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1 Introduction

Recently there has been a renewed interest in the ability of linear approximations to the solution

of non-linear stochastic macroeconomic models to appropriately account for risk. These approxi-

mations belong to the class of perturbation methods introduced in Judd and Guu (1993) where a

first order Taylor expansion of the model’s equilibrium conditions is built around a known point.

Although perturbation-based methods are valid only locally around the approximation point, au-

thors like Judd (1998), Aruoba et al. (2006), Caldara et al. (2012) suggest that the method exhibits

high levels of accuracy outside this point, comparable to those delivered by more involved global

approximation techniques.

If time is assumed to be discrete and the approximation point used in the Taylor expansion is the

model’s deterministic steady state, then the approximated solution exhibits certainty equivalence

as defined in Simon (1956) and Theil (1957). That is, up to a first order, the solution to a model

where agents maximize their expected future utility is identical to the solution of the same model

under the assumption of perfect foresight. The direct implication of certainty equivalence is that the

solution while still depending on the mean value of the exogenous shocks affecting the economy, it

becomes invariant to higher order moments. Certainty equivalence can also be found in the classical

linear-quadratic optimal control problem popularized in economics by Kydland and Prescott (1982)

and summarized in Anderson et al. (1996).

As discussed in Fernandez-Villaverde et al. (2016) certainty equivalence has several drawbacks:

(i) it makes it difficult to talk about the welfare effects of uncertainty; (ii) the approximated

solution generated under certainty equivalence cannot generate any risk premia for assets; (iii)

certainty equivalence prevents from analyzing the consequences of changes in volatility. To break

certainty equivalence while remaining within the class of perturbation methods, economist have

restored to the computation of higher order Taylor series expansions which translates in non-linear

approximations of the model’s solution. Although this simple extension was already implicit in Judd

and Guu (1993), it only became popular with the work of Schmitt-Grohe and Uribe (2004) for the

case of second order approximations and Andreasen (2012) and Ruge-Murcia (2012) for the case of

third order approximations. However, the use of higher order approximations to overcome certainty

equivalence poses two further difficulties: (i) the computation of higher order perturbations for

medium- and large-scale DSGE models is computationally expensive; and (ii) the estimation of the

model’s structural parameters requires computationally demanding non-linear estimation methods.

Contrary to the discrete-time case, certainty equivalence breaks, even up to a first order, when

time is assumed to evolve continuously. This result initially shown in Judd (1996) and Gaspar

and Judd (1997), allows to account for some degree of risk even in a linear world, overcoming the

shortcomings of discrete-time perturbations mentioned above. The reason is that while in discrete-

time the perturbation approach is built over the expectational equations that define the equilibrium

of the economy, the application of Itô’s lemma eliminates

In this paper we assess the ability of a first-order approximation (linear) solution to capture

the effects of risk when the objective is to remain in the linear world in order to overcome the
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limitations mentioned above. To do so, we compare the effects of uncertainty in a standard neo-

classical framework subject to technology shocks when both first and second order perturbations

are used. We build the approximations both under the assumption that time evolves discretely

and continuously and provide evidence that in continuous-time the certainty equivalence property

breaks already in the first order approximation, a result showed initially in Judd (1996) and Gaspar

and Judd (1997).

We then extend the prototypical real business cycle (RBC) model with real rigidities as in

Jermann (1998), and with a small probability of a macroeconomic disaster as in Posch and Trimborn

(2013) to assess the effects of risk on asset prices in approximate linear economies.

Our work relates to that of Collard and Juillard (2001), Coeurdacier et al. (2011), de Groot

(2013) and Meyer-Gohde (2015) who propose an alternative way to break certainty equivalence while

remaining in the discrete-time world. In particular, they suggest to build first-order approximations

not around the deterministic steady state but around the risky steady state based on the fact that

the non-linearities present in any macroeconomic model could imply that the center of the ergodic

distribution of the endogenous variables is be away from the deterministic steady state (Juillard

and Kamenik, 2005).

The rest of the paper is organized as follows. Section 2 introduces the neoclassical growth

model both in discrete- and continuous-time and defines the equilibrium conditions used to build

the first and second order approximations; Section 3 describes the calibration used for the different

numerical exercises and shows the link that exists between the parameters of the models in discrete-

and continuous-time. Section 4 summarizes the perturbation approach while Section 5 discusses

the main results by comparing policy functions and impulse-response functions under both discrete

and continuous-time models. Finally, Section 6 concludes.

2 Framework

Our benchmark model corresponds to a prototype real business cycle model (RBC) similar to that

in Aruoba et al. (2006) and Parra-Alvarez (2017). In what follows we formulate and solve the model

in both continuous-time and discrete-time.

2.1 Continuous-time RBC model

2.1.1 Technology

Consider the problem faced by a benevolent planner with a production function:

Yt = AtK
α
t , (1)
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where At is the total factor productivity (TFP) and Kt is the aggregate capital stock. The capital

stock increases if gross investment exceeds capital depreciation,

dKt = (Yt − Ct − δKt)dt, (2)

where δ is the depreciation rate. The logarithm of the total factor productivity (TFP) is described

by an Ornstein-Uhlenbeck process with mean reversion parameters ρA > 0 of the form:

d logAt = −ρA logAtdt+ σAdBA,t (3)

where BA,t is a standard Brownian motions with volatility σA. An application of Ito’s lemma shows

that the level of the TFP follows:

dAt = −(ρA logAt − 1
2σ

2
A)Atdt+ σAAtdBA,t. (4)

2.1.2 Households

The economy is assumed to be inhabited by a large number of identical individuals, which maximize

their expected discounted life-time utility

U0 ≡ E0

[ˆ ∞
0

e−ρt
C1−γ
t

1− γ
dt

]
, (5)

subject to the dynamics in Equations (2) and (4), where Ct denotes aggregate consumption, ρ > 0

is the household’s subjective discount rate and γ > 0 the coefficient of relative risk aversion.

2.1.3 The HJB equation and the first-order conditions

The benevolent planner chooses a path for consumption in order to maximize expected life-time

utility of a representative household. Define the value of the optimal program

V (K0, A0) = max
{Ct∈R+}∞t=0

U0 s.t. (2) and (4) (6)

in which Ct ∈ R+ denotes the control at instant t ∈ R+. A necessary condition for optimiality is

given by the Hamilton-Jacobi-Bellman (HJB) equation1:

ρV (Kt, At) = max
Ct∈R+

{
C1−γ
t

1− γ
+ (AtK

α
t − Ct − δKt)VK(Kt, At)

− (ρA logAt − 1
2σ

2
A)AtVA(Kt, At) + 1

2σ
2
AA

2
tVAA(Kt, At)

}
.

1A formal derivation of the HJB equation can be found in Chang (2009).
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The first-order condition for any interior solution reads:

C−γt = VK(Kt, At), (7)

making optimal consumption a function of the state variables, Ct = C(Kt, At). As shown in

Appendix A, the Euler equation for consumption can be written as:

dCt
Ct

=

[
1

γ

(
αAtK

α−1
t − δ − ρ

)
+ 1

2(1 + γ)

(
CAAt
Ct

)2

σ2
A

]
dt+

(
CAAt
Ct

)
σAdBA,t. (8)

2.1.4 Conditional deterministic system

Following Posch and Trimborn (2013), the solution to the stochastic optimal control problem faced

by the social planner can be obtained from what they define as the conditional deterministic system.

In general, their method delivers a non-linear solution to the HJB equation that coincides with the

policy function implied by the equivalent boundary value problem.

Using the maximized HJB equation together with the first order condition for consumption

Appendix B shows that a necessary condition for optimality is given by:

1

γ

(
αAtK

α−1
t − δ − ρ

)
Ct + 1

2(1 + γ)Ct

(
CAAt
Ct

)2

σ2
A = CK(AtK

α
t − Ct − δKt)

− CA(ρA logAt − 1
2σ

2
A)At + 1

2CAAA
2
tσ

2
A (9)

A system of partial differential equations (PDEs) that implies the same policy function as in

Equation (9) in the absence of shocks can be constructed from:

dCt =

[
1

γ

(
αAtK

α−1
t − δ − ρ

)
Ct + 1

2(1 + γ)Ct

(
CAAt
Ct

)2

σ2
A − 1

2CAAA
2
tσ

2
A

]
dt (10)

dKt = (AtK
α
t − Ct − δKt)dt (11)

dAt = −(ρA logAt − 1
2σ

2
A)Atdt (12)

together with

CA = −1

γ
V
− 1+γ

γ

K VKA, CAA =
1 + γ

γ2
V
− 1+γ

γ
−1

K V 2
KA −

1

γ
V
− 1+γ

γ

K VKAA

such that dCt = CAdAt + CKdKt with dCt, dKt, and dAt from (10), (11), and (12), respectively,

also solves the HJB equation. In other words, it is possible solve the system in the absence of

shocks and still find the correct policy functions under uncertainty. The effects of risk in the

optimal solution are modeled in the resulting deterministic system through the curvature term
1
2CAAA

2
tσ

2
A in Equation (10), which is otherwise absent in the Euler equation (8).

The system of equations in (10), (11), and (12) which is referred to as the model’s condi-

tional deterministic system and it can be solved globally using the Waveform Relaxation algorithm

5



introduced in Posch and Trimborn (2013).

2.1.5 Equilibrium

The equilibrium in this economy is given by the sequence {Ct,Kt, At}∞t=0 that solves the following

system of equations:

dCt
Ct

=

[
1

γ

(
αAtK

α−1
t − δ − ρ

)
+ 1

2(1 + γ)

(
CAAt
Ct

)2

σ2
A

]
dt+

(
CAAt
Ct

)
σAdBA,t

(Euler equation)

dKt = (AtK
α
t − Ct − δKt)dt (Aggregate resource constraint)

dAt = −(ρA logAt − 1
2σ

2
A)Atdt+ σAAtdBA,t (Total factor productivity)

Together with initial conditions K (0) = K0 and A (0) = A0, they form a system of 3 stochastic

differential equations (SDEs) in 3 variables. The solution to this system of SDEs in the time space

delivers the optimal trajectories of At and the endogenous variables, Kt and Ct.

It is also possible to compute the solution of the model in the space of states. In this case,

the equilibrium of the economy is characterized by Equation (9) associated to the conditional

deterministic system which can be formally summarized by:

F (K,A) := f (K,A,C (K,A) , CK (K,A) , CA (K,A) , CAA (K,A)) = 0.

Whereas solving the model in the time domain or in the space domain, the solution of the

model demands the capital accumulation constraint (2), the goods market equilibrium (implicitly

assumed), and the optimality condition for consumption (7) to hold at every instant t ∈ [0,∞).

