr

α(st+1)

(α1 − α0)pst+1,0(εe
t+1) + α1

(
α0

ρr
− Ep00(εe

t+1)

)
+ α0Ep10(εe

t+1)

(α1 − ρr)

(
α0

ρr
− Ep00(εe

t+1)

)
+ (α0 − ρr)Ep10(εe

t+1)︸ ︷︷ ︸
a1(st+1,pst+1,0(εe

t+1))

rt+1

−
σe

α(st+1)︸ ︷︷ ︸
a2(st+1)

εe
t+1

I Limiting case 2: fixed-regime solution (α1 = α0)

πt+1 =
ρr

α− ρr︸ ︷︷ ︸
a1

rt+1−
σe

α︸︷︷︸
a2

εe
t+1



Macro Effects of Policy Intervention
Monetary authority sets future policy intervention
It = {ε̃e

t+1, ε̃
e
t+2, . . . , ε̃

e
t+K} and evaluates its effect on future

inflation. To illustrate, consider a contractionary intervention as
in Leeper and Zha (2003):

IT = {4%, . . . , 4%︸ ︷︷ ︸
8 periods

, 0, . . . , 0︸ ︷︷ ︸
8 periods

} with K = 16, sT = 0

I Baseline = E(πT+K |FT , st = sT , t = T + 1, . . . ,T + K)

I Direct Effects = E(πT+K |IT ,FT , st = sT , t = T + 1, . . . ,T + K)
- Baseline

I Total Effects = E(πT+K |IT ,FT) - Baseline

I Expectations Formation Effects = Total Effects - Direct
Effects



Impulse Response Function

I εT+1 > 0
ρ>0−−→ wT+2 ↑, sT+2 ↗ 1 → more aggressive

I endogenous mechanism helps explain price stabilization



Expectations Formation Effect

I εT+1 > 0
ρ>0−−→ wT+2 ↑, sT+2 ↗ 1 → more likely to switch

I price stabilized b/c agents adjust their beliefs on future regimes
I black dot signifies period T + 2 total effect;



Endogenous Switching in New Keynesian Model



Households and Firms
Households:

max
{Ct+s,Nt+s,Bt+s}∞s=0

Et

∞∑
s=0

βsξt+s

(
(Ct+s/At+s)

1−ε

1− ε
− Nt+s

)
s.t. PtCt + Bt + Tt = Rt−1Bt−1 + PtWtNt + PtDt

Firms:

max
{Njt+s,Pjt+s}∞s=0

Et

∞∑
s=0

βsξt+sQt+s|tDjt+s

s.t. Djt =
PjtYjt

Pt
−WtNjt −

φ

2

(
Pjt

Π∗st
Pjt−1

− 1
)2

Yjt︸ ︷︷ ︸
real price-adjustment cost

Yjt = AtNjt (Production)

Yjt =

(
Pjt

Pt

)−θt

Yt (Dixit-Stiglitz aggregation)



Policy and Shocks
Monetary and Fiscal Policy:

Rt

R∗st

=

(
Rt−1

R∗st−1

)ρR(st) [(
Πt

Π∗st

)ψπ(st)( Yt

Y∗t

)ψy(st)
]1−ρR(st)

et

st = 1{wt ≥ τ}
wt = αwt−1 + vt

PtGt + Rt−1Bt−1 = Tt + Bt

Shocks:

technology: ln At = ln γ + ln At−1 + ln at

ln at = ρa ln at−1 + σaε
a
t

preference: ln ξt = ρξ ln ξt−1 + σξε
ξ
t

markup: ln ut = (1− ρu) ln u + ρu ln ut−1 + σuε
u
t

MP: ln et = σeε
e
t

FP: ln gt = (1− ρg) ln g + ρg ln gt−1 + σgε
g
t



Endogenous Feedback Mechanism


εa
t
εξt
εu

t
εe

t
εg

tvt+1

 ∼ N

0,


1 0 0 0 0 ρav
0 1 0 0 0 ρξv
0 0 1 0 0 ρuv
0 0 0 1 0 ρev
0 0 0 0 1 ρgv
ρav ρξv ρuv ρev ρgv 1


 , ρ′ρ < 1

i.e. wt+1 = αwt + ρ′εt +
√

1− ρ′ρ ηt+1︸ ︷︷ ︸
vt+1

.

