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Abstract

We introduce an algorithm that measures the contribution of smoothed estimates of historical
shocks onto observed variables in models with occasionally binding constraints solved in a piecewise
fashion with the Occbin toolkit developed by Guerrieri and Iacoviello (2015). We implement the
algorithm on a estimated DSGE model for the Euro Area in which both financial constraints and
the Zero Lower Bound are occasionally binding. In a real-time forecast exercise, we show that
the introduction of financial constraints alone may be responsible for a degree of non-linearity
sufficient to encompass in the predictive density of the model extreme events such as the Great
Recession. We find that households’ “lending” constraints imply larger departures from the linear
solution than firms’ borrowing constraints.

1 Introduction

In recent years, and as a consequence of the outburst of the Global Financial Crisis (GFC), a great
deal of effort has been put into place both methodologically and theoretically to enrich the existing
(and criticized) workhorse DSGE model in a way that could provide us with a deeper understanding
of the macroeconomic developments in the aftermath of the crisis itself, namely the Great Recession
(GR), and possibly help us prevent or at least anticipate similar events in the future.

From a methodological standpoint, the bulk of the new advances have either pursued departures
from the linear framework, or moved beyond the Gaussian assumption. On the theoretical side, instead,
and given the nature of GFC, new extensions of the financial sector have been mostly considered,
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involving firms’ investment decisions, housing investment and the role of bank capital in the financial
intermediation sector.1.

In this paper, we intend to contribute along both the dimensions above: methodologically, we
introduce an algorithm that allows us to estimate shocks contributions in the context of the piece-
wise linear solution of Guerrieri and Iacoviello (2015)in presence of occasionally binding constraints,
whereas theoretically, we show that the introduction of an occasionally binding lending constraint in
the Ricardian households’ optimization problem, as opposed to a borrowing constraint in the firms’
problem, may imply sufficient non-linearities that can encompass extreme events such as the GFC
while maintaining the Gaussian assumption.

The non-linearities stemming from the piecewise linear solution of a model with occasionally binding
constraints violate the additive property of shocks contributions of linearized models. We propose a
simulation method which can measure the total effect contribution of a given group of shocks of interest
by computing the residual of the contribution of the complement set of shocks and the initial condition.

We implement this algorithm on a closed economy estimated DSGE model of the Euro Area in
which we allow for occasionally binding constraints on the monetary policy rule, the Zero Lower Bound
(ZLB), and on the debt contracts between Ricardian households and monopolistically competitive
intermediate goods producing firms in the spirit of Jermann and Quadrini (2012) . Regarding the
specification of the financial friction, we analyze the implications of two alternative approaches: in the
first case, we assume that the limited enforceability of debt contracts it is internalized by the lenders in
the form of a lending constraint into the households optimization problem, in the second, and following
the standard practice in the literature, we assume that the default option on debt obligations translates
into an enforcement constraint of the borrower profit maximization problem.

SUMMARY OF INTUITION
The remainder of the paper is structured as follows.

2 Shocks contributions with occasionally binding constraints

In order to address the presence of occasionally binding constraints, we adopt the Occbin solution
method developed by Guerrieri and Iacoviello (2015) which provides a piecewise linear solution. The
first necessary step towards the estimation of shocks contributions onto observables in this context, is
the computation of estimated latent variables and of historical regimes (i.e. binding vs not binding
regimes). To this end we employ an algorithm similar to Anzoategui et al. (2016)as follows.

1. Guess an initial sequence of regimes for each historical period R(0)
t for t = 1, .., T

2. Given the sequence of regimes, compute the sequence of state space matrices Υ
(0)
t following the

piecewise linear solution method of Guerrieri and Iacoviello (2015).

3. For each iteration j = 1, .., n :
1A complete review is clearly beyond the scope of the paper, we point the interested reader to Wieland et al. (2016)and

Lindé et al. (2016), and the references therein.
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(a) feed the state space matrices Υ
(j−1)
t to a Kalman Filter2 / Fixed interval smoothing algo-

rithm to determine initial conditions, smoothed variables y
(j)
t and shocks ε(j)t .

(b) given initial conditions and shocks perform Occbin simulations that endogenously determine
a new sequence of regimes R(j)

t , from which a new sequence of states space matrices is derived
Υ

(j)
t .

4. The algorithm stops when R(j)
t = R

(j−1)
t for all t = 1, .., T .

Hence, this algorithm provides initial conditions, smoothed variables and shocks, consistent with the
occasionally binding constraint, i.e. it also estimates a sequence of regimes along the historical periods.
One caveat of this environment is that the contribution of individual smoothed shocks, is not the mere
additive superposition of each shock propagated by the sequence of state space matrices Υt estimated
with the smoother. The occurrence of a specific regime at time t, in fact, is a non-linear function of
the states in t − 1, yt−1 and of the whole set of shocks simultaneously affecting the economy, that is
Υt = f (ε1t, .., εkt,yt−1), t = 1, .., T .

This circumstance calls for the extension of the standard linear historical shock decompositions to
the case of occasionally binding regimes consistent with its piecewise linear solution.

It is straightforward to show that the sequence of occasionally binding regimes will change when
taking subsets of shocks or individual shocks alone. One way of measuring the effect of shocks in
this non-linear context is to consider simulations conditional to given shock patterns, i.e. performing
counterfactuals opportunely choosing combinations of shocks and initial conditions. In particular, we
can consider two definitions that generalize the concept of shock contributions to the non-linear case,
which degenerate to the standard shock decompositions for the linear case.

2.1 Main and total effects in shocks decompositions

Denote with εlt the shock or group of shocks of interest, while ε̃lt indicates the complementary set of
shocks in the model3. We define the Main effect contribution, the effect computed via Monte Carlo
counterfactuals drawing respectively ε̃ltand the initial conditions y0from their normal distributions, or
E (yt | εlt)which can be simplified as yt (εlt, ε̃lt = 0,y0 = 0).

We define the Total Effect contribution, the effect computed as the difference of the states variables
yt and the contributions of ε̃ltand of y0 obtained by integrating out εlt via Monte Carlo counter-
factuals drawing εltfrom its normal distribution, or yt − E (yt | ε̃lt,y0)which can be simplified as
yt − yt (ε̃lt,y0, εlt = 0).

It is important to stress that each of these simulations provides a different sequence of regimes,
which in general will be different from the historical one. The Total Effect contribution, triggers key
non-linear features associated to the interaction between shock realization and the occasionally binding
constraints. In what follows, we use the Total Effect contribution to measure the contribution of shocks
to observed variables under occasionally binding constraints.

2Kulish et al. (2014)also apply the piecewise linear solution in the Kalman filter to estimate DSGE models with
forward guidance.

3To gain intuition, it may be useful to think of a set of shocks of interest of relatively small size relatively to the total
number of shocks in the model.
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3 The model

We apply the above methodology to a closed economy version of Kollmann et al. (2016)in which we
introduce financial frictions. The model features, a private sector composed by two types of households,
Ricardians and hand to mouth, monopolistically competitive intermediate goods producing firms, and
perfectly competitive final good producers. Moreover, it allows for nominal price and wage rigidities
as well as real wage rigidities. Furthermore there is a public sector which finances public consumption,
public investment and transfers through distortionary taxes on firms profits, labor and consumption
and a residual component of lump sum taxes.Finally there is a monetary authority who follows a Taylor
rule and is subject to an occasionally binding ZLB.