2.1.6 Analytical Results

Two values of interest are the deterministic steady-state and the conditional deterministic (or risky)

steady state. The former corresponds to the limiting behavior of the economy under the assumption

that the variables in the economy do not grow and agents do not anticipate the effects of future

shocks. In other words, a deterministic steady state is defined as the triple (C̄, K̄, Ā) that solves

the dynamic system when dCt = dKt = dAt = 0 together with σA = 0. Hence, the steady state

value of capital is equal to:

K̄ =

[
αĀ

ρ+ δ

] 1
1−α

which then implies the following value for consumption,

C̄ = Ā(K̄)α − δK̄

where Ā = 1 corresponds to the stationary solution of the exogenous TFP.
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Now, assume the existence of a stationary point to which the dynamic system converges in

the absence of shocks, dBA,t = 0 for all t ≥ 0 but where σA ≥ 0 given that the agents in the

economy are risk averse. We define the conditional deterministic (or risky) steady state as the

triple (C∗,K∗, A∗) that solves both, the system of PDEs in Equations (10)-(12) and the maximized

HJB equation when dCt = dKt = dAt = 0. Hence, the risky steady state corresponds to the

solution to:

0 =
1

γ

(
αA∗(K∗)α−1 − δ − ρ

)
+ 1

2(1 + γ)C̃A(K∗, A∗)2σ2
A − 1

2 C̃AA(K∗, A∗)σ2
A

0 = A∗(K∗)α − C∗ − δK∗

0 = ρA logA∗ − 1
2σ

2
A

where:

C̃A = −1

γ
V −1
K VKAA

∗, C̃AA = (1 + γ)C̃A −
1

γ
V −1
K VKAA (A∗)2 .

From the third equation it is straightforward to conclude that:

A∗ = exp

(
1

2

σ2
A

ρA

)
but, for most parameterizations of the model, the conditional deterministic steady state values of

K∗ and C∗ = A∗(K∗)α − δK∗ are available only numerically.

Under the assumption that the output elasticity of capital equals the reciprocal of the elasticity

of intertemporal substitution (EIS), α = γ, the model has an analytical solution. The optimal

policy function for consumption is then given by (see e.g. Posch (2009) and Posch and Schrimpf

(2012)):

Ct = C(Kt, At) = C−1/γ
1 Kt, C−1/γ

1 =
ρ+ (1− γ)δ

γ

such that C̃A = 0, C̃AA = 0 so the risky steady state for aggregate capital is given by:

K∗ =

[
αA∗

ρ+ δ

] 1
1−α
≥ K̄

given that A∗ ≥ Ā.

2.2 Discrete-time RBC model

2.2.1 Technology

Consider again the problem of a benevolent planner with production function:

Yt = AtK
α
t , (13)
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where At is total factor productivity and Kt is the aggregate capital stock. The capital stock

increases if gross investment exceeds capital depreciation,

Kt+1 = Yt − Ct + (1− δ)Kt, (14)

and the logarithm of TFP follows an AR(1) process:

logAt+1 = ρ̃A logAt + σ̃AεA,t+1 ⇔ At+1 = Aρ̃At exp(σ̃AεA,t+1) (15)

where ρ̃A denote the autorregresive coefficient of the TFP process, σ̃A its standard deviation, and

εA,t is an iid normally distributed disturbance with mean zero and unitary variance.

2.2.2 Households

Similar to the continuous-time case we assume that a large number of individuals inhabit the

economy. A representative household maximizes his expected discounted life-time utility:

U0 ≡ E0

[ ∞∑
t=0

βt
C1−γ
t

1− γ

]
, (16)

subject to the dynamics in Equations (14) and (15), where β > 0 denotes the households subjective

discount factor and γ > 0 the coefficient of relative risk aversion.

2.2.3 The HJB Equation and the First-Order Conditions

The benevolent planner chooses the path of consumption and capital stock accumulation that

maximizes the expected life-time utility of the representative household. Define the value of the

optimal program

V (K0, A0) = max
{Ct,Kt+1}∞t=0

U0 s.t. (14) and (15) (17)

in which Ct ∈ R+ and Kt+1 ∈ R+ define the control variables at time t ∈ Z. Then, the Bellman

equation reads for any t ∈ {0, 1, 2, . . . }

V (Kt, At) = max
Ct∈R+

{
C1−γ
t

1− γ
+ βEtV (Kt+1, At+1)

}
(18)

with associated first order condition:

C−γt = βEt
[
∂V (Kt+1, At+1)

∂Kt+1

]
, (19)
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making optimal consumption a function of the state variables, Ct = C(Kt, At). As shown in

Appendix C, the Euler equation for consumption is given by:

C−γt = βEt
[
C−γt+1

(
αAt+1K

α−1
t+1 + 1− δ

)]
. (20)

2.2.4 Equilibrium

The equilibrium in the economy is given by the sequence {Ct,Kt, At}∞t=0 that solves the following

system of equations:

C−γt = Et
[
βC−γt+1

(
αAt+1K

α−1
t+1 + 1− δ

)]
(Euler equation)

Kt+1 = AtK
α
t − Ct + (1− δ)Kt (Aggregate resource constraint)

logAt+1 = ρ̃A logAt + σ̃AεA,t+1 (Total factor productivity)

The equilibrium of the economy is characterized by a system of 3 stochastic difference equations

in 3 variables that determine whose solution delivers the optimal paths of the exogenous variable

At and the endogenous variables, Kt and Ct. This system of equations can be formally summarized

by:

F (Kt, At) := Etf (Ct+1, Ct,Kt+1,Kt, At+1, At) = 0

where

Etf (Ct+1, Ct,Kt+1,Kt, At+1, At) = Et

 C−γt − βC−γt+1

(
αAt+1K

α−1
t+1 + 1− δ

)
AtK

α
t + (1− δ)Kt − Ct −Kt+1

logAt+1 − ρ̃A logAt − σ̃AεA,t+1

 .
2.2.5 Analytical results

The deterministic steady state is again defined as the the equilibrium point that prevails in the

absence of uncertainty when the variables in the economy do not change over time. Formally, a

deterministic steady state is given by the triple (C̄, K̄, Ā) that solves the dynamic system when

Ct = Ct+1 = C̄, Kt = Kt+1 = K̄ and At = At+1 = K̄ together with σ̃A = 0. Hence, the steady

state value of capital is equal to:

K̄ =

(
αĀ

β−1 − 1 + δ

) 1
1−α

,

which then implies the following value for consumption C̄ = Ā(K̄)α−δK̄, where Ā = 1 corresponds

to the stationary value of the exogenous TFP.

On the other hand, the risky steady state as defined in Coeurdacier et al. (2011) corresponds

to the point where agents choose to stay at a given date if they expect future risk and if the

realization of shocks is zero at this date. For most parameterizations, the risky steady state can

only be approximated numerically as will be shown in Section 4.2.1.
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Table 1. Summary of the two modeling approaches.

Discrete-time Continuous-time

Objective function (U0) E0

[∑∞
t=0 β

t C
1−γ
t

1−γ

]
E0

[´∞
0 e−ρt

C1−γ
t

1−γ dt
]

Market clearing AtK
α
t = Ct + It AtK

α
t = Ct + It

Capital dynamics Kt+1 = It + (1− δ)Kt dKt = (It − δKt) dt

TFP dynamics
logAt+1 = ρ̃A logAt

+σ̃AεA,t+1

d logAt = −ρA logAtdt
+σAdBA,t

Uncertainty εA,t ∼ N (0, 1) (BA,t+∆ −BA,t) ∼ N (0,∆)

3 Calibration

The prototype models presented in Section 2 are summarized in Table 1. The model is calibrated

annually and the parameters should be interpreted accordingly. The values of the parameters are

taken from the discrete-time version of the RBC model in Jermann (1998). The set of parameter can

be split into two groups: (i) those whose value is independent of choice of discrete- or continuous-

time; and (ii) those whose value depends on it. Table 2 summarizes the calibration.

The first group includes the coefficient of relative risk aversion, the share of capital in output

and the depreciation rate. Their values are set to γ = 5, α = 0.36 and δ = 0.0963. The second

group includes the subjective discount rate, the subjective discount factor, the persistence of the

TFP shocks and their volatility. For the discounting parameters, we set β = 0.9606 and ρ = 0.041.

The latter value ensures the same deterministic steady state values of the capital stock in the

discrete- and continuous-time models.

With regards to the TFP parameters, Jermann (1998) reports quarterly values of 99% and 1%

for its persistence and volatility, respectively. These values imply an annual volatility of TFP of

around 8% which is at odds with those values reported recently in literature for the U.S. Therefore,

we assume quarterly values of 95% and 0.5%, in line with those reported in Aruoba et al. (2006).

To ensure consistency between the parameter values across discrete- and continuous-time models

we follow Christensen et al. (2016). Hence, the quarterly values imply an annual autorregresive

coefficient of ρ̃A = 0.8145 when time is assumed to be discrete, and a value of ρA = 0.2052

when time is assumed to be continuous. Finally, the annualized volatility in the continuous-time

model consistent with the quarterly value is σA = 0.041, while that for the discrete-time model is

σ̃A = 0.03722.

With these parameter values, the resulting deterministic steady state values for aggregate capital

2The relation between the subjective discount factor and the subjective discount rate is given by ρ = 1
β
− 1. As

shown in Christensen et al. (2016), the link between the persistence parameter of the discrete- and continuous-time

models is given by ρ̃A = 1 − e−∆ρA , while that between volatilities reads σ̃A = ∆σA

√
(1−e−2ρA∆)/(2ρA), where ∆

denotes the observation frequency.
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Table 2. Parameter values for the RBC model.

Parameter Discrete-time Continuous-time

Discounting, β/ρ 0.9606 0.0410
Relative risk aversion, γ 5.0000 5.0000
Depreciation rate, δ 0.0963 0.0963
Capital share in output, α 0.3600 0.3600
Persistence of TFP, ρ̃A/ρA 0.8145 0.2052
Volatility of TFP, σ̃A/σA 0.0372 0.0410

and aggregate consumption are K̄ = 4.5077 and C̄ = 1.2854, respectively.

4 Perturbation method

Perturbation methods approximate the solution of the stochastic optimal control problem by means

of the implicit function theorem and the Taylor’s series expansion theorem. The perturbed solution

consists of a polynomial, or a similar function, that approximates the true solution of the problem

in a neighborhood of an a priori know solution. In what follows, this approximation point will

be the deterministic steady state computed in Section 2. Following Judd (1998), the perturbation

method can be summarized by the following steps:

1. Express the problem as a continuum of problems parameterized by the added perturbation

parameter η, with the η = 0 case known.