Variance decomposition:

FEV(wt,h) =

h∑
j=1

α2(h−j)

=

5∑
k=1

h∑
j=1

ρ2
kα

2(h−j)

︸ ︷︷ ︸
k-th structural

+

h∑
j=1

(
1−

5∑
k=1

ρ2
k

)
α2(h−j)

︸ ︷︷ ︸
non-structural



Equilibrium Conditions

Euler: Et

[
βRt

Πt+1

(
Ct/At

Ct+1/At+1

)ε( At

At+1

)(
ξt+1

ξt

)]
= 1

NKPC: ut

(
Ct

At

)ε
− φ

(
Πt

Π∗st

− 1
)[(ut

2
− 1
) Πt

Π∗st

+
ut

2

]
+βφ(ut − 1)Et

[
ξt+1
ξt

Yt+1/At+1
Yt/At

(
Ct+1/At+1

Ct/At

)−ε Πt+1
Π∗

st+1

(
Πt+1
Π∗

st+1
− 1
)]

= 1

Mkt Clear: Yt = Ct + Gt +
φ

2

[
Πt

Π∗st

− 1
]2

Yt

MP:
Rt

R∗st

=

(
Rt−1

R∗st−1

)ρR(st)
[(

Πt

Π∗st

)ψπ(st)
(

Yt

Y∗t

)ψy(st)
]1−ρR(st)

et

TVTP1: p00(εt) =

∫ τ
√

1−α2

−∞
Φρ

(
τ − αx√

1− α2
− ρ′εt

)
ϕ(x)dx

Φ(τ
√

1− α2)

TVTP2: p10(εt) =

∫ ∞
τ
√

1−α2
Φρ

(
τ − αx√

1− α2
− ρ′εt

)
ϕ(x)dx

1− Φ(τ
√

1− α2)



Steady States

I Detrending: ct = Ct/At, yt = Yt/At

I Define steady states as an equilibrium where shocks are
turned off and inflation is at its target rate.

I Eliminate ct by the market clearing condition, and obtain
steady states as(

y,Πst ,Rst , a, ξ, u, e, g
)

=

(
g
(
θ − 1
θ

)1/ε

,Π∗st
,
γ

β

(
pst,0

Π∗0
+

pst,1

Π∗1

)−1

, 1, 1, u, 1, g

)

where Π∗st
is regime-dependent inflation targets.

I Write all variables in log-deviations: x̂ = log
( x

x

)



First-Order Perturbation Solution

Model variables: Zt = (ŷt, Π̂t, R̂t, ât, ξ̂, ût, êt, ĝt)
′

Shocks: εt = (εa
t , ε

ξ
t , ε

u
t , ε

e
t , ε

g
t )′

Parameters Θ assumed to be known

Obtain the solution using the first-order perturbation method by
Barthelemy and Marx (2017):

Zt = A1(st,Θ)︸ ︷︷ ︸
8×8

Zt−1 + A2(st,Θ)︸ ︷︷ ︸
8×5

εt

where A2(st,Θ)εt combines the direct effect and the linear
approximation of the nonlinear effect of endogenous feedback
mechanism from the structural shocks to the regime change.



State Space Representation
Augment the state vector Zt with ŷt−1, shocks εt, ηt and regime
factor wt given by wt = αwt−1 + ρ′εt−1 +

√
1− ρ′ρ ηt as

ςt = (ŷt, Π̂t, R̂t, ât, ξ̂, ût, êt, ĝt, ŷt−1, ε
′
t, ηt,wt)

′

Accordingly, also augment εt with ηt as

ξt = (ε′t, ηt)
′

Then, our nonlinear state space model is written with

I Transition Equations: ςt = G̃(st,Θ)ςt−1 + M̃(st,Θ)ξt

I Measurement Equations: yt = D(st,Θ) + Z̃(st,Θ)ςt + Fηt

where Z̃(st) = [Z(st), 0l×n,F, 0l×1], and the observable yt

includes per capita real output growth rate, net inflation rate,
and net nominal interest rate in percentage.