The financial frictions involve the relationship between the intermediate good firms and the Ricar-
dian households4. We assume, as in Jermann and Quadrini (2012), that firms may raise funds either
by issuing equity or through a debt contract with limited enforceability. Moreover we assume that
savers will face an always binding constraint on total risky assets: the sum of loans and equity is in
every period a constant fraction (plus a financial shock) of the value of firms’ capital which serves as
collateral. Finally, we assume that there is an occasionally binding constraint tying the amount of
loans to the stock of capital, which in period of financial distress, reduces the possibility to substitute
between risky assets. Regarding the latter constraint, we consider two alternative formulations. In
the first case we will assume the constraint being internalized by the savers, in the second case by the
firms.

3.1 The households’ problem

The population is constituted by a continuum of households indexed by j ∈ [0, 1]and they may belong
to two types, a share ωs of Ricardians, indexed with superscript s, and a share 1−ωs of hand-to-mouth
households which we denote with superscript c. We formulate the two optimization problems and the
consequent optimality conditions in the two subsections below.

3.1.1 Ricardian households

Ricardian households have full access to financial markets, subject to the constraints described in
Section 3. Their preferences are defined over consumption (with external habits) Xs

jt, hours worked

4We will use the terms Ricardian households, savers, lenders interchangeably throughout the paper.
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(with external habits) Hs
jt and assets holding Ajt−1 as follows:

Us
(
Xs
jt, H

s
jt, Ajt−1

)
=

1

1− θ
(
Csjt − hCCst−1

)1−θ − zNt C1−θ
t

sN

1− θN
(
Ns
jt − hNNs

t−1
)1−θN

−
(
Cst − hCCst−1

)−θ
s

Bg
((
αB

g

0 + zB
g

t−1
)
Bgjt−1 +

1
2α

Bg

1
(Bgjt−1)

2

Pt−1Yt−1

)
(1 + τC)Pt

+

sS
((
αS0 + zSt−1

)
PSt−1Sjt−1 +

1
2α

S
1
(PSt−1Sjt−1)
Pt−1Yt−1

2)
(1 + τC)Pt

+

sL
((
αL0 + zLt−1

)
Ljt−1 +

1
2α

L
1

(
P It−1Kt−1

) ( Ljt−1

P It−1Kt−1
− L

P IK

)2)
(1 + τC)Pt

 (1)

where Csjtand Ns
jt indicate respectively consumption and hours worked, while Bgjt−1, Sjt−1, Ljt−1are

holdings of Government bonds paying a nominal interest igt , equity shares and firms’ loans with nominal
interest ilt. Moreover Pt is the GDP deflator, τC is a consumption tax (VAT),Yt is GDP, PSt is price
of equity shares Sjt−1, Ljt are the loans in nominal terms, P It is the nominal price of physical capital
Kt. The parameters α·0, α·1 measure the intercept and the slope of the risk premia associated to the
different assets, whereas the shocks z·tin the square bracket of (1) represent asset specific risk premium
shocks.

Their problem is to:

max
{Csjt,Bjt,Bgjt,Ljt,Sjt}

E0

∞∑
t=0

(
βzCt−1

)t
Us
(
Xs
jt, H

s
jt, Ajt−1

)
subject to the budget constraint:

(
1 + τC

)
PtC

s
jt +Bjt +Bgjt + Ljt + PSt Sjt =

(
1− τN

)
WtN

s
jt + (1 + it−1)Bjt−1 +

(
1 + igt−1

)
Bgjt−1

+
(
1 + ilt−1

)
Ljt−1 +

(
PSt + Ptdt

)
Sjt−1 + T sjt − taxsjt

and the lending constraints:

Ljt + PSt Sjt = mtotzFt
(
P It Kt−1

)
(2)

Ljt ≤ mlzFt
(
P It Kt−1

)
. (3)

where Bjtis a risk free bond which pays a nominal interest it, Wtis the nominal wage, T sjt are public
transfers and taxsjt lump sum taxes. The term zCt refers to a saving shock that makes the discount
factor time-varying whereas zFt is a financial shock hitting the lending constraints.
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The first order conditions with respect to Csjt,Bjt,B
g
jt,Ljt,Sjt, read respectively:

(
Csjt − hCCst−1

)−θ
= λst (4)

βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(1 + it)

]
= 1 (5)

βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + igt − sB

g

(
αB

g

0 + zB
g

t+1 + αB
g

1

Bgt
PtYt

))]
= 1 (6)

1 + µs,tott + µs,lt = βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + ilt − sL

(
αL0 + zLt + αL1

(
Lt

P It Kt
− L

P IK

)))]
(7)

1 + µs,tott = βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + ist+1 − sS

(
αS0 + zSt + αS1

PSt St
PtYt

))]
(8)

where µs,tott and µs,lt are the Lagrange multipliers associated to (2) and (3), respectively. Clearly
from the Kuhn Tucker theorem, µs,lt is going to be positive only when (3) binds.

3.1.2 Hand-to-mouth Households

The second type of households cannot be engaged in financial activities, therefore they consume all
their disposable income in each period. Their preferences are described by:

U c
(
Xc
jt, H

c
jt

)
=

1

1− θ
(
Ccjt − hCCct−1

)1−θ − zNt C1−θ
t

sN

1− θN
(
N c
jt − hNN c

t−1
)1−θN

and their consumption path follows their budget constraint:

(
1 + τC

)
PtC

c
jt =

(
1− τN

)
WtN

c
jt ++T cjt − taxcjt

3.2 The labor supply

We assume the presence of a trade union which sets the wage taking into account the preferences of
both types of households and their budget constraints. More formally the trade union solves:

maxE0

∞∑
t=0

(
βzCt−1

)t
[U (Xjt, Hjt, Ajt−1)]

withXjt ≡ ωsXs
jt+(1− ωs)Xc

jt, andHjt ≡ ωsHs
jt+(1− ωs)Hc

jt = ωs
(
Ns
jt − hNNs

t−1
)
+(1− ωs)

(
N c
jt − hNN c

t−1
)
=(

Njt − hNNt−1
)
where we imposed : Ns

jt = N c
jt = Njt, subject to the weighted sum of the budget

constraints, inclusive of an adjustment cost term involving an inflation indexation parameter sfw:
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(
1 + τC

)
Pt
(
ωCsjt + (1− ωs)Ccjt

)
+ωs

(
Bjt +Bgjt + Ljt + PSt Sjt

)
=
(
1− τN

)
WjtNjt

+ ωs
[
(1 + it−1)Bjt−1 +

(
1 + igt−1

)
Bgjt−1

+
(
1 + ilt−1

)
Ljt−1 +

(
PSt + Ptdt

)
Sjt−1

]
+ ωs

(
T sjt − taxsjt

)
+ (1− ωs)

(
T cjt − taxcjt

)
− γw

2
WtNt

(
Wjt

Wjt−1
− 1− (1− sfw) (πt−1-π)− πw

)2

and the the intermediate good producing firms’ demand of differentiated labor:

Njt =

(
Wjt

Wt

)−σn
Nt.