2. Differentiate the continuum of problems with respect to the state variables and η.

3. Solve the resulting equation for the implicitly defined derivatives at the known solution of the

state variables and η = 0.

4. Compute the desired order of approximation by means of Taylor’s theorem. In general, the

order of approximation should be determined by the first non-trivial term or dominant term,

that is, apply Taylor approximations until the first non-zero term is reached. Set η = 1 to

recover the original model.

5. If possible write the results in unit-free terms such as elasticities and shares.

In what follows we define the perturbation parameter η in terms of the amount of uncertainty

introduced into the model. In particular, the added parameter η will control the amount of volatility

of the disturbances in discrete-time models, while it will control the absolute magnitude of their

variance in continuous-time models. Hence, a model with η = 0 is equivalent to a model with

perfect foresight (no uncertainty) for which a solution can be easily computed. In the same fashion,

a model with η = 1 is equivalent to the original model. Alternative definitions of the perturbation

parameter can be used to study a wide range of problems in economics, e.g Kogan and Uppal

(2001), Chacko and Viceira (2005) and Hansen et al. (2008).
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4.1 Continuous-time setup

As discussed in Parra-Alvarez (2017), a solution to the continuous-time stochastic optimal control

problem in Section 2 is characterized by the policy function for aggregate consumption, Ct =

C (Kt, At). Perturbation methods allow us to building an approximation to the (extended) policy

function C (Kt, At; η) around the deterministic steady state (Kt, At, η) =
(
K̄, Ā, 0

)
. Thus, a second

order approximation to the extended problem3:

F (Kt, At; η) := f (K,A,C (K,A; η) , CK (K,A; η) , CA (K,A; η) , CAA (K,A; η) ; η) = 0.

where:

f (·) =
1

γ

(
αAtK

α−1
t − δ − ρ

)
C (K,A; η) + 1

2(1 + γ)C (K,A; η)

(
CA (K,A; η)At
C (K,A; η)

)2

ησ2
A

−CK (K,A; η) (AtK
α
t − C (K,A; η)− δKt) + CA (K,A; η)

(
ρA logAt − 1

2ησ
2
A

)
At

−1
2CAA (K,A; η)A2

t ησ
2
A

is given by:

C (Kt, At; η) ≈ C + CK
(
Kt − K̄

)
+ CA

(
At − Ā

)
+ Cηη

+ CKA
(
Kt − K̄

) (
At − Ā

)
+ CKη

(
Kt − K̄

)
η + CAη

(
At − Ā

)
η

+
1

2

(
CKK

(
Kt − K̄

)2
+ CAA

(
At − Ā

)2
+ Cηηη

2
)

(21)

where the Cij = Ci,j
(
K̄, Ā; 0

)
for i, j = {K,A, η} denote variables evaluated at their deterministic

steady state. Higher order approximation can be immediately written down.

The approximation in Equation (21) requires the computation of 10 constants. From the cal-

culation of the deterministic steady state we instantly obtain C = C
(
K̄, Ā; 0

)
. The remaining 9

constants still need to be computed. To do so we exploit the fact that F (Kt, At; η) = 0 and hence

all of its partial derivatives must also be zero. In a first step, we partitioning the set of constants

into two groups. The first one, called the deterministic component, groups all the constants of the

form FKiAj (Kt, At; η) = 0 for i, j = 0, 1, 2, while the second one, called the stochastic component,

collects all the constants of the form FKiAjηl (Kt, At; η) = 0 for i, j, l = 0, 1, 2.

Once defined both groups, we start the approximation by computing the first order terms related

to the deterministic components and evaluating them at the deterministic steady state. As shown

in Gaspar and Judd (1997) and Judd (1998), the resulting system of equations in the unknown

constants CK , CA and Cη correspond to a Ricatti equation with r roots, where r is the number of

equilibrium paths. Once the stable path is chosen, we proceed to the computation of the first order

terms related to the stochastic components which corresponds to a linear equation. Once the first

order approximation is completed, the computation of the remaining second order terms reduces

3Recall that the extended equilibrium condition is given in Equation (9).
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to the solution of a system of linear equations. Appendix D shows how the computation of the first

order terms is done manually for the model in Section 2.

As a general rule, Judd and Guu (1993) showed that the computation of an n-th order approx-

imation of the policy function that solves a stochastic optimal control model in continuous-time

requires an (n+ 2)-th order deterministic approximation. Hence, a second order approximation

to the policy function requires a fourth deterministic approximation and a second order stochastic

approximation.

At this point is important to emphasize that perturbation methods applied to continuous-time

models do not exhibit certainty equivalence as suggested in Judd (1996). As an illustration, consider

the first order stochastic component of the RBC model from Section 2, which is formally derived

in Appendix D:

Cη = −
(
CK
)−1

[
1

2
(1 + γ)C

(
CAĀ

C

)2

σ2
A −

1

2
CAσ

2
AĀ−

1

2
CAAĀ

2σ2
A

]
. (22)

A standard result for first order discrete-time perturbations is that Cη = 0 implying that certainty

equivalence always holds up to a first order irregardless on the modeling assumptions. However, as

Equation (22) shows the same is not true for first-order continuous-time perturbations. Certainty

equivalence will hold only in very particular cases that are of no or little interest for most applica-

tions in macroeconomics. E.g. whenever (i) the volatility of the disturbances is zero, σA = 0; (ii)

the volatility of the state variables is constant; (iii) the utility function is quadratic and/or (iv) the

production function is linear.

4.2 Discrete-time setup

Following the notation introduced in Schmitt-Grohe and Uribe (2004), let us define yt = Ct to be

the vector of control variables and xt = {Kt, At} the vector of state variables. The latter can be

partitioned into endogenous states and exogenous states:

xt =
[
x′1,t;x

′
2,t

]′
where x1,t = Kt is the vector of the endogenous state variable, and x2,t = At is the vector of the

exogenous state variable. If η denotes the perturbation parameter, the solution to the extended

problem:

F (xt; η) := Etf(yt+1,yt,xt+1,xt; η) = 0 (23)

is given by the (extended) policy functions Ct = g (Kt, At; η), Kt+1 = h1 (Kt, At; η), and At+1 =

h2 (Kt, At; η) + ησ̃AεA,t+1 satisfying:

yt = g(xt; η) and xt+1 = h(xt; η) + ηQεt+1, (24)

13



where g : R2 ×R+ → R, h : R2 ×R+ → R2, Q = [0, σ̃A]′, εt+1 = εA,t+1.

Perturbation methods for stochastic optimal control problems in discrete time approximate the

unknown functions g and h by means of the Taylor theorem around the deterministic steady state

ȳ = g(x̄; 0) and x̄ = h(x̄; 0). Inserting Equation (24) into Equation (23) leads to:

F (xt; η) := Etf [g(h(xt; η) +Qηεt+1; η), g(xt; η),h(xt; η) +Qηεt+1,xt; η] = 0. (25)

Similar to the continuous-time case, the approximation is constructed by exploiting the fact that

if F (xt; η) = 0 for any xt and η, then its partial derivatives must be also zero. Thus, a first order

approximation of the functions g and h around the deterministic steady state is then given by:

g(xt; η) = ȳ + gx(x̄; 0)(xt − x̄) + gη(x̄; 0)η

h(xt; η) = x̄+ hx(x̄; 0)(xt − x̄) + hη(x̄; 0)η (26)

where gx(x̄; 0), hx(x̄; 0), gη(x̄; 0) and hη(x̄; 0) are the solutions to the system of equations formed

by the partial derivatives of F (xt; η) when evaluated at xt = x̄ and η = 0. A particular feature of

the system of equations formed with the first order terms is that that the constants gη(x̄; 0) and

hη(x̄; 0) correspond to the solution of a sub-system of linear and homogeneous equations which

imply that gη(x̄; 0) = hη(x̄; 0) = 0 (see Fernandez-Villaverde et al. (2016)). Therefore, the first

order perturbation reduces to:

g(xt; η) = ȳ + gx(x̄; 0)(xt − x̄)

h(xt; η) = x̄+ hx(x̄; 0)(xt − x̄)

implying that up to a first order, the linear approximation exhibits certainty equivalence, in other

words, the solution of the model is identical to the solution of the same model when η = 0.

As an illustration, the first order approximation of the policy function for consumption reads:

C
(1)
t = C + gK(Kt − K̄) + gA(At − Ā) (27)

where gK and gA belong to the Jacobian matrix of g. First order approximations for the aggregate

capital stock and the TFP process can be computed analogously.

The second order approximation to g (xt; η) and h (xt; η) and the identification of the coefficients

follows the same approach as before. Here, the second order derivatives of F (xt; η) with respect to

xt and η, respectively, have to be taken into account. A second order approximation to the policy

14



functions for consumption is given by:

C
(2)
t = C

(1)
t +

1

2

(
gKK(Kt − K̄)2 + 2gKA(Kt − K̄)(At − Ā) + gAA(At − Ā)2 + gηηη

2
)

(28)

K
(2)
t+1 = K

(1)
t+1 +

1

2

[
h1KK(Kt − K̄)2 + 2h1KA(Kt − K̄)(At − Ā) + h1AA(At − Ā)2 + h1ηηη

2
]
(29)

A
(2)
t+1 = A

(1)
t+1 +

1

2

[
h2KK(Kt − K̄)2 + 2h2KA(Kt − K̄)(At − Ā) + h2AA(At − Ā)2 + h2ηηη

2
]
(30)

where all the constants with a line above their value are elements of the Hessian matrices of g and

h.

4.2.1 Risky steady state in discrete-time

Following de Groot (2013), it is possible to approximate the risky steady state values of the model

variables using the second order approximations for TFP in Equation (30) and for aggregate capital

in Equation (29). In particular, by setting the current value of the disturbances to zero, εA,t = 0, and

given that h2KK = h2KA = 0 due to the exogenous nature of TFP, the second order approximation

for TFP can write as:

A
(2)
t+1 = A+ h2A(At − Ā) +

1

2

[
h2AA(At − Ā)2 + h2ηηη

2
]
.

The risky steady state of TFP is defined as the value Arss that satisfies At+1 = At = Arss and

thus solves the quadratic equation:

Arss = A+ h2A(Arss − Ā) +
1

2

[
h2AA(Arss − Ā)2 + h2ηηη

2
]
.