Endogenous-Switching Kalman Filter
Initialization: Initialize (ς j

0|0,P
j
0|0) and pj

0|0 from invariant dist’n.
Forecasting: Apply Kalman filter forecasting step to obtain

ς
(i,j)
t|t−1 = G̃(st = j)ς i

t−1|t−1

P(i,j)
t|t−1 = G̃(st = j)Pi

t−1|t−1G̃(st = j)′ + M̃(st = j)M̃(st = j)′

Approximate wt|st−1 = i,Y1:t−1 by normal dist’n

p(wt|st−1 = i,Y1:t−1) = N(ς
(i,j)
w,t|t−1,P

(i,j)
w,t|t−1)

for any j. Thus,

p(i,0)
t|t−1 = Φ

(
(τ − ς(i,0)

w,t|t−1)/

√
P(i,0)

w,t|t−1

)
pi

t−1|t−1

p(i,1)
t|t−1 = pi

t−1|t−1 − p(i,0)
t|t−1



Endogenous-Switching Kalman Filter(cont’d)
Likelihood: Apply Kalman filter forecasting step to obtain

y(i,j)
t|t−1 = D(st = j) + Z̃(st = j)ς(i,j)

t|t−1

F(i,j)
t|t−1 = Z̃(st = j)P(i,j)

t|t−1Z̃(st = j)′ + Σu

Then the period-t likelihood contribution can be computed as

p(yt|Y1:t−1) =

1∑
j=0

1∑
i=0

pN(yt|y(i,j)
t|t−1,F

(i,j)
t|t−1)p(i,j)

t|t−1

Updating: First, apply the Bayes formula to update

p(i,j)
t|t =

pN(yt|y(i,j)
t|t−1,F

(i,j)
t|t−1)p(i,j)

t|t−1

p(yt|Y1:t−1)

and compute pj
t|t =

∑1
i=0 p(i,j)

t|t . Next, use Kalman filter to obtain

ς
(i,j)
t|t = ς

(i,j)
t|t−1 + P(i,j)

t|t−1Z̃(st = j)′(F(i,j)
t|t−1)−1(yt − y(i,j)

t|t−1)

P(i,j)
t|t = P(i,j)

t|t−1 − P(i,j)
t|t−1Z̃(st = j)′(F(i,j)

t|t−1)−1Z̃(st = j)P(i,j)
t|t−1



Endogenous-Switching Kalman Filter(cont’d)
Collapse: Collapse (ς

(i,j)
t|t ,P(i,j)

t|t ) into

ς j
t|t =

1∑
i=0

p(i,j)
t|t

pj
t|t
ς

(i,j)
t|t , Pj

t|t =

1∑
i=0

p(i,j)
t|t

pj
t|t

[
P(i,j)

t|t + (ς j
t|t − ς

(i,j)
t|t )(ς j

t|t − ς
(i,j)
t|t )′

]
Further collapse (ς j

t|t,P
j
t|t) into

ςt|t =

1∑
j=0

pj
t|tς

j
t|t, Pt|t =

1∑
j=0

pj
t|t

[
Pj

t|t + (ςt|t − ς
j
t|t)(ςt|t − ς

j
t|t)
′
]

which gives the extracted filtered states.
Aggregation: The likelihood function is given by

p(Y1:T) =

T∏
t=1

p(yt|Y1:t−1)



Quasi-Bayesian MLE

I Widely used to induce desired curvature in likelihood
surface.

I For a given log-likelihood function

log L(Y1:T |Θ) =

T∑
t=1

log p(yt|Y1:t−1)

where Y1:T denotes data, Θ parameters, the
quasi-Bayesian MLE is defined as

Θ̂ = arg max
Θ∈R(Θ)

log L(Y1:T |Θ) + log p(Θ)

I Used as the initial guess in our MCMC procudure with
standard random walk Metropolis-Hastings.



MCMC

Step 1. Initialize the Markov chain with the quasi-Bayesian ML
estimates x(0) = Θ̂. Also, obtain the inverse of negative
Hessian Σ from the quasi-Bayesian MLE

Step 2. Repeat Steps 2.1-2.3 for j = 1, 2, . . . ,N.
Step 2.1. Generate y from q(x(j−1), ·) =d N(x(j−1), cΣ) and u

from U(0, 1).
Step 2.2. Compute the probability of move

α(x(j−1), y) = min

[
p(y|Y1:T)q(y, x(j))

p(x(j)|Y1:T)q(x(j), y)
, 1

]

Step 2.3. If u ≤ α(x(j−1), y)

− Set x(j) = y.
Else
− Set x(j) = x(j−1).

Step 3. Return the values {x(1), x(2), . . . , x(N)}.



Prior and Posterior Estimates



Prior and Posterior Estimates(cont’d)



Model Fit
Use Geweke(1999)’s harmonic mean estimator to compute
marginal data density:

exogenous endogenous

ln p̂(Y) -1051.29 -1034.51

(0.02) (0.07)

The log-likelihood difference is roughly 17, larger than 4.6. By
Jeffrey(1998) criterion, endogenous model is decisively
preferred.