After having allowed for real wage rigidity as in Blanchard and Galí (2007) through the inclusion
of the parameter γwr , the wage setting equation describing the labor supply becomes:[

−UH
λt

σn

σn − 1

(
1 + τC

)]1−γwr
[(
1− τN

) Wt−1

Pt−1

]γwr
=
(
1− τN

) Wt

Pt

+
γw

σn − 1

(
Wt

Wt−1
− 1− (1− sfw) (πt−1-π)− πw

)
Wt

Wt−1

Wt

Pt

− γw

σn − 1
Et

[
βzCt

λt+1

λt

Pt
Pt+1

Nt+1

Nt(
Wt+1

Wt
− 1− (1− sfw) (πt-π)− πw

)
Wt+1

Wt

Wt+1

Pt

]

where we defined λt = ωs
(
Csjt − hCCst−1

)−θ
+(1− ωs)

(
Ccjt − hCCct−1

)−θand UH = −zNt C1−θ
t sN

(
Njt − hNNt−1

)−θN .
3.3 The firms’ problem

The production sector is fairly standard: there is a continuum of identical perfectly competitive firms
who assemble the final good using differentiated intermediate goods produced by a continuum of
i ∈ [0, 1] monopolistically competitive firms as inputs. The intermediate goods producing firms use
labor and capital (private and public) inputs and are subject to adjustment costs affecting labor and
investment demand, pricing decision, the utilization of capital and dividends payout. Moreover, under
the alternative, although more standard specification of financial frictions, they will face an occasionally
binding constraint on debt issuance.
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3.3.1 Final good firms

Perfectly competitive firms endowed with Dixit-Stiglitz production technology maximize their profits
choosing the intermediate inputs Yit taking their prices Pit as given. As a result of their optimization
problem we obtain the demand of intermediate goods and the definition of final good price index:

Yit =

(
Pit
Pt

)−σY
Yt

Pt =

(∫ 1

0

P 1−σY
it di

) 1

1−σY

.

3.3.2 Intermediate good firms

Monopolistically competitive firms maximize the stream of expected future profits (dividendsDit) eval-
uated through the stochastic discount factor of the savers, subject to the intermediate good demand,
the law of motion of capital, the Cobb-Douglas production function and a sequence of adjustment

costs. Formally given the stochastic discount factor, defined asMis ≡
(

1+rst∏s
r=t(1+r

s
r)

)
=

(
1+ist
1+πt∏s

r=t

(
1+isr
1+πr

))
their problem is:

max
{Dit,Pit,Nit,Iit,Kit,CUit,Lit}

E0

∞∑
t=0

MitDit

subject to:

Dit =
(
1− τK

)(Pit
Pt
Yit −

Wt

Pt
Nit

)
+ τKδ

P It
Pt
Kit−1 −

P It
Pt
Iit +

Lit
Pt
− Lit−1

Pt

(
1 + ilt−1

)
− adjit

Yit =

(
Pit
Pt

)−σY
Yt

Kit = Iit + (1− δ)Kit−1

Yit =
(
AYt Nit

)α (
CUitK

tot
it−1

)1−α
where adjit = adjPit + adjNit + adjCUit + adjIit + adjDit and5,

adjPit =
σY γp

2
Yt

(
Pit
Pit−1

− 1− π
)2

adjNit =
γn

2
Yt

(
Nit
Nit−1

− exp (gpop)

)2

adjCUit =
P It
Pt
Ktot
it−1

(
γu0 (CUit − 1) +

γu1
2

(CUit − 1)
2

)

adjIit =
γi0
2

P It
Pt
Kt−1

(
Iit
Kt−1

− δt
)2

+
γi1
2

P It
Pt

(
Iit − Iit−1 exp

(
gY + gP

I
))2

Kt−1

adjDit =
γd

2
(Dit −D)

2
.

5The pricing adjustment cost is multiplied by σY in order to improve the identification of γp.
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The optimality equilibrium conditions resulting from the problem are:

λft =
1

(1 + γd (Dt −D))
(9)

µYt σ
Y = λfit

((
1− τK

) (
σY − 1

)
+ σY γp

Pt
Pt−1

(
Pt
Pt−1

− 1− π
))

− σY γpEt
[
Mt+1

Mt
λft+1

Yt+1

Yt

(
Pt+1

Pt

)(
Pt+1

Pt
− 1− π

)]
(10)

α
µYt

λfit

Yt
Nt
−γn Yt

Nt−1

(
Nt
Nt−1

− exp (gpop)

)
+γnEt

[
Mt+1

Mt

λft+1

λft

Yt+1

Nt

Nt+1

Nt

(
Nt+1

Nt
− exp (gpop)

)]
=
(
1− τK

) Wt

Pt

(11)

Qt = λfit

1 + γi0

(
It

Kt−1
− δt

)
+ γi1

(
It − It−1 exp

(
gY + gP

I
))

Kt−1


− Et

Mt+1

Mt
λft+1

P It+1

P It

Pt
Pt+1

γi1

(
It+1 − It exp

(
gY + gP

I
))

Kt
exp

(
gY + gP

I
) (12)

Qt =Et

[
Mit+1

Mit

P It+1

Pt+1

Pt
P It

(
λfit+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

)
+(1− δ)Qt+1 + (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it

)]
(13)

µYt (1− α) Yt
CUt

= λfit
P It
Pt
Ktot
t−1 (γ

u
0 + γu1 (CUt − 1)) (14)

Et

[
Mt+1

Mt

λft+1

λft

Pt
Pt+1

(
1 + ilt

)]
= 1 (15)

where (9) reflects the distortion introduced by the adjustment cost in the financial structure of the
firm, (10) is the standard pricing equation, (11) is the labor demand, (12) is the investment demand,
(13) is the Tobin’s Q equation, (14) is the first order condition with respect to capacity utilization,
and (15) is the demand for loans.

Under the alternative specification of the model, in which the occasionally binding constraint enters
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the intermediate firms’ problem equations (13) and (15) become:

Qt =Et

[
Mit+1

Mit

λfit+1

λfit

P It+1

Pt+1

Pt
P It

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

+(1− δ)Qt+1 + (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it

+ µlit+1Pt+1m
lzFt+1

)]
(16)

Et

[
Mt+1

Mt

λft+1

λft

Pt
Pt+1

1

1− µlitPt
(
1 + ilt

)]
= 1 (17)

4 Results

In this section we implement the algorithms presented in Section 2to the model of Section 3under the
two alternative specifications, in which the occasionally binding constraint on loans enters either in
the households’ problem or in the firms’ one.

The analysis is carried out starting from parameter estimates, obtained with Bayesian methods,
under the assumption that the lending constraint is not binding. The observable variables are: pop-
ulation, employment, GDP deflator, real GDP, hours worked, participation rate, nominal policy rate,
consumption, investment, public investment, transfers, government debt, interest payments on public
debt, wages, physical capital. The sample goes from 1991Q1 to 2016Q1.

In Tables 1and 2we show the regimes sequence for the ZLB constraint and for the financial constraint
under the two alternative models. The key to read the table is the following: in the” regime sequence”
columns 0 means non binding, 1 binding. So a sequence 1 0 means that the constraint is binding at
time t and is expected to be non binding in the future. A sequence 0 1 0 means that the constraint is
not binding at time t but is expected to be binding in the future and then be not binding again later
on. The columns “starting period of regime” indicate the actual periods in which regimes switch. For
instance a sequence 1 3, means that the constraint is binding at time t and that will be binding for 3
periods. A sequence 1 4 6 means that the constraint is not going to be binding until 4 periods from
now and that it is expected to be binding for 2 periods.

Comparing the two Tables we can see that the regimes sequences are very similar, but on average
the financial constraint seems to be expected to bind for longer periods under the lending constraint
assumption.

In Figures 1 and 2 we plot the smoothed series for the the loan to value, Lt
P It Kt

1
zFt

, for the latent
AR(1) process describing the financial conditions, zFt , for the Lagrangian multiplier on the always
binding constraint on total risky assets µs,tott , and for the multipliers on the occasionally binding
constraint on loans, µs,lt and µlt depending on the model version analyzed. Again we notice that both
models show similar departures from the linear solution (in blue). The most significant difference
between the two models involves the financial variable zFt which during the GR and under the model
with lending constraints it’s closer to its mean, implying that the non-linearity of the model goes a
longer way in describing the behavior of the observables during the financial crisis.