Applying the same procedure to the second order approximation of capital in Equation (29):

Kt+1 = K + h1K(Kt − K̄) + h1A(At − Ā)

+
1

2

[
h1KK(Kt − K̄)2 + 2h1KA(Kt − K̄)(At − Ā) + h1AA(At − Ā)2 + h1ηηη

2
]
.

we define Krss satisfying Kt+1 = Kt = Krss that solves the quadratic equation:

Krss = K + h1K(Krss − K̄) + h1A(Arss − Ā)

+
1

2

[
h1KK(Krss − K̄)2 + 2h1KA(Krss − K̄)(Arss − Ā) + h1AA(Arss − Ā)2 + h1ηηη

2
]
.

Appendix E shows a detailed derivation of the risky steady state values. Finally, the risky steady

state value of aggregate consumption is given by the identity Crss = ArssK
α
rss − δKrss.

4 Under

the calibration in Table 2, the risky steady state values of the model variables are Arss = 1.0004,

Krss = 3.5701, and Crss = 1.1655.

4Alternatively, we could calculate Crss from its second order approximation in Equation (28) as Crss = C +
gKK∆ + gAA∆ + 1

2

[
gKK(K∆)2 + 2gKAK∆A∆ + gAA(A∆)2 + gηηη

2
]
, which delivers the same numerical result.
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Table 3. Comparison of steady states values.

Variable Determ. Risky

Discrete-time Continuous-time
First Second First Second Global

A 1.0000 1.0000 1.0037 1.0041 1.0041 1.0041
K 4.5077 4.5077 4.7110 4.7130 4.7200 4.7198
C 1.2854 1.2854 1.2999 1.3006 1.3009 1.3009

Table 4. Comparison of steady states values for α = γ = 0.36.

Variable Determ. Risky

Discrete-time Continuous-time
First Second First Second Global True

A 1.0000 1.0000 1.0037 1.0041 1.0041 1.0041 1.0041
K 4.5077 4.5077 4.5341 4.5367 4.5367 4.5366 4.5367
C 1.2854 1.2854 1.2929 1.2937 1.2937 1.2937 1.2937

4.2.2 Comparison of steady states

Table 3 summarizes both the deterministic and the risky steady state values for aggregate con-

sumption, aggregate capital stock and total factor productivity. By construction, the deterministic

steady state values for the discrete- and continuous-time model are identical. However, the risky

steady states differ since they are not available in closed form and hence can only be numerically

approximated. The table reports the risky steady state under both discrete- and continuous-time.

For the latter it reports the approximation to the risky steady state values obtained from a first

and a second order perturbation as well from a global numerical approximation.

Table 4 compares deterministic and stochastic steady state values under the assumption α = γ,

which has a closed-form solution in continuous time. For this calibration, the approximations of

the steady states values obtained from first and second order perturbation as well as from a global

solution method can be compared to the ’true’ solution that is given in closed-form. In continuous-

time already the approximation based on first-order perturbation is equal to the true solution, while

in discrete-time even the approximation resulting from second-order perturbation differs from the

true solution.

5 Results

5.1 Approximated policy functions

Using the calibration from Section 3, Figure (1) plots the approximated policy function for consump-

tion for the discrete- and continuous-time models along a discretized grid containing nK = 1001

values for the capital stock around the interval K ∈
[
0.5K̄, 1.5K̄

]
, while keeping the TFP level at

its deterministic steady state. We plot the first and second order policy functions.
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Figure 1. Policy functions for consumption. The graph plots the first order approximation (top panel)
and the second order approximation (bottom panel) to the policy function for aggregate consumption along
the capital lattice while keeping productivity at its determinisitic steady state, C

(
K, Ā

)
. A circle denotes

the deterministic steady state, a star denotes the risky steady state approximated from the continuous-time
model, and a square the risky steady state approximated from the discrete-time model

Figure (2) plots compares the first and second order approximations to the policy functions for

consumption for both the discrete- and the continuous-time model.

The first order approximated policy functions for consumption are given by5:

C
(1),CT
t = 1.2854 + 0.0942

(
Kt − K̄

)
+ 0.4232

(
At − Ā

)
− 0.0059

C
(1),DT
t = 1.2854 + 0.0912

(
Kt − K̄

)
+ 0.4883

(
At − Ā

)
.

Note that C
(1),DT
t is invariant to the volatility of the TFP shock σA. In particular, this implies that

this policy function is identical to a policy function that would result from a model with perfect

foresight. Hence, C
(1),DT
t is certainty equivalent. In contrast, in continuous-time the first-order

approximated policy function is not certainty equivalent since the last term in bold in C
(1),CT
t

depends on σA, as already shown in equation (22). This term is a constant correction term for risk,

which in discrete-time only appears in second order, as we will see.

5The discrete-time approximations to the state-variables are K
(1),DT
t+1 = 4.5077 + 0.9498(Kt− K̄) + 1.2313(At− Ā)

and A
(1),DT
t+1 = 1 + 0.8145(At − Ā) + σ̃AεA,t+1.
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Figure 2. Policy functions for consumption. The graph plots the first and second order approximation
to the policy function for aggregate consumption along the capital lattice while keeping productivity at its
determinisitic steady state, C

(
K, Ā

)
for the RBC model in continuous-time (top panel) and the model in

discrete-time (bottom panel). A circle denotes the deterministic steady state, a star denotes a first order
approximation to the risky steady state approximated, while a square denotes a second order approximation
to the risky steady state.

The second order approximated policy functions are6:

C
(2),CT
t = 1.2854 + (0.0942− 0.0003)

(
Kt − K̄

)
+ (0.4232− 0.0021)

(
At − Ā

)
− 0.0059

− 0.0054
(
Kt − K̄

) (
At − Ā

)
+

1

2

[
−0.0146

(
Kt − K̄

)2 − 0.2458
(
At − Ā

)2
+ 4.0734 × 10−5

]
C

(2),DT
t = 1.2854 + 0.0912

(
Kt − K̄

)
+ 0.4883

(
At − Ā

)
+

1

2

[
−0.0141(Kt − K̄)2 − 2× 0.0055(Kt − K̄)(At − Ā)− 0.2523(At − Ā)2 − 0.0112

]
The numbers in bold highlight the corrections for risk for each model. In discrete-time, we obtain

a constant correction term of magnitude −0.0056 in second-order, which is close to but still smaller

than what we get in continuous-time in first-order, −0.0059. In the second-order approximation in

6The discrete-time approximations to the state-variables are K
(2),DT
t+1 = 4.5077 + 0.9498(Kt − K̄) + 1.2313(At −

Ā)+ 1
2

[
−0.0054(Kt − K̄)2 + 2 × 0.1428(Kt − K̄)(At − Ā) + 0.2523(At − Ā)2 + 0.0112

]
andA

(2),DT
t+1 = 1+0.8145(At−

Ā) + 1
2

[
−0.1511(At − Ā)2 + 0.0014

]
+ σ̃AεA,t+1.
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continuous-time, we get further corrections, which also affect the linear coefficients.

5.2 Euler equation errors

To assess the quality of the approximations Judd (1998) introduces the normalized Euler equation

errors as a measure of the goodness of fit along the state space. Following Aruoba et al. (2006), the

Euler equation errors associated to the approximation of order i = 1, 2, is given in the discrete-time

framework by:

EEiDT (Kt, At) = 1−

[
βEt

(
Cit+1

)−γ (
αAit+1

(
Ki
t+1

)α−1
+ 1− δ

)]−1/γ

Cit
, (31)

while Judd and Guu (1993) introduce the Euler equation errors in continuous-time models based

on the conditionally deterministic system in Equation (9) as:

EEiCT (Kt, At) =
1

ρC(K̄, Ā)

[
1

γ

(
αAtK

α−1
t − δ − ρ

)
Cit

+1
2(1 + γ)Cit

(
CiAAt

Cit

)2

ησ2
A − CiK

(
AtK

α
t − Cit − δKt

)
+CiA

(
ρA logAt − 1

2ησ
2
A

)
At − 1

2C
i
AAA

2
t ησ

2
A

]
. (32)

The partial derivatives of the policy function are computed using the approximated policy functions.

For the benchmark calibration in Section 2, Figure 3 compares the Euler equation errors between

discrete and continuous-time for each of the orders of approximation along the aggregate capital

lattice while keeping the productivity at its deterministic steady state value. Appendix F displays

Euler equation errors by type of approximation independently for the discrete- and continuous-time

model.

5.3 Impulse Response Functions

This section compares the response of the endogenous variables of the discrete- and continuous-time

models to a temporary shock on the level of total factor productivity.

Figure 4 plots the impulse response functions (IRFs) for the levels of aggregate consumption,

aggregate capital, and aggregate output, and future productivity when the discrete-time economy

is subject to a one standard deviation shock in the TFP. The blue lines plot the IRFs based on

the first order approximation, and the red lines those based on the second order approximation

to the policy functions (see Section 5.1). For the sake of comparison, we assume that before the

shock hits, the economy rests in its deterministic steady state. Up to a first order approximation,

the model converges to the deterministic steady state as time passes. However, when the model is

approximated to a first order, the economy converges instead to its (approximated) risky steady

state. Note that compared to the deterministic steady state, the risky steady state TFP level is
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Figure 3. Euler equation errors. The graph plots the log10 of the absolute value of the Euler equation
errors for the first order approximation and the second order approximation to the policy function of aggregate
consumption along the capital lattice while keeping productivity at its determinisitic steady state, EE

(
K, Ā

)
.

Continuous lines denote approximation errors for the first order approximations, and dotted lines denote
approximation errors for the second order approximations.

higher, which leads to a higher capital stock and higher output in the second order approximation

over the whole time span. In contrast, the reaction of consumption in second-order is lower during

the first 8 periods than in first-order although TFP, capital stock, and output are higher. The

reason is that the first-order approximation ignores risk (certainty equivalent), which is accounted

for in the second-order. Once we accounting for risk, consumption increases less in response to the

TFP shock and converges to the higher risky steady state value. All in all, consumption is more

volatile up to a first order, while being smoother in the case of a second order approximation.
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Figure 4. Impulse-Response function to a TFP shock: Discrete-time. The graph plots the
impulse response functions (IRFs) for the levels of aggregate consumption, aggregate capital, and aggregate
output when time in the economy is assumed to be discrete. The economic system is assumed to be in
its deterministic steady state before the shock hits. The dash-dotted line corresponds to the deterministic
steady state, and the dashed line to the approximated risky steady state.