Note: The estimates are based on essentially the same model,
but without markup and preference shocks, and with only
monetary policy shock driving the regime change.



Extracted Regime Factor and Regime-1 Probability

Shaded areas: NBER recessions
Two vertical lines: oil shocks in 1974.Q1 and 1979.Q3



Filtered Shocks



Counterfactual Analysis



Counterfactual Analysis (cont’d)



Findings

I Regime factor was larger without the markup shock in the
70’s, which implies that without markup shock, monetary
policy would be tighter. This maybe relates to oil shock in
the 70’s which pushed up inflation and pushed down
output. Fed reacted to this stagflation by becoming less
aggressive.

I Without the preference shock, monetary policy would be
significantly passive during early 80’ and 90’. This may
result in a prolonged period of the Great Inflation and the
Great Moderation might have happened much later.

I Monetary and fiscal policy shocks contribute insignificantly
to regime change compared to other non-policy shocks.



Analytical Solution

I Conditional expectation

Etπt+1 =[E(a1(st+1 = 0, p00(εe
t+1), p01(εe

t+1))) · pst,0(εe
t )

+ E(a1(st+1 = 1, p10(εe
t+1), p11(εe

t+1))) · pst,1(εe
t )] · ρrrt

I Combining Fisher equation

it =[E(a1(st+1 = 0, p00(εe
t+1), p01(εe

t+1))) · pst,0(εe
t )

+ E(a1(st+1 = 1, p10(εe
t+1), p11(εe

t+1))) · pst,1(εe
t ) + 1] · ρrrt

=α(st)πt + σeε
e
t



Analytical Solution
I Solving πt+1

πt+1 =
ρr

α(st+1)
[E(a1(st+2 = 0, p00(εe

t+2), p01(εe
t+2))) · pst+1,0(εe

t+1)

+ E(a1(st+2 = 1, p10(εe
t+2), p11(εe

t+2))) · pst+1,1(εe
t+1) + 1]rt+1

− σe

α(st+1)
εe

t+1

I Comparing with initial guess to match unknown coefficients

a1(st+1, pst+1,0(εe
t+1), pst+1,1(εe

t+1))

=
ρr

α(st+1)
[E(a1(st+2 = 0, p00(εe

t+2), p01(εe
t+2))) · pst+1,0(εe

t+1)

+ E(a1(st+2 = 1, p10(εe
t+2), p11(εe

t+2))) · pst+1,1(εe
t+1) + 1]

(1)

a2(st+1) = − σe

α(st+1)



Analytical Solution

I To determine a1, we define

C0 = E(a1(st+2 = 0, p00(εe
t+2), p01(εe

t+2))) (2)

C1 = E(a1(st+2 = 1, p10(εe
t+2), p11(εe

t+2))) (3)
I Considering st+1 = 0, 1 for LHS of (??), taking expectation

with respect to εe
t+1, then combining (??) and (??), we

obtain

C0 =
α1 + ρr(Ep10(εe

t+1)− Ep00(εe
t+1))

(α1 − ρr)

(
α0

ρr
− Ep00(εe

t+1)

)
+ (α0 − ρr)Ep10(εe

t+1)

> 0

C1 =
ρrEp10(εe

t+1)

α1 − ρr + ρrEp10(εe
t+1)

C0 +
ρr

α1 − ρr + ρrEp10(εe
t+1)



Analytical Solution

I Numerical evaluation of Ep00(εe
t+1) and Ep10(εe

t+1)

Ep00(εe
t+1) =

∫ ∞
−∞

∫ τ
√

1−φ2

−∞
Φρ

(
τ −

φx√
1− φ2

− ρεe
t+1

)
ϕ(x)ϕ(εe

t+1)dxdεe
t+1

Φ(τ
√

1− φ2)

=

∫ τ
√

1−φ2

−∞

∫ τ/
√

1−ρ2

−∞

∫ ∞
−∞

f3(x, y, ε)dεdydx

Φ(τ
√

1− φ2)

with

f3(x, y, ε) = N

0,


1

φ√
1− ρ2

√
1− φ2

0

φ√
1− ρ2

√
1− φ2

1
(1− ρ2)(1− φ2)

ρ√
1− ρ2

0
ρ√

1− ρ2
1




Solution