In Figures 3 and 4 for the model with lending constraints and in Figures 5 and 6 for the alternative
specification, we plot the smoothed shocks of the model. Again, by looking at the smoothed series
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of the financial shocks εFt we reach the same conclusion in terms of the underlying non-linearities
under the two settings. The model with lending constraints, by implying a longer expected duration
of binding constraints, displays a higher degree of non-linearity which translates in innovations closer
to the Gaussian assumption. It is also worth noticing, for both models, the relevance of the ZLB in
the last periods of the sample.

In Figures 7 and 8 we show the shock decompositions of the growth rate of GDP under the linear
model (dark blue), and under the piecewise linear solution using the “Main effect” (light blue) and the
“Total effect” (red). In both model versions, and under the “Total effect” decomposition we notice an
amplification of the role played by fiscal shocks following the GFC. Moreover, price mark-up shocks
play a bigger role than in the linear model, but less so in the model with borrowing constraints. This
may be explained by the fact that the Tobin’s Q equation inherits the multiplier of the borrowing
constraint since a “purchase” of one unit of capital today makes coeteris paribus the borrowing limit
looser tomorrow. Again by looking at the role played by financial innovations one can notice that their
impact on GDP growth is somewhat smaller under the model with lending constraints.

Finally, similar to Lindé et al. (2016) in Figures and we plot the real time forecast densities per-
formed in the last quarter of 2008, and computed with Quasi-Montecarlo methods. The dashed black
line is the data, the blue line is the mean forecast under linearity with gray area indicating 95%
forecast interval, the red line is the mean forecast under occasionally binding constraints with pink
area indicating also 95% forecast intervals. Coherent with the previous results we notice that the
extreme drop in GDP growth occurred in the first quarter of 2009 is, contrary to the linear model,
and under both specifications of the piecewise linear model, within the 95% forecast interval. More-
over, the same holds true for investment, clearly indicating that financial frictions with occasionally
binding constraints, may be a promising way to account for extreme events maintaining the Gaussian
assumption.

5 Conclusions

We have introduced an algorithm which allows to measure the contributions of smoothed shocks onto
observable variables in the context of models with occasionally binding constraints solved with piece-
wise solution methods. In this regard we introduced two ways to account for non-linearities, namely
the “Main effect contribution” and the “Total effect contribution”. We implemented this algorithm on
a closed economy model estimated for the Euro area, which allows for two sources of non-linearity.
First we allow for the ZLB, second we introduce a constraint on loan contracts between consumption
smoothing households and firms. We proposed two alternative formulations, allowing for the enforce-
ability constraint to be either internalized by the lender or by the borrower. We show that both
versions, contrary to the linear model, allow for predictive densities which include the huge drop of
GDP occurred in the first quarter of 2009, indicating that it may not be necessary to depart from
Gaussian assumption to be able to predict extreme events. We also show that the model with lend-
ing constraint may display a higher degree of non-linearity, suggesting that further research in the
designing of financial contracts in macroeconomic models may be pursued.
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6 Tables

time regime
sequence

1

starting
period of
regime 1

regime
sequence

2

starting
period of
regime 2

2008 0 1 0 1
2008.25 0 1 0 1
2008.5 0 1 0 1
2008.75 0 1 0 1
2009 0 1 0 1 4 7 1 0 1 6

2009.25 0 1 0 1 3 6 1 0 1 6
2009.5 0 1 0 1 2 5 1 0 1 5
2009.75 1 0 1 4 1 0 1 6
2010 1 0 1 5 1 0 1 5

2010.25 1 0 1 2 1 0 1 4
2010.5 1 0 1 2 1 0 1 5
2010.75 0 1 1 0 1 5
2011 0 1 1 0 1 4

2011.25 0 1 1 0 1 5
2011.5 0 1 1 0 1 5
2011.75 0 1 1 0 1 6
2012 0 1 1 0 1 5

2012.25 0 1 0 1 2 4 1 0 1 6
2012.5 1 0 1 4 1 0 1 6
2012.75 1 0 1 4 1 0 1 6
2013 1 0 1 4 1 0 1 6

2013.25 1 0 1 4 1 0 1 6
2013.5 1 0 1 5 1 0 1 6
2013.75 1 0 1 4 1 0 1 6
2014 1 0 1 4 1 0 1 5

2014.25 1 0 1 5 1 0 1 6
2014.5 1 0 1 5 1 0 1 6
2014.75 1 0 1 4 1 0 1 6
2015 1 0 1 4 1 0 1 5

2015.25 1 0 1 4 1 0 1 6
2015.5 1 0 1 4 1 0 1 5
2015.75 1 0 1 4 1 0 1 5
2016 1 0 1 3 1 0 1 5

Table 1: Regimes sequence under lending occasionally binding constraints
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time regime
sequence

1

starting
period of
regime 1

regime
sequence

2

starting
period of
regime 2

2008 0 1 0 1
2008.25 0 1 0 1
2008.5 0 1 0 1
2008.75 0 1 0 1
2009 0 1 0 1 5 7 1 0 1 6

2009.25 0 1 0 1 4 5 1 0 1 5
2009.5 0 1 0 1 3 4 1 0 1 4
2009.75 1 0 1 0 1 2 3 4 1 0 1 3
2010 1 0 1 5 1 0 1 2

2010.25 1 0 1 2 0 1
2010.5 1 0 1 2 1 0 1 3
2010.75 0 1 1 0 1 2
2011 0 1 0 1

2011.25 0 1 1 0 1 2
2011.5 0 1 1 0 1 3
2011.75 0 1 1 0 1 2
2012 0 1 1 0 1 4

2012.25 0 1 0 1 3 4 1 0 1 3
2012.5 1 0 1 4 1 0 1 2
2012.75 1 0 1 4 1 0 1 4
2013 1 0 1 4 1 0 1 3

2013.25 1 0 1 4 1 0 1 2
2013.5 1 0 1 5 1 0 1 3
2013.75 1 0 1 4 1 0 1 2
2014 1 0 1 4 1 0 1 3

2014.25 1 0 1 5 1 0 1 2
2014.5 1 0 1 4 1 0 1 4
2014.75 1 0 1 4 1 0 1 3
2015 1 0 1 4 1 0 1 2

2015.25 1 0 1 3 1 0 1 4
2015.5 1 0 1 4 1 0 1 3
2015.75 1 0 1 4 1 0 1 2
2016 1 0 1 3 1 0 1 3

Table 2: Regimes sequence under borrowing occasionally binding constraints
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7 Figures
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Figure 1: Smoothed unobserved under lending occasionally binding constraints
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Figure 2: Smoothed unobserved under borrowing occasionally binding constraints
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Figure 3: Smoothed shocks under lending occasionally binding constraints
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Figure 4: Smoothed shocks under lending occasionally binding constraints
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Figure 5: Smoothed shocks under borrowing occasionally binding constraints
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Figure 6: Smoothed shocks under borrowing occasionally binding constraints
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Figure 7: Shock decomposition of the growth rate of GDP under lending occasionally binding constraint
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Figure 8: Shock decomposition of the growth rate of GDP under borrowing occasionally binding
constraint

Figure 9: Real time forecast at 2018Q4 with 95% predictive density interval under lending occasionally
binding constraints
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Figure 10: Real time forecast at 2018Q4 with 95% predictive density interval under borrowing occa-
sionally binding constraints
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A Model derivations