Figure 5 plots the responses of aggregate consumption, aggregate capital stock, aggregate output

and future productivity to the same TFP shock when time in the economy is assumed to be

continuous. The blue lines plot the IRFs based on the first order approximation, and the red lines

those based on the second order approximation to the policy functions. The IRF’s are computed

by iterating forward, from the deterministic steady state, the system of equations consisting of

Euler-discretized versions of the stochastic process for the state variables and the approximated

consumption function. As opposed to discrete-time, all variables in the economy converge to the

(approximated) risky steady states. The differences across IRFs correspond to numerical differences

in the approximation of the policy function. The response of aggregate consumption shows how

certainty equivalence is broken even in the first order approximation.
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Figure 5. Impulse-Response function to a TFP shock: Continuous-time. The graph plots the
impulse response functions (IRFs) for the levels of aggregate consumption, aggregate capital, and aggregate
output when time in the economy is assumed to be continuous. The economic system is assumed to be in
its deterministic steady state before the shock hits. The dash-dotted line corresponds to the deterministic
steady state, and the dashed lines to the approximated risky steady states.

For completeness, Figures 6 and 7, compare the effect of the timing assumption on the IRFs

for each type of approximation.
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Figure 6. First order Impulse-Response function to a TFP shock: Discrete-time vs.
Continuous-time. The graph plots the first order impulse response functions (IRFs) for the levels of
aggregate consumption, aggregate capital, and aggregate output for both discrete- and continuous-time
models. The economic system is assumed to be in its deterministic steady state before the shock hits. The
dash-dotted line corresponds to the deterministic steady state, and the dashed line to the approximated
risky steady state.
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Figure 7. Second order Impulse-Response function to a TFP shock: Discrete-time vs.
Continuous-time. The graph plots the second order impulse response functions (IRFs) for the levels
of aggregate consumption, aggregate capital, and aggregate output for both discrete- and continuous-time
models. The economic system is assumed to be in its deterministic steady state before the shock hits.The
dash-dotted line corresponds to the deterministic steady state, and the dashed lines to the approximated
risky steady states.

6 Conclusions

[TO BE COMPLETED]
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Appendix

A Euler equation RBC in continuous-time

Using the first order condition (7), the maximized (concentrated) HJB equation reads:

ρV (Kt, At) =
C(Kt, At)

1−γ

1− γ
+ (AtK

α
t − C(Kt, At)− δKt)VK(Kt, At)

− (ρA logAt − 1
2σ

2
A)AtVA(Kt, At) + 1

2σ
2
AA

2
tVAA(Kt, At) (33)

From (33), we obtain for the costate variable (using the envelope theorem)

ρVK(Kt, At) = (AtK
α
t − C(Kt, At)− δKt)VKK(Kt, At) + (αAtK

α−1
t − δ)VK(Kt, At)

− (ρA logAt − 1
2σ

2
A)AtVAK(Kt, At) + 1

2σ
2
AA

2
tVAAK(Kt, At)

such that

(ρ− αAtKα−1
t + δ)VK(Kt, At) = (AtK

α
t − C(Kt, At)− δKt)VKK(Kt, At)

− (ρA logAt − 1
2σ

2
A)AtVAK(Kt, At) + 1

2σ
2
AA

2
tVAAK(Kt, At)

Using Itô’s Lemma, the evolution of the costate is given by:

dVK(Kt, At) = VKK(Kt, At)dKt + VKA(Kt, At)dAt + 1
2σ

2
AA

2
tVKAA(Kt, At)dt

= (ρ− αAtKα−1
t + δ)VK(Kt, At)dt+ VKA(Kt, At)σAAtdBA,t (34)

Using once again the first-order condition, we may alternatively write:

dC−γt = (ρ− αAtKα−1
t + δ)C−γt dt− γC−γ−1

t CAσAAtdBA,t

or

dCt
Ct

=

[
1

γ

(
αAtK

α−1
t − δ − ρ

)
+ 1

2(1 + γ)

(
CAAt
Ct

)2

σ2
A

]
dt+

(
CAAt
Ct

)
σAdBA,t

which is Equation (8).
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B Conditional deterministic system

From the PDE for the costate variable we find that for VKK(Kt, At) 6= 0:

C(Kt, At) = AtK
α
t − δKt − (ρ− αAtKα−1

t + δ)
VK(Kt, At)

VKK(Kt, At)

− (ρA logAt − 1
2σ

2
A)At

VAK(Kt, At)

VKK(Kt, At)
+ 1

2σ
2
AA

2
t

VAAK(Kt, At)

VKK(Kt, At)
(35)

To obtain the necessary condition (35) from a (conditional) deterministic system, we start with the

general consumption function, Ct = C(Kt, At) which obeys:

dCt = CKdKt + CAdAt + 1
2CAAA

2
tσ

2
Adt (36)

Inserting dAt and dKt from Equations (2) and (4) yields:

dCt = CK(AtK
α
t − Ct − δKt)dt− CA(ρA logAt − 1

2σ
2
A)Atdt+ CAσAAtdBt + 1

2CAAA
2
tσ

2
Adt

so

dCt − 1
2CAAA

2
tσ

2
Adt = CK(AtK

α
t − Ct − δKt)dt− CA(ρA logAt − 1

2σ
2
A)Atdt+ CAσAAtdBt

Inserting dCt from Equation (8) we may eliminate time (and stochastic shocks) and arrive at:

1

γ

(
αAtK

α−1
t − δ − ρ

)
Ct + 1

2(1 + γ)Ct

(
CAAt
Ct

)2

σ2
A = CK(AtK

α
t − Ct − δKt)

− CA(ρA logAt − 1
2σ

2
A)At + 1

2CAAA
2
tσ

2
A

which coincides with Equation (35) when using the condition Ct = V
−1/γ
K . A system of partial

differential equations (PDEs) that implies the same policy function as in Equation (9) in the

absence of shocks can be constructed from:

dCt =

[
1

γ

(
αAtK

α−1
t − δ − ρ

)
Ct + 1

2(1 + γ)Ct

(
CAAt
Ct

)2

σ2
A − 1

2CAAA
2
tσ

2
A

]
dt

dKt = (AtK
α
t − Ct − δKt)dt

dAt = −(ρA logAt − 1
2σ

2
A)Atdt

together with

CA = −1

γ
V
− 1+γ

γ

K VKA, CAA =
1 + γ

γ2
V
− 1+γ

γ
−1

K V 2
KA −

1

γ
V
− 1+γ

γ

K VKAA

such that dCt = CAdAt + CKdKt with dCt, dKt, and dAt from (10), (11), and (12), respectively,

also solves the HJB equation.
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Alternatively, we start with the general costate variable, VK = VK(Kt, At), which obeys

dVK(Kt, At) = VKKdKt + VAKdAt + 1
2VKAAA

2
tσ

2
Adt (37)

Inserting dAt and dKt from Equations (2) and (4) yields:

dVK(Kt, At) = VKK(AtK
α
t −Ct−δKt)dt−VAK(ρA logAt−1

2σ
2
A)Atdt+VAKσAAtdBt+

1
2VKAAA

2
tσ

2
Adt

so

dVK(Kt, At)−1
2VKAAA

2
tσ

2
Adt = VKK(AtK

α
t −Ct−δKt)dt−VAK(ρA logAt−1

2σ
2
A)Atdt+VAKσAAtdBt

Inserting dVK from Equation (34) we may eliminate time (and stochastic shocks) and arrive at:

(ρ− αAtKα−1
t + δ)VK(Kt, At) = (AtK

α
t − C(Kt, At)− δKt)VKK(Kt, At)

− (ρA logAt − 1
2σ

2
A)AtVAK(Kt, At) + 1

2σ
2
AA

2
tVAAK(Kt, At)

which coincides with Equation (35).

A system of partial differential equations (PDEs) that implies the same policy function as in

Equation (9) in the absence of shocks can be constructed from:

dVK = (ρ− αAtKα−1
t + δ)VKdt− 1

2σ
2
AA

2
tVKAAdt

dKt = (AtK
α
t − Ct − δKt)dt

dAt = −(ρA logAt − 1
2σ

2
A)Atdt

such that dVK = VKAdAt+VKKdKt with dVK , dKt, and dAt from (34), (11), and (12), respectively,

also solves the HJB equation.
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C Euler equation RBC in discrete-time

The maximized Bellman equation is given by:

V (Kt, At) = u(Ct(Kt, At)) + βEtV (Kt+1, At+1). (38)

From (38), we obtain for the costate variable (using the envelope theorem)

∂V (Kt, At)

∂Kt
= βEt

[
∂V (Kt+1, At+1)

∂Kt+1

∂Kt+1

∂Kt

]
.

Inserting the first order condition in Equation (19) and the fact that from Equation (14) ∂Kt+1

∂Kt
=

αAtK
α−1
t + 1− δ, the Euler equation is obtained by iterating forward:

C−γt = βEt
[
C−γt+1

(
αAt+1K

α−1
t+1 + 1− δ

)]
.
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D First order perturbation for RBC in continuous-time

As an example, consider a first order approximation to the consumption function of the RBC

model in continuous-time of Section 2. In other words, we are only interested in computing CK ≡
CK

(
K̄, Ā; 0

)
, CA ≡ CA

(
K̄, Ā; 0

)
and Cη ≡ Cη

(
K̄, Ā; 0

)
. Let fi denote the partial derivative of

the functional f (·) with respect to its i-th component. Then:

FK (Kt, At; η) = f1 + f3CK + f4CKK + f5CAK + f6CAAK = 0

FA (Kt, At; η) = f2 + f3CA + f4CKA + f5CAA + f6CAAA = 0

Fη (Kt, At; η) = f3Cη + f4CKη + f5CAη + f6CAAη + f7 = 0

which evaluated at the deterministic steady state reduces to:

FK
(
K̄, Ā; 0

)
= f1 + f3CK = 0

FA
(
K̄, Ā; 0

)
= f2 + f3CA = 0

Fη (Kt, At; η) = f7 + f3Cη = 0

which is a system of three non-linear equations in three unknowns, CK , CA, Cη, where the constants

f1, f2, f3, f7 are also functions of these unknowns.

To find the first of these constants, CK , we differentiate the extended conditional deterministic

system with respect to the capital stock, FK (Kt, At; η), which evaluated at the deterministic steady

state yields:

FK
(
K̄, Ā; 0

)
=
(
αĀK̄α−1 − δ − CK

) CK
C
− 1

γ
α (α− 1) ĀK̄α−2.