A.1 Ricardian Households

Households who have access to financial markets solve the following infinite horizon utility maximiza-
tion problem:

max
{Csjt,Bjt,Bgjt,Ljt,Sjt}

E0

∞∑
t=0

(
βzCt−1

)t
Us
(
Xs
jt, H

s
jt, Ajt−1

)
with Xs

jt ≡ Csjt−hCCst−1, Hs
jt ≡ Ns

jt−hNNs
t−1, where Ajt−1 ≡

[
Bgjt−1, Sjt−1, Ljt−1

]
is a vector of

all assets held entering period t, and z̃Ct−1 ≡ exp
(
zCt−1

)
, subject to the budget constraint,

(
1 + τC

)
PtC

s
jt +Bjt +Bgjt + Ljt + PSt Sjt =

(
1− τN

)
WtN

s
jt + (1 + it−1)Bjt−1 +

(
1 + igt−1

)
Bgjt−1

+
(
1 + ilt−1

)
Ljt−1 +

(
PSt + Ptdt

)
Sjt−1 + T sjt − taxsjt

to the constraint on total firms lending,

Ljt + PSt Sjt = mtot
t

(
P It Kt−1

)
and to the lending constraint,

Ljt ≤ ml
t

(
P It Kt−1

)
.

The functional form adopted for preferences is:

Us
(
Xs
jt, H

s
jt, Ajt−1

)
=

1

1− θ
(
Csjt − hCCst−1

)1−θ − zNt C1−θ
t

sN

1− θN
(
Ns
jt − hNNs

t−1
)1−θN

−
(
Cst − hCCst−1

)−θ
s

Bg
((
αB

g

0 + zB
g

t−1
)
Bgjt−1 +

1
2α

Bg

1
(Bgjt−1)

2

Pt−1Yt−1

)
(1 + τC)Pt

+

sS
((
αS0 + zSt−1

)
PSt−1Sjt−1 +

1
2α

S
1
(PSt−1Sjt−1)
Pt−1Yt−1

2)
(1 + τC)Pt

+

sL
((
αL0 + zLt−1

)
Ljt−1 +

1
2α

L
1

(
P It−1Kt−1

) ( Ljt−1

P It−1Kt−1
− L

P IK

)2)
(1 + τC)Pt


The first order conditions with respect to Csjt,Bjt,B

g
jt,Ljt,Sjt, read respectively:

(
Csjt − hCCst−1

)−θ
= λ̃st

(
1 + τC

)
Pt ≡ λst (18)

λ̃st = βEt

(
z̃Ct λ̃

s
t+1 (1 + it)

)
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βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(1 + it)

]
= 1 (19)

−λ̃st + βEt

[
−
z̃Ct
(
Cst+1 − hCCst

)−θ
(1 + τC)Pt+1

sB
g

(
αB

g

0 + zB
g

t + αB
g

1

Bgjt
PtYt

)
+ z̃Ct λ̃

s
t+1 (1 + igt )

]
= 0

−λ̃st + βEt

[
−z̃Ct λ̃st+1s

Bg

(
αB

g

0 + zB
g

t + αB
g

1

Bgjt
PtYt

)
+ z̃Ct λ̃

s
t+1 (1 + igt )

]
= 0

λst
(1 + τC)Pt

= βEt

[
−

λst+1z̃
C
t

(1 + τC)Pt+1
sB

g

(
αB

g

0 + zB
g

t+1 + αB
g

1

Bgjt
PtYt

)
+

λst+1z̃
C
t

(1 + τC)Pt+1
(1 + igt )

]

βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + igt − sB

g

(
αB

g

0 + zB
g

t+1 + αB
g

1

Bgjt
PtYt

))]
= 1 (20)

−λ̃st−µ̃
s,tot
t −µ̃s,lt +βEt

[
−
z̃Ct
(
Cst+1 − hCCst

)−θ
(1 + τC)Pt+1

sL
(
αL0 + zLt + αL1

(
Ljt
P It Kt

− L

P IK

))
+ z̃Ct λ̃

s
t+1

(
1 + ilt

)]
= 0

−λ̃st − µ̃
s,tot
t − µ̃s,lt + βEt

[
−z̃Ct λ̃st+1s

L

(
αL0 + zLt + αL1

(
Ljt
P It Kt

− L

P IK

))
+ z̃Ct λ̃

s
t+1

(
1 + ilt

)]
= 0

−λ̃st − µ̃
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t − µ̃s,lt + βEt

[
z̃Ct λ̃

s
t+1

(
1 + ilt − sL

(
αL0 + zLt + αL1

(
Ljt
P It Kt

− L

P IK

)))]
= 0

1 +
µ̃s,tott + µ̃s,lt

λ̃st
= βEt

[
z̃Ct
λ̃st+1

λ̃st

(
1 + ilt − sL

(
αL0 + zLt + αL1

(
Ljt
P It Kt

− L

P IK
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1 +
µ̃s,tott + µ̃s,lt

λst

(
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)
Pt = βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + ilt − sL

(
αL0 + zLt + αL1

(
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P It Kt

− L

P IK
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1 + µs,tott + µs,lt = βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + ilt − sL

(
αL0 + zLt + αL1

(
Ljt
P It Kt

− L

P IK
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(21)

where µs,tott ≡ µ̃s,tott
(1+τC)Pt

λst
and µs,lt ≡ µ̃

s,l
t

(1+τC)Pt
λst

−λ̃stPSt −µ̃
s,tot
t PSt +βEt

[
−
z̃Ct
(
Cst+1 − hCCst

)−θ
(1 + τC)Pt+1

sS

((
αS0 + zSt

)
PSt + αS1

(
PSt
)2
Sjt

PtYt

)
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s
t+1

(
PSt+1 + Pt+1dt+1

)]
= 0
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−λ̃stPSt −µ̃
s,tot
t PSt +βEt

[
−z̃Ct λ̃st+1s

S

((
αS0 + zSt

)
PSt + αS1

(
PSt
)2
Sjt

PtYt

)
+ z̃Ct λ̃

s
t+1

(
PSt+1 + Pt+1dt+1

)]
= 0

1 +
µ̃s,tott PSt

λ̃stP
S
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= βEt
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λ̃stP
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(
PSt+1 + Pt+1dt+1 − sS

((
αS0 + zSt

)
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(
PSt
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1 +
µ̃s,tott
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= βEt

[
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(
PSt+1 + Pt+1dt+1

PSt
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(
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PSt Sjt
PtYt
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1 +
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(
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Pt = βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
PSt+1 + Pt+1dt+1

PSt
− sS

(
αS0 + zSt + αS1

PSt Sjt
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1 + µs,tott = βEt

[
z̃Ct
λst+1

λst

Pt
Pt+1

(
1 + ist+1 − sS

(
αS0 + zSt + αS1

PSt St
PtYt
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(22)

where 1 + ist+1 ≡
PSt+1+Pt+1dt+1

PSt
and µs,tott ≡ µ̃s,tott

(1+τC)Pt
λst

.
Using the definition above we can define the real return from stocks as:

1 + rst+1 ≡
1 + ist+1

1 + πt+1
=

Pt
Pt+1

PSt+1 + Pt+1dt+1

PSt

or, rearranging:

PSt =
Pt
Pt+1

PSt+1 + Pt+1dt+1

1 + rst+1

iterating forward for two periods we obtain:

PSt+1 =
Pt+1

Pt+2

PSt+2 + Pt+2dt+2

1 + rst+2

PSt+2 =
Pt+2

Pt+3

PSt+3 + Pt+3dt+3

1 + rst+3

substituting back:

PSt =
Pt
Pt+1

Pt+1

Pt+2

Pt+2
Pt+3

PSt+3+Pt+3dt+3

1+rs
t+3

+Pt+2dt+2

1+rst+2
+ Pt+1dt+1

1 + rst+1

rearranging:

PSt =
Pt
Pt+1

[
Pt+1

Pt+2

(
Pt+2

Pt+3

PSt+3 + Pt+3dt+3(
1 + rst+2

) (
1 + rst+3

) (
1 + rst+1

) + Pt+2dt+2(
1 + rst+1

) (
1 + rst+2

))+
Pt+1dt+1(
1 + rst+1

)]
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PSt =
Pt
Pt+1

Pt+1dt+1(
1 + rst+1

) + Pt
Pt+1

Pt+1

Pt+2

Pt+2dt+2(
1 + rst+1

) (
1 + rst+2

)
+

Pt
Pt+1

Pt+1

Pt+2

Pt+2

Pt+3

Pt+3dt+3(
1 + rst+2

) (
1 + rst+3

) (
1 + rst+1

)
+

Pt
Pt+1

Pt+1

Pt+2

Pt+2

Pt+3

PSt+3(
1 + rst+2

) (
1 + rst+3

) (
1 + rst+1

)
or more generally:

PSt
Pt

=

∞∑
s=t+1

(
ds∏s

r=t+1 (1 + rsr)

)
+ lim
n→∞

PSt+n
Pt+n

1∏n
r=t+1 (1 + rsr)

where the limit term tends to zero. Hence we can define the stochastic discount factor as :

Mis ≡
(

1 + rst∏s
r=t (1 + rsr)

)
=

 1+ist
1+πt∏s

r=t

(
1+isr
1+πr

)
 . (23)

A.2 Non Ricardian Households

Households who cannot transfer resources intertemporally have the following preferences:

U c
(
Xc
jt, H

c
jt

)
=

1

1− θ
(
Ccjt − hCCct−1

)1−θ − zNt C1−θ
t

sN

1− θN
(
N c
jt − hNN c

t−1
)1−θN

with Xc
jt ≡ Ccjt − hCCct−1, Hc

jt ≡ N c
jt − hNN c

t−1,and consume their disposable income in each
period:

(
1 + τC

)
PtC

c
jt =

(
1− τN

)
WtN

c
jt ++T cjt − taxcjt

Still it is possible to define the shadow price of an extra unit of income as:

(
Ccjt − hCCct−1

)−θ
= λ̃ct

(
1 + τC

)
Pt ≡ λct

A.3 Labor Supply

We assume the presence of a labor union which sets the wage rate by maximizing:

maxE0

∞∑
t=0

(
βzCt−1

)t
[U (Xjt, Hjt, Ajt−1)]

with Xjt ≡ ωsXs
jt + (1− ωs)Xc

jt, and Hjt ≡ ωsHs
jt + (1− ωs)Hc

jt = ωs
(
Ns
jt − hNNs

t−1
)
+

(1− ωs)
(
N c
jt − hNN c

t−1
)
=
(
Njt − hNNt−1

)
where we imposed : Ns

jt = N c
jt = Njt, subject to the

weighted sum of the budget constraints
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(
1 + τC

)
Pt
(
ωCsjt + (1− ωs)Ccjt

)
+ ωs

(
Bjt +Bgjt + Ljt + PSt Sjt

)
=
(
1− τN

)
WjtNjt

+ ωs
[
(1 + it−1)Bjt−1 +

(
1 + igt−1

)
Bgjt−1

+
(
1 + ilt−1

)
Ljt−1 +

(
PSt + Ptdt

)
Sjt−1

]
+ ωs

(
T sjt − taxsjt

)
+ (1− ωs)

(
T cjt − taxcjt

)
− γw

2
WtNt

(
Wjt

Wjt−1
− 1− (1− sfw) (πt−1-π)− πw

)2

and the the demand of differentiated labor:

Njt =

(
Wjt

Wt

)−σn
Nt

The first order condition with respect to Wjt reads:

UH
∂Hjt

∂Njt

∂Njt
∂Wjt

+ λ̃t
(
1− τN

)(
Njt +

∂Njt
∂Wjt

Wjt

)
− λ̃tγwWtNt

(
Wjt

Wjt−1
− 1− (1− sfw) (πt−1-π)− πw

)
1

Wjt−1

+Et

[
λ̃t+1

(
βzCt

)
γwWt+1Nt+1

(
Wjt+1

Wjt
− 1− (1− sfw) (πt-π)− πw

)
Wjt+1

W 2
jt

]
= 0

UH

(
−σn

(
Wjt

Wt

)−σn−1
Nt
Wt

)
+ λ̃t

(
1− τN

)((Wjt

Wt

)−σn
Nt +

(
−σn

(
Wjt

Wt

)−σn−1
Nt
Wt

Wjt

))

−λ̃tγwWtNt

(
Wjt

Wjt−1
− 1− (1− sfw) (πt−1-π)− πw

)
1

Wjt−1

+Et

[
λ̃t+1

(
βzCt

)
γwWt+1Nt+1

(
Wjt+1

Wjt
− 1− (1− sfw) (πt-π)− πw

)
Wjt+1

W 2
jt

]
= 0

−UH

(
σn
(
Wjt

Wt

)−σn−1
WjtNt
Wt

)
+ λ̃t

(
1− τN

)
(1− σn)

(
Wjt

Wt

)−σn
WjtNt

−λ̃tγwWtNt

(
Wjt

Wjt−1
− 1− (1− sfw) (πt−1-π)− πw

)
Wjt

Wjt−1

+Et

[
λ̃t+1

(
βzCt

)
γwWt+1Nt+1

(
Wjt+1

Wjt
− 1− (1− sfw) (πt-π)− πw

)
Wjt+1

Wjt

]
= 0
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−UH

(
σn
(
Wjt

Wt

)−σn
Nt

)
+ λ̃t

(
1− τN

)
(1− σn)

(
Wjt

Wt

)−σn
WjtNt

−λ̃tγwWtNt

(
Wjt

Wjt−1
− 1− (1− sfw) (πt−1-π)− πw

)
Wjt

Wjt−1

+Et

[
λ̃t+1

(
βzCt

)
γwWt+1Nt+1

(
Wjt+1

Wjt
− 1− (1− sfw) (πt-π)− πw

)
Wjt+1

Wjt

]
= 0

imposing ex post symmetry, and dividing by λ̃and by Nt :

−UH
λ̃t

(σn) +
(
1− τN

)
(1− σn)Wt − γw

(
Wt

Wt−1
− 1− (1− sfw) (πt−1-π)− πw

)
W 2
t

Wt−1

+Et

[
λ̃t+1

λ̃t

(
βzCt

)
γw

Nt+1

Nt

(
Wt+1

Wt
− 1− (1− sfw) (πt-π)− πw

)
W 2
t+1

Wt

]
= 0

The intuition is that the nominal wage minus the costs of changing the wage today plus the expected
benefit that a change today has on the (lower) costs to be faced tomorrow is equal to a markup on the
marginal rate of substitution between consumption and leisure. Note that in the absence of nominal
rigidities (i.e. γw = 0) we would have:

UH

λ̃t

σn

1− σn
=
(
1− τN

)
Wt

Also note that we assume:

UX =
[
ωs
(
Csjt − hCCst−1

)−θ
+ (1− ωs)

(
Ccjt − hCCct−1

)−θ]
= λ̃t

(
1 + τC

)
Pt = λt

so that we can rewrite:

−UH
λt

(σn)
(
1 + τC

)
+
(
1− τN

)
(1− σn) Wt

Pt
− γw

(
Wt

Wt−1
− 1− (1− sfw) (πt−1-π)− πw

)
Wt

Wt−1

Wt

Pt

+Et

[
λt+1

λt

Pt
Pt+1

(
βzCt

)
γw

Nt+1

Nt

(
Wt+1

Wt
− 1− (1− sfw) (πt-π)− πw

)
Wt+1

Wt

Wt+1

Pt

]
= 0

−UH
λt

σn

σn − 1

(
1 + τC

)
=
(
1− τN

) Wt

Pt
+

γw

σn − 1

(
Wt

Wt−1
− 1− (1− sfw) (πt−1-π)− πw

)
Wt

Wt−1

Wt

Pt

− γw

σn − 1
Et

[
βzCt

λt+1

λt

Pt
Pt+1

Nt+1

Nt

(
Wt+1

Wt
− 1− (1− sfw) (πt-π)− πw

)
Wt+1

Wt

Wt+1

Pt

]
Moreover we assume

UH = −zNt
[
ωsC1−θ

t sN
(
Ns
jt − hNNs

t−1
)−θN

+ (1− ωs)C1−θ
t sN

(
N c
jt − hNN c

t−1
)−θN]

28



which given the assumption above becomes:

UH = −zNt C1−θ
t sN

(
Njt − hNNt−1

)−θN
In the code we have UH = zNt

[
ωsC1−θ

t sN
(
Ns
jt − hNNs

t−1
)−θN

+ (1− ωs)C1−θ
t sN

(
N c
jt − hNN c

t−1
)−θN ]

Finally we assume real wage rigidity, whose extent is measured by γwr so that:[
−UH
λt

σn

σn − 1

(
1 + τC

)]1−γwr [(
1− τN

) Wt−1

Pt−1

]γwr
=
(
1− τN

) Wt

Pt

+
γw

σn − 1

(
Wt

Wt−1
− 1− (1− sfw) (πt−1-π)− πw

)
Wt

Wt−1

Wt

Pt

− γw

σn − 1
Et

[
βzCt

λt+1

λt

Pt
Pt+1

Nt+1

Nt(
Wt+1

Wt
− 1− (1− sfw) (πt-π)− πw

)
Wt+1

Wt

Wt+1

Pt

]

A.4 Intermediate goods producing firms’ problem

Firms maximize the stream of expected future profits subject to the intermediate good demand, the
law of motion of capital the production function and adjustment costs. Formally given the stochastic
discount factor,Mit

max
{Pit,Nit,Iit,Kit,CUit,Lit}

E0

∞∑
t=0

MitDit

subject to:

Dit =
(
1− τK

)(Pit
Pt
Yit −

Wt

Pt
Nit

)
+ τKδ

P It
Pt
Kit−1 −

P It
Pt
Iit +

Lit
Pt
− Lit−1

Pt

(
1 + ilt−1

)
− adjit

Yit =

(
Pit
Pt

)−σY
Yt

Kit = Iit + (1− δ)Kit−1

Yit =
(
AYt Nit

)α (
CUitK

tot
it−1

)1−α
where adjit = adjPit + adjNit + adjCUit + adjIit + adjDit and6,

6The pricing adjustment cost is multiplied by σY in order to improve the identification of γp.
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adjPit =
σY γp

2
Yt

(
Pit
Pit−1

− 1− π
)2

adjNit =
γn

2
Yt

(
Nit
Nit−1

− exp (gpop)

)2

adjCUit =
P It
Pt
Ktot
it−1

(
γu0 (CUit − 1) +

γu1
2

(CUit − 1)
2

)

adjIit =
γi0
2

P It
Pt
Kt−1

(
Iit
Kt−1

− δt
)2

+
γi1
2

P It
Pt

(
Iit − Iit−1 exp

(
gY + gP

I
))2

Kt−1

adjDit =
γd

2
(Dit −D)

2

The first order conditions with respect to to Pityields:

Mit

[
λfit

((
1− τK

) (
1− σY

)(Pit
Pt

)−σY
Yt
Pt
− σY γp Yt

Pit−1

(
Pit
Pit−1

− 1− π
))
− µYt

(
−σY

(
Pit
Pt

)−σY −1
Yt
Pt

)]

−Et
[
Mit+1λ

f
it+1σ

Y γp
(
−Pit+1Yt+1

P 2
it

)(
Pit+1

Pit
− 1− π

)]
= 0

λfit

((
1− τK

) (
1− σY

)(Pit
Pt

)−σY
− σY γp Yt

Pit−1

Pt
Yt

(
Pit
Pit−1

− 1− π
))
− µYt

(
−σY

(
Pit
Pt

)−σY −1)

−Et
[
Mit+1

Mit

Pt
Yt
λfit+1σ

Y γp
(
−Pit+1Yt+1

P 2
it

)(
Pit+1

Pit
− 1− π

)]
= 0

[
−µYt

(
−σY

(
Pit
Pt

)−σY −1)]
= λfit

((
1− τK

) (
σY − 1

)(Pit
Pt

)−σY
+ σY γp

Yt
Pit−1

Pt
Yt

(
Pit
Pit−1

− 1− π
))

+ Et

[
Mit+1

Mit
λfit+1σ

Y γp
Pt
Yt

(
−Pit+1Yt+1

P 2
it

)(
Pit+1

Pit
− 1− π

)]

µYt σ
Y = λfit

((
1− τK

) (
σY − 1

)
+ σY γp

Pt
Pt−1

(
Pt
Pt−1

− 1− π
))

− σY γpEt
[
Mt+1

Mt
λft+1

Yt+1

Yt

(
Pt+1

Pt

)(
Pt+1

Pt
− 1− π

)]
(24)

The first order conditions with respect to to Nityields:

Mit

[
λfit

(
−
(
1− τK

) Wt

Pt
− γn Yt

Nit−1

(
Nit
Nit−1

− exp (gpop)

))
+ αµYt

Yit
Nit

]
−Et

[
Mit+1λ

f
it+1γ

n

(
−Nit+1Yt+1

N2
it

)(
Nit+1

Nit
− exp (gpop)

)]
= 0
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α
µYt

λfit

Yt
Nt
−γn Yt

Nt−1

(
Nt
Nt−1

− exp (gpop)

)
+γnEt

[
Mt+1

Mt

λft+1

λft

Yt+1

Nt

Nt+1

Nt

(
Nt+1

Nt
− exp (gpop)

)]
=
(
1− τK

) Wt

Pt

(25)
The first order condition with respect to Iit reads:

Mit

λfit
−P It

Pt
− γi0

P It
Pt

Kt−1

Kt−1

(
Iit
Kt−1

− δt
)
− γi1

P It
Pt

(
Iit − Iit−1 exp

(
gY + gP

I
))

Kt−1

+ µkit


−Et

−Mit+1λ
f
it+1

P It+1

Pt+1
γi1

(
Iit+1 − Iit exp

(
gY + gP

I
))

Kt
exp

(
gY + gP

I
) = 0

µkit = λfit

P It
Pt

+ γi0
P It
Pt

Kt−1

Kt−1

(
Iit
Kt−1

− δt
)
+ γi1

P It
Pt

(
Iit − Iit−1 exp

(
gY + gP

I
))