Since this derivative must be zero, we obtain the quadratic equation:

CK
2 −

(
αĀK̄α−1 − δ

)
CK +

1

γ
α (α− 1) ĀK̄α−2C = 0

with roots:

CK =

(
αĀK̄α−1 − δ

)
2

±

√(
αĀK̄α−1 − δ

)2 − 4 1
γα (α− 1) ĀK̄α−2C

4

We pick the positive root since it is the only one that is consistent with a concave value function

V (Kt, At) in the capital stock dimension. To see why, recall that the first order condition:

UC (C (Kt, At)) = VK (Kt, At)

together with the assumptions on the utility function U (C) imposes a necessary condition for

concavity of the value function. A sufficient condition for concavity is given by the derivative of

the first order condition:

UCC (C (Kt, At))CK (Kt, At) = VKK (Kt, At)
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which suggests that VKK (Kt, At) < 0 if and only if CK (Kt, At) > 0 given that UCC (C (Kt, At)) <

0.

To compute CA, we differentiate the extended conditional deterministic system with respect to

the TFP, FA (Kt, At; η), which evaluated at the deterministic steady state yields:

FA
(
K̄, Ā; 0

)
=
αKα−1

t

γ
C − CK

(
Kα
t − CA

)
+ CAρA.

Since this derivative must be zero, we arrive to the following linear equation:

CA =
1(

CK + ρA
) [CKKα

t −
αKα−1

t

γ
C

]

which can be readily computed once the value for CK
(
K̄, Ā; 0

)
is obtained from the first step.

To complete the first order perturbation we still need to compute the loading Cη. To do

so, differentiate the conditional deterministic system with respect to the perturbation parameter,

Fη (Kt, At; η), which evaluated at the deterministic steady state yields:

Fη
(
K̄, Ā; 0

)
= CηCK +

1

2
(1 + γ)C

(
CAĀ

C

)
σ2
A −

1

2
CAσ

2
AĀ−

1

2
CAAĀ

2σ2
A

Since Fη (Kt, At; η) = 0, we arrive to the linear equation:

Cη = −
(
CK
)−1

[
1

2
(1 + γ)C

(
CAĀ

C

)2

σ2
A −

1

2
CAσ

2
AĀ−

1

2
CAAĀ

2σ2
A

]
.

Note however that in order to compute the loading Cη we require information on CAA which can

be only computed by solving the system of equations defined by FKK
(
K̄, Ā; 0

)
= 0, FKA

(
K̄, Ā; 0

)
=

0 and FAA
(
K̄, Ā; 0

)
= 0. Hence, as pointed out in Judd and Guu (1993) it follows that for the

computation of perturbations in continuous-time stochastic models, an (n+ 2)-th order determin-

istic approximation to the policy function is required in order to be able to compute an n-th order

stochastic approximation. This restricts the number of derivatives that can be computed with

respect to the perturbation parameter η.

Therefore, a second order approximation to the policy function is defined by a fourth determin-

istic approximation and a second order stochastic approximation. In between some cross derivatives

will be required. It is important to note that after the first order approximation has been computed,

the higher order approximations correspond to linear systems of equations.
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E Risky steady states in discrete-time models

Consider the case of TFP. By defining the difference between the risky steady state and deterministic

steady state as A∆ = Arss−Ā, the second order approximation of TFP evaluated at the risky steady

state:

Arss = Ā+ h2A(Arss − Ā) +
1

2

[
h2AA(Arss − Ā)2 + h2ηηη

2
]
.

can be written as:

−A∆ + h2AA∆ +
1

2
h2AA(A∆)2 +

1

2
h2ηηη

2 = 0

⇒ (A∆)2 +
2 (h2A − 1)

h2AA
A∆ +

h2ηηη
2

h2AA
= 0

which has the two solutions:

A∆ = −h2A − 1

h2AA
±

√(
h2A − 1

h2AA

)2

− h2ηηη2

h2AA
, (39)

where one of the roots can be discarded since it leads to a negative TFP level. The risky steady

state follows from Arss = Ā+A∆.

In a similar fashion, let us define K∆ to be equal to the difference between the risky and the

deterministic steady state value of aggregate capital. Then, the second order approximation of

TFP evaluated at the risky steady state:

Krss = K + h1K(Krss − K̄) + h1A(Arss − Ā)

+
1

2

[
h1KK(Krss − K̄)2 + 2h1KA(Krss − K̄)(Arss − Ā) + h1AA(Arss − Ā)2 + h1ηηη

2
]
.

can be written as:

−K∆ + h1KK∆ + h1AA∆ +
1

2

[
h1KK(K∆)2 + 2h1KAK∆A∆ + h1AA(A∆)2 + h1ηηη

2
]

= 0.

Inserting the solution for A∆ from (39) and rearranging constant, linear, and quadratic terms in

K∆ leads to:

(K∆)2 +

(
h1K − 1 + h1KAA∆

)
h1KK

2K∆ +
2h1AA∆ + h1AA(A∆)2 + h1ηηη

2

h1KK

= 0

with solutions:

K∆ = −h1K − 1 + h1KAA∆

h1KK

±

√(
h1K − 1 + h1KAA∆

h1KK

)2

− 2h1AA∆ + h1AA(A∆)2 + h1ηηη2

h1KK

,

where one of the roots can be discarded as it results in a negative capital stock. Finally, Krss

follows from Krss = K̄ +K∆.
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F Euler equation errors

Figure 8 compares the Euler equation errors between discrete and continuous-time models for each

of the orders of approximation along the aggregate capital lattice, while Figure 9 compares the

Euler equation errors for the first and second order approximations to the policy functions for

consumption for each of the timing assumptions.
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Figure 8. Euler Equation Errors. The graph plots the log10 of the absolute value of the Euler equation
errors for the first order approximation (top panel) and the second order approximation (bottom panel)
to the policy function of aggregate consumption along the capital lattice while keeping productivity at its
determinisitic steady state, EE

(
K, Ā

)
.
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Figure 9. Euler Equation Errors. The graph plots the log10 of the absolute value of the first and
second order approximation Euler equation errors along the capital lattice while keeping productivity at its
determinisitic steady state, EE

(
K, Ā

)
for the RBC model in continuous-time (top panel) and the model in

discrete-time (bottom panel).
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G A model with capital adjustment cost and habit formation

G.1 Continuous-time

G.1.1 Technology

Consider the problem faced by a benevolent planner with a production function:

Yt = AtK
α
t , (40)

where At is the total factor productivity (TFP) and Kt is the aggregate capital stock.

The capital stock increases if the costly gross investment exceeds depreciation,

dKt = (Φ(It/Kt)− δ)Ktdt (41)

where the capital adjustment cost function is given by the cost specification in Jermann (1998):

Φ(It/Kt) =
a1

1− 1/ξ

(
It
Kt

)1−1/ξ

+ a2

and where ξ > 0 denotes the elasticity of the investment-to-capital ratio with respect to Tobin’s

q and a1 ≥ 0 and a2 ≥ 0 are parameters. Following Boldrin et al. (2001), we set a1 = δ1/ξ and

a2 = δ
1−ξ such that the steady state is invariant to ξ, and hence the steady state investment-to-

capital ratio equals the deprecation rate, Ī/K̄ = δ 7. By inserting the market clearing condition:

Yt = Ct + It,

the dynamics for the capital stock can be rewritten as:

dKt =

(
Φ

(
AtK

α
t − Ct
Kt

)
− δ
)
Ktdt K0 > 0 (42)

Finally, the logarithm of the TFP follows an Ornstein-Uhlenbeck process with mean reversion

ρA > 0 of the form:

d logAt = −ρA logAtdt+ σAdBA,t

⇔ dAt = −(ρA logAt − 1
2σ

2
A)Atdt+ σAAtdBA,t A0 > 0 (43)

where BA,t is a standard Brownian motions with volatility σA.

7Given this parameterization it can be shown that in the steady Φ(Ī/K̄) = Φ(δ) = δ, Φ′(Ī/K̄) = Φ′(δ) = 1, and
Φ′′(Ī/K̄) = Φ′′(δ) = − 1

ξδ
, i.e. the slope of Φ′ depends negatively on ξ and δ.
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G.1.2 Households

The economy is assumed to be inhabited by a sufficiently large number of identical individuals,

which maximize their discounted life-time utility

U0 ≡ E0

[ˆ ∞
0

e−ρt
(Ct −Xt)

1−γ

1− γ
dt

]
, (44)

where ρ is the household’s subjective discount rate and γ is related to the coefficient of relative risk

aversion. Equation (44) exhibits adjacent complementarity in consumption as defined in Ryder and

Heal (1973). Hence, an increase in consumption increases the marginal utility of consumption at

adjacent dates relative to the marginal utility of consumption at distant ones. The consumption

choice made by households is assumed to be non-negative, Ct ≥ 0, and not to fall below a subsistence

level of consumption, Ct ≥ Xt. Habit in consumption is defined endogenously within the model

according to8:

Xt = e−atX0 + b

ˆ t

0
ea(s−t)Csds, X0 > 0

or equivalently,

dXt = (bCt − aXt)dt. (45)

Hence, Xt is a weighted sum of past consumption, with weights declining exponentially into the

past. The larger is b, the less weight is given to past consumption in determining Xt and viceversa.

The special case b = X0 = 0 correspond to the case of time-separable utility with constant relative

risk aversion (see also Constantinides (1990)).

Households maximize Equation (44) subject to the dynamics in (42), (45) and (43).

G.1.3 The HJB equation and the first-order conditions

The benevolent planner chooses a path for consumption in order to maximize expected life-time

utility of a representative household. Define the value of the optimal program

V (K0, X0, A0) = max
{Ct≥Xt∈R+}∞t=0

U0 s.t. (42), (43) and (45) (46)

in which Ct ≥ Xt ∈ R+ denotes the control at instant t ∈ R+.

As the first step, the Hamilton-Jacobi-Bellman equation (HJB) reads for any t ∈ [0,∞)

ρV (Kt, Xt, At) = max
Ct≥Xt∈R+

{
(Ct −Xt)

1−γ

1− γ
+

1

dt
EtdV (Kt, Xt, At)

}
(47)

where

dV (Kt, Xt, At) = VKdKt + VXdXt + VAdAt + 1
2VAAA

2
tσ

2
Adt

8This is in contrast with the relative consumption model (catching up with the Joneses), or external habit model,
where the habit is aggregate consumption and thus exogenous to the households.
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Using the martingale difference properties of stochastic integrals, we arrive at

0 = max
Ct≥Xt∈R+

{
(Ct −Xt)

1−γ

1− γ
+ (Φ((AtK

α
t − Ct)/Kt)Kt − δKt)VK(Kt, Xt, At)

+ (bCt − aXt)VX(Kt, Xt, At)− (ρA logAt − 1
2σ

2
A)AtVA(Kt, Xt, At)

+ 1
2σ

2
AA

2
tVAA(Kt, Xt, At)− ρV (Kt, Xt, At)

}

The first-order condition for any interior solution reads:

(Ct −Xt)
−γ + bVX(Kt, Xt, At) = Φ′(It/Kt)VK(Kt, Xt, At), (48)

making optimal consumption a function of the state variables, Ct = C(Kt, Xt, At), where Φ′ (It/Kt) =

dΦ (It/Kt) /d (It/Kt) = a1 (It/Kt)
−1/ξ.

The maximized (concentrated) HJB equation is then:

ρV (Kt, Xt, At) =
(C(Kt, Xt, At)−Xt)

1−γ

1− γ
+ (Φ((AtK

α
t − C(Kt, Xt, At))/Kt)Kt

−δKt)VK(Kt, Xt, At) + (bC(Kt, Xt, At)− aXt)VX(Kt, Xt, At)

−(ρA logAt − 1
2σ

2
A)AtVA(Kt, Xt, At) + 1

2σ
2
AA

2
tVAA(Kt, Xt, At) (49)

From (49), we obtain for the costate variable with respect to capital (using the envelope theorem):

ρVK(Kt, Xt, At) = (Φ((AtK
α
t − Ct)/Kt)Kt − δKt)VKK(Kt, Xt, At)

+(Φ((AtK
α
t − Ct)/Kt) + Φ′((AtK

α
t − Ct)/Kt)((α− 1)AtK

α−1
t

+Ct/Kt)− δ)VK(Kt, Xt, At) + (bCt − aXt)VXK(Kt, Xt, At)

−(ρA logAt − 1
2σ

2
A)AtVAK(Kt, Xt, At) + 1

2σ
2
AA

2
tVAAK(Kt, Xt, At)

such that:

(ρ− Φ((AtK
α
t − Ct)/Kt)− Φ′((AtK

α
t − Ct)/Kt)((α− 1)AtK

α−1
t + Ct/Kt) + δ)VK(Kt, Xt, At) =

(Φ((AtK
α
t − Ct)/Kt)Kt − δKt)VKK(Kt, Xt, At) + (bCt − aXt)VXK(Kt, Xt, At)

−(ρA logAt − 1
2σ

2
A)AtVAK(Kt, Xt, At) + 1

2σ
2
AA

2
tVAAK(Kt, Xt, At)
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Using Itô’s Lemma, the evolution of the costate with respect to capital is:

dVK(Kt, Xt, At) = VKK(Kt, Xt, At)dKt + VKX(Kt, Xt, At)dXt

+VKA(Kt, Xt, At))dAt + 1
2σ

2
AA

2
tVKAA(Kt, Xt, At)dt

= VKK(Kt, Xt, At)(Φ(It/Kt)Kt − δKt)dt

+VKX(Kt, Xt, At)(bCt − aXt)dt− VKA(Kt, Xt, At)(ρA logAt − 1
2σ

2
A)Atdt

+VKA(Kt, Xt, At)σAAtdBA,t + 1
2σ

2
AA

2
tVKAA(Kt, Xt, At)dt

= (ρ− Φ((AtK
α
t − Ct)/Kt)− Φ′((AtK

α
t − Ct)/Kt)((α− 1)AtK

α−1
t + Ct/Kt)

+δ)VK(Kt, Xt, At)dt+ VKA(Kt, Xt, At)σAAtdBA,t (50)

From (49), the costate variable with respect to the habit level (using the envelope theorem) reads:

ρVX(Kt, Xt, At) = −(Ct −Xt)
−γ + (Φ((AtK

α
t − Ct))Kt − δKt)VKX(Kt, Xt, At)

+(bCt − aXt)VXX(Kt, Xt, At)− aVX(Kt, Xt, At)

−(ρA logAt − 1
2σ

2
A)AtVAX(Kt, Xt, At) + 1

2σ
2
AA

2
tVAAX(Kt, Xt, At)

such that:

(ρ+ a)VX(Kt, Xt, At) + (Ct −Xt)
−γ = (Φ((AtK

α
t − Ct)/Kt)Kt − δKt)VKX(Kt, Xt, At)

+(bCt − aXt)VXX(Kt, Xt, At)

−(ρA logAt − 1
2σ

2
A)AtVAX(Kt, Xt, At)

+1
2σ

2
AA

2
tVAAX(Kt, Xt, At)

Using Itô’s Lemma, the evolution of the costate with respect to the habit level is:

dVX(Kt, Xt, At) = VXK(Kt, Xt, At)dKt + VXX(Kt, Xt, At)dXt

+VXA(Kt, Xt, At)dAt + 1
2σ

2
AA

2
tVXAA(Kt, Xt, At)dt

= VXK(Kt, Xt, At)(Φ(It/Kt)Kt − δKt)dt+ VXX(Kt, Xt, At)(bCt − aXt)dt

−VXA(Kt, Xt, At)(ρA logAt − 1
2σ

2
A)Atdt+ VXA(Kt, Xt, At)σAAtdBA,t

+1
2σ

2
AA

2
tVXAA(Kt, Xt, At)dt

= ((ρ+ a)VX(Kt, Xt, At) + (Ct −Xt)
−γ)dt+ VXA(Kt, Xt, At)σAAtdBA,t(51)
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G.1.4 Equilibrium

The equilibrium in this economy in the time-domain is given by the sequence {VK,t, VX,t,Kt, Xt, At}∞t=0

that solves the following system of differential equations:

dVK,t = (ρ− Φ((AtK
α
t − Ct)/Kt)− Φ′((AtK

α
t − Ct)/Kt)((α− 1)AtK

α−1
t + Ct/Kt)

+δ)VK,tdt+ VKA,tσAAtdBA,t

dVX,t = ((ρ+ a)VX,t + (Ct −Xt)
−γ)dt+ VXA,tσAAtdBA,t

dKt = (Φ(It/Kt)Kt − δKt)dt

dXt = (bCt − aXt)dt

dAt = −(ρA logAt − 1
2σ

2
A)Atdt+ σAAtdBA,t

together with initial conditions K (0) = K0, X (0) = X0, and A (0) = A0 and where Ct solves the

non-linear algebraic equation:

(Ct −Xt)
−γ + bVX,t = Φ′((AtK

α
t − Ct)/Kt)VK,t. (52)

Alternatively, the equilibrium of the economy in the state-space domain is given by the set of

policy functions {VK (Kt, Xt, At) , VX (Kt, Xt, At) , C (Kt, Xt, At)} that satisfy the following system

of functional equations:

0 = (ρ− Φ((AtK
α
t − C (Kt, Xt, At))/Kt)

−Φ′((AtK
α
t − C (Kt, Xt, At))/Kt)((α− 1)AtK

α−1
t + C (Kt, Xt, At) /Kt)

+δ)VK,t(Kt, Xt, At)− (Φ((AtK
α
t − C (Kt, Xt, At))/Kt)Kt − δKt)VKK(Kt, Xt, At)

−(bC (Kt, Xt, At)− aXt)VXK(Kt, Xt, At) + (ρA logAt − 1
2σ

2
A)AtVAK(Kt, Xt, At)

−1
2σ

2
AA

2
tVAAK(Kt, Xt, At)

0 = (ρ+ a)VX(Kt, Xt, At) + (C (Kt, Xt, At)−Xt)
−γ

−(Φ((AtK
α
t − C (Kt, Xt, At))/Kt)Kt − δKt)VKX(Kt, Xt, At)

−(bC (Kt, Xt, At)− aXt)VXX(Kt, Xt, At) + (ρA logAt + 1
2σ

2
A)AtVAX(Kt, Xt, At)

−1
2σ

2
AA

2
tVAAX(Kt, Xt, At)

0 = (C (Kt, Xt, At)−Xt)
−γ + bVX (Kt, Xt, At)− Φ′((AtK

α
t − C (Kt, Xt, At))/Kt)VK (Kt, Xt, At)

together with the dynamic equations for the state variables:

dKt = (Φ((AtK
α
t − C (Kt, Xt, At))/Kt)Kt − δKt)dt (53)

dXt = (bC (Kt, Xt, At)− aXt)dt (54)

dAt = −(ρA logAt − 1
2σ

2
A)Atdt+ σAAtdBA,t (55)
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subject to initial conditions K (0) = K0, X (0) = X0 and A (0) = A0.

G.1.5 Deterministic steady state

A deterministic steady state is defined as the limiting behavior of the economy under the assumption

that all variables in the economy do not grow and agents do not anticipate the effects of future

shocks. The steady state of the economy is given by the values {C̄, Ī, V̄K , V̄X , K̄, X̄, Ā} that solve

the following system of equations:

ρ− Φ(Ī/K̄)− Φ′(Ī/K̄)((α− 1)ĀK̄α−1 + C̄/K̄) + δ = 0 (56)

(ρ+ a)V̄X + (C̄ − X̄)−γ = 0 (57)

Φ
(
Ī/K̄

)
− δ = 0 (58)

bC̄ − aX̄ = 0 (59)(
C̄ − X̄

)−γ
+ bV̄X − Φ′

(
Ī/K̄

)
V̄K = 0 (60)

Ī/K̄ − ĀK̄α − C̄
K̄

= 0 (61)

Ā− 1 = 0. (62)

The solution to this system of equation is entirely determined by the steady state value of the

investment-capital ratio (Ī/K̄). Given the values of a1 and a2, it is possible to show that for any

value of ξ:

Ī/K̄ = δ.