Kt−1


− Et

Mit+1

Mit
λfit+1

P It+1

Pt+1
γi1

(
Iit+1 − Iit exp

(
gY + gP

I
))

Kt
exp

(
gY + gP

I
)

Qt = λfit

1 + γi0

(
It

Kt−1
− δt

)
+ γi1

(
It − It−1 exp

(
gY + gP

I
))

Kt−1


− Et

Mt+1

Mt
λft+1

P It+1

P It

Pt
Pt+1

γi1

(
It+1 − It exp

(
gY + gP

I
))

Kt
exp

(
gY + gP

I
) (26)

where Qt ≡ µkit
PIt/Pt

is Tobin’s marginal Q.
The first order condition with respect to Kitsolves:

Mit

[
−µkit

]
+ Et

[
Mit+1λ

f
it+1

P It+1

Pt+1

(
τKδ

−∂K
tot
it

∂Kit

(
γu0 (CUit+1 − 1) +

γu1
2

(CUit+1 − 1)
2

))
+Mit+1

(
(1− δ)µkit+1 + (1− α)µYt+1

Yit+1

Ktot
it

)]
= 0

µkit =Et

[
Mit+1

Mit

(
λfit+1

P It+1

Pt+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

)
+(1− δ)µkit+1 + (1− α)µYt+1

Yit+1

Ktot
it

)]
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µkit =Et

[
Mit+1

Mit

P It+1

Pt+1

(
λfit+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

)

+(1− δ)
µkit+1

P It+1

Pt+1

+ (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it



µkit
P It
Pt

=Et

[
Mit+1

Mit

P It+1

Pt+1

Pt
P It

(
λfit+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

)

+(1− δ)
µkit+1

P It+1

Pt+1

+ (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it



Qt =Et

[
Mit+1

Mit

P It+1

Pt+1

Pt
P It

(
λfit+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

)
+(1− δ)Qt+1 + (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it

)]
(27)

The first order condition with respect to CUit yields:

Mit

[
−λfit

P It
Pt
Ktot
it−1 (γ

u
0 + γu1 (CUit − 1)) + µYt (1− α) Yit

CUit

]
= 0

µYt (1− α) Yt
CUt

= λfit
P It
Pt
Ktot
t−1 (γ

u
0 + γu1 (CUt − 1)) (28)

The first order condition with respect toLit reads:

Mitλ
f
it

1

Pt
− Et

[
Mit+1λ

f
it+1

1

Pt+1

(
1 + ilt

)]
= 0

Et

[
Mt+1

Mt

λft+1

λft

Pt
Pt+1

(
1 + ilt

)]
= 1 (29)

The first order condition with respect to Ditsolves:

Mit +Mitλ
f
it

(
−1− γd (Dit −D)

)
= 0

λft =
1

(1 + γd (Dt −D))
(30)
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A.5 Intermediate goods producing firms’ problem (with borrowing con-
straints)

Firms maximize the stream of expected future profits subject to the intermediate good demand, the
law of motion of capital the production function and adjustment costs. Formally given the stochastic
discount factor,Mit

max
{Pit,Nit,Iit,Kit,CUit,Lit}

E0

∞∑
t=0

MitDit

subject to:

Dit =
(
1− τK

)(Pit
Pt
Yit −

Wt

Pt
Nit

)
+ τKδ

P It
Pt
Kit−1 −

P It
Pt
Iit +

Lit
Pt
− Lit−1

Pt

(
1 + ilt−1

)
− adjit

Yit =

(
Pit
Pt

)−σY
Yt

Kit = Iit + (1− δ)Kit−1

Yit =
(
AYt Nit

)α (
CUitK

tot
it−1

)1−α
Ljt. ≤ ml

t

(
P It Kit−1

)
where adjit = adjPit + adjNit + adjCUit + adjIit + adjDit and7,

adjPit =
σY γp

2
Yt

(
Pit
Pit−1

− 1− π
)2

adjNit =
γn

2
Yt

(
Nit
Nit−1

− exp (gpop)

)2

adjCUit =
P It
Pt
Ktot
it−1

(
γu0 (CUit − 1) +

γu1
2

(CUit − 1)
2

)

adjIit =
γi0
2

P It
Pt
Kt−1

(
Iit
Kt−1

− δt
)2

+
γi1
2

P It
Pt

(
Iit − Iit−1 exp

(
gY + gP

I
))2

Kt−1

adjDit =
γd

2
(Dit −D)

2

The first order conditions which change with respect to the benchmark setting are: the first order
condition with respect to Kit:

Mit

[
−λfitµ

k
it

]
+ Et

[
Mit+1λ

f
it+1

P It+1

Pt+1

(
τKδ

−∂K
tot
it

∂Kit

(
γu0 (CUit+1 − 1) +

γu1
2

(CUit+1 − 1)
2

))
+Mit+1

(
(1− δ)λfit+1µ

k
it+1 + (1− α)λfit+1µ

Y
t+1

Yit+1

Ktot
it

)
+Mit+1

(
λfit+1µ

l
it+1P

I
t+1m

l
t+1

)]
= 0

7The pricing adjustment cost is multiplied by σY in order to improve the identification of γp.

33



µkit =Et

[
Mit+1

Mit

λfit+1

λfit

(
P It+1

Pt+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

)
+(1− δ)µkit+1 + (1− α)µYt+1

Yit+1

Ktot
it

+ µlit+1P
I
t+1m

l
t+1

)]

µkit =Et

[
Mit+1

Mit

λfit+1

λfit

P It+1

Pt+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

+(1− δ)
µkit+1

P It+1

Pt+1

+ (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it

+ µlit+1P
I
t+1

Pt+1

P It+1

ml
t+1



µkit
P It
Pt

=Et

[
Mit+1

Mit

λfit+1

λfit

P It+1

Pt+1

Pt
P It

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

+(1− δ)
µkit+1

P It+1

Pt+1

+ (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it

+ µlit+1Pt+1m
l
t+1



Qt =Et

[
Mit+1

Mit

λfit+1

λfit

P It+1

Pt+1

Pt
P It

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

+(1− δ)Qt+1 + (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it

+ µlit+1Pt+1m
l
t+1

)]
(31)

And the first order condition with respect toLit which becomes:

Mitλ
f
it

1

Pt
−Mitλ

f
itµ

l
it − Et

[
Mit+1λ

f
it+1

1

Pt+1

(
1 + ilt

)]
= 0

Et

[
Mt+1

Mt

λft+1

λft

Pt
Pt+1

1

1− µlitPt
(
1 + ilt

)]
= 1 (32)

In case we write the borrowing constraints as:

Ljt + PSt Sjt = mtot
t

(
P It+1Kit

)
Ljt. ≤ ml

t

(
P It+1Kit

)
the first order condition with respect to Kit would read:
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Mitλ
f
it

[
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]
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f
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(
τKδ

−∂K
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it

∂Kit

(
γu0 (CUit+1 − 1) +

γu1
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(CUit+1 − 1)
2

))
+Mit+1

(
(1− δ)λfit+1µ

k
it+1 + (1− α)λfit+1µ
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it

)]
= 0

[
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Pt
P It
− µtotit mtot

t P It+1

Pt
P It
− µlitml

tP
I
t+1

Pt
P It

]
= Et

[
Mit+1

Mit

λfit+1

λfit

P It+1

Pt+1

(
τKδ − γu0 (CUit+1 − 1)− γu1

2
(CUit+1 − 1)

2

+(1− δ)
µkit+1

P It+1

Pt+1

+ (1− α)µYt+1

Pt+1

P It+1

Yit+1

Ktot
it


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