Note that for the steady-state value of the investment-capital ratio, Φ(δ) = δ, Φ′(δ) = 1, and

Φ′′(Ī/K̄) = Φ′′(δ) = − 1
ξδ . Now, from Equations (56) and (61) we find the steady state value of the

capital stock as:

K̄ =

[
αĀ

(ρ+ δ)

] 1
1−α

. (63)

Using Equation (61) we find the steady state value of consumption:

C̄ = ĀK̄α − δK̄. (64)

From Equation (59) we pin down the steady state value of the habit as:

X̄ =
b

a
C̄. (65)

Finally using Equations (57) and (60) we find the long-run values of the costate variables:

V̄X = − 1

ρ+ a

(
C̄ − X̄

)−γ
(66)

V̄K =

(
1− b

ρ+ a

)(
C̄ − X̄

)−γ
. (67)
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G.1.6 Conditional deterministic system

We start with the general costate variable, VK = VK(Kt, Xt, At), which obeys:

dVK = VKKdKt + VKXdXt + VKAdAt + 1
2VKAAσ

2
AA

2
tdt (68)

Inserting dKt, dAt, and dXt yields:

dVK = VKK(Φ((AtK
α
t − Ct)/Kt)Kt − δKt)dt+ VKX(bCt − aXt)dt

−VKA(ρA logAt − 1
2σ

2
A)Atdt+ 1

2VKAAσ
2
AA

2
tdt+ VKAσAAtdBA,t

so

dVK − 1
2VKAAσ

2
AA

2
tdt = VKK(Φ((AtK

α
t − Ct)/Kt)Kt − δKt)dt+ VKX(bCt − aXt)dt

−VKA(ρA logAt − 1
2σ

2
A)Atdt+ VKAσAAtdBA,t

Inserting dVK from Equation (50) we may eliminate time (and stochastic shocks) and arrive at the

the costate obtained from the maximized HJB equation with respect to the capital stock:

(ρ− Φ((AtK
α
t − Ct)/Kt)− Φ′((AtK

α
t − Ct)/Kt)((α− 1)AtK

α−1
t + Ct/Kt) + δ)VK − 1

2VKAAσ
2
AA

2
t =

VKK(Φ((AtK
α
t − Ct)/Kt)Kt − δKt) + VKX(bCt − aXt)− VKA(ρA logAt − 1

2σ
2
A)At

Similarly, VX = VX(Kt, Xt, At) obeys:

dVX = VXKdKt + VXXdXt + VXAdAt + 1
2VXAAA

2
tσ

2
Adt (69)

Inserting dKt, dXt, and dAt yields:

dVX = VXK(Φ((AtK
α
t − Ct)/Kt)Kt − δKt)dt+ VXX(bCt − aXt)dt

−VXA(ρA logAt − 1
2σ

2
A)Atdt+ VXAσAAtdBA,t + 1

2VXAAσ
2
AA

2
tdt

so

dVX − 1
2VXAAσ

2
AA

2
tdt = VXK(Φ((AtK

α
t − Ct)/Kt)Kt − δKt)dt+ VXX(bCt − aXt)dt

−VXA(ρA logAt − 1
2σ

2
A)Atdt+ VXAσAAtdBA,t

Inserting dVX from Equation (51) we may eliminate time (and stochastic shocks) and arrive at the

the costate obtained from the maximized HJB equation with respect to the habit:

(ρ+ a)VX + (Ct −Xt)
−γ − 1

2VXAAσ
2
AA

2
t = VXK(Φ((AtK

α
t − Ct)/Kt)Kt − δKt)

+VXX(bCt − aXt)− VXA(ρA logAt − 1
2σ

2
A)At.
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A system of partial differential equations (PDEs) that implies the same policy function in the

absence of shocks can be constructed from:

dVK = [(ρ− Φ((AtK
α
t − Ct)/Kt)

−Φ′((AtK
α
t − Ct)/Kt)((α− 1)AtK

α−1
t + Ct/Kt) + δ)VK − 1

2VKAAσ
2
AA

2
t

]
dt

dVX =
[
(ρ+ a)VX + (Ct −Xt)

−γ − 1
2σ

2
AA

2
tVXAA

]
dt

dKt = [Φ((AtK
α
t − Ct)/Kt)Kt − δKt] dt

dXt = [bCt − aXt] dt

dAt =
[
−(ρA logAt − 1

2σ
2
A)At

]
dt

where Ct is implicitly defined by:

(Ct −Xt)
−γ + bVX(Kt, Xt, At) = Φ′((AtK

α
t − Ct)/Kt)VK(Kt, Xt, At).

such that dVK = VKKdKt+VKXdXt+VKAdAt with dVK , dKt, dXt, and dAt from (34), (11), and

(12), respectively, also solves the HJB equation.

G.2 Discrete-time

G.2.1 Firms

A representative firm produces its output according to the production function:

Yt = AtK
α
t , (70)

where At is total factor productivity and Kt is the aggregate capital stock.

The log of total factor productivity (TFP) follows an AR(1) process

logAt+1 = ρ̃A logAt + σ̃AεA,t+1

⇔ At+1 = Aρ̃At exp(σ̃AεA,t+1) (71)

where ρ̃A denotes the AR coefficient of the TFP process in discrete time, σ̃A its standard deviation,

and εA,t ∼ N (0, 1) a shock on it.

Capital is assumed to be owned by households, which lend it out to firms in each period. Hence,

the firm maximizes profits given by

Πt = AtK
α
t − rtKt

where rt is the net rental rate of capital which is given by the first order condition of the firm as

rt = αAtK
α−1
t
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leading to profits of

Πt = (1− α)AtK
α
t ,

which are transferred to households, as well.

G.2.2 Households

The economy is assumed to be inhabited by a sufficiently large number of identical individuals,

which maximize their discounted life-time utility

U0 ≡ E0

[ ∞∑
t=0

βt
(Ct −Xt)

1−γ

1− γ

]
, (72)

where β denotes the household’s subjective discount factor and Xt is the subsistence level of con-

sumption. Our definition of the subsistence level in continuous time, given by (45), can be written

in discrete-time as (see Grishchenko, 2010):

Xt = b̃
∞∑
s=0

(1− ã)sCt−1−s,

which can be written in recursive form as

Xt = b̃Ct−1 + (1− ã)Xt−1 (73)

implying a steady state habit-to-consumption ratio of X̄
C̄

= b̃
ã

9.

The capital stock, which is owned by households and lent out to firms, increases if gross invest-

ment exceeds capital adjustment costs and depreciation

Kt+1 =

(
Φ

(
It
Kt

)
+ 1− δ

)
Kt, (74)

where the capital adjustment cost function is given by the cost specification in Jermann (1998):

Φ(It/Kt) =
a1

1− 1/ξ

(
It
Kt

)1−1/ξ

+ a2

and where ξ > 0 denotes the elasticity of the investment-to-capital ratio with respect to Tobin’s q

and a1 ≥ 0 and a2 ≥ 0 are parameters.

Households own the capital stock, invest in physical capital facing the capital adjustment costs

and get rents rtKt = αAtK
α−1
t Kt as well as profits Πt = (1− α)AtK

α
t from firms summing up to

αAtK
α
t + (1− α)AtK

α
t = AtK

α
t = Yt . Hence, the budget constraint of a representative household

9Since both timing assumptions lead to the same long-run habit-to-consumption ratio,
(
X
C

)CT
= b

a
(see (65)) and(

X
C

)DT
= b̃

ã
, in the following simulations we set b̃ = b and ã = a.
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reads:

Kt+1 =

(
Φ

(
AtK

α
t − Ct
Kt

)
+ 1− δ

)
Kt (75)

G.2.3 The HJB Equation and the first-order conditions

The representative household chooses the paths of consumption and investment that maximize its

expected life-time utility. Define the value of the optimal program

V (K0, A0, X0) = max
{Ct}∞t=0

U0 s.t. (71), and (75) (76)

in which Ct ∈ R+ and Kt+1 ∈ R+ define the control variables at time t ∈ Z.

The Bellman equation of the household reads for any t ∈ {0, 1, 2, . . . }

V (Kt, At, Xt) = max
Ct∈R+

{
(Ct −Xt)

1−γ

1− γ
+ βEtV (Kt+1, At+1, Xt+1)

}
(77)

with associated first order condition

(Ct −Xt)
−γ = −βEt

[
∂V (Kt+1, At+1, Xt+1)

∂Ct

]
= −βEt

[
∂V (Kt+1, At+1, Xt+1)

∂Kt+1

∂Kt+1

∂Ct
+
∂V (Kt+1, At+1, Xt+1)

∂Xt+1

∂Xt+1

∂Ct

]
= βEt

[
∂V (Kt+1, At+1, Xt+1)

∂Kt+1

(
Φ′
(
It
Kt

))
+ (Ct+1 −Xt+1)−γ b̃

]
⇒ βEt

[
∂V (Kt+1, At+1, Xt+1)

∂Kt+1

]
=

(
(Ct −Xt)

−γ − b̃βEt
[
(Ct+1 −Xt+1)−γ

])(
Φ′
(
It
Kt

))−1

(78)

making optimal consumption a function of the state variables, Ct = C(Kt, At, Xt).

The maximized Bellman equation is

V (Kt, At, Xt) = u(Ct(Kt, At, Xt)) + βEtV (Kt+1, At+1, Xt+1). (79)

From (79), we obtain for the costate variable (using the envelope theorem)

∂V (Kt, At, Xt)

∂Kt
= βEt

[
∂V (Kt+1, At+1, Xt+1)

∂Kt+1

∂Kt+1

∂Kt

]
Inserting the first order condition in Equation (78) and the fact that from Equation (74) it easy to

see that
∂Kt+1

∂Kt
= Φ

(
It
Kt

)
+ 1− δ + Φ′

(
It
Kt

)(
rt −

It
Kt

)
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we arrive at

∂V (Kt, At, Xt)

∂Kt
=

(Ct −Xt)
−γ − b̃βEt [(Ct+1 −Xt+1)−γ ]

Φ′
(
It
Kt

) (
Φ

(
It
Kt

)
+ 1− δ + Φ′

(
It
Kt

)(
rt −

It
Kt

))
.

The Euler equation is obtained by iterating forward and inserting into (78)

(Ct −Xt)
−γ − b̃βEt [(Ct+1 −Xt+1)−γ ]

Φ′
(
It
Kt

) (80)

= βEt

(Ct+1 −Xt+1)−γ − b̃β(Ct+2 −Xt+2)−γ

Φ′
(
It+1

Kt+1

) (
Φ

(
It
Kt

)
+ 1− δ + Φ′

(
It
Kt

)(
rt −

It
Kt

))
G.2.4 Equilibrium

The equilibrium in the economy is given by the sequence {Ct, Xt, It,Kt, At}∞t=0 that solves the

following system of equations:

(Ct −Xt)
−γ − b̃βEt [(Ct+1 −Xt+1)−γ ]

Φ′
(
It
Kt

)
= βEt

(Ct+1 −Xt+1)−γ − b̃β(Ct+2 −Xt+2)−γ

Φ′
(
It+1

Kt+1

) (
Φ

(
It
Kt

)
+ 1− δ + Φ′

(
It
Kt

)(
rt −

It
Kt

))
Xt = b̃Ct−1 + (1− ã)Xt−1

Kt+1 =

(
Φ

(
It
Kt

)
+ 1− δ

)
Kt

It = AtK
α
t − Ct

logAt+1 = ρ̃A logAt + σ̃AεA,t+1

The equilibrium of the economy is characterized by a system of 5 stochastic difference equations

in 5 variables whose solution delivers the optimal paths of the exogenous variable At and the

endogenous variables, Kt, It, Ct, and Xt.

G.2.5 Steady State

The deterministic steady state can be derived as follows. The equation for capital accumulation

reads in the deterministic steady state

1 = Φ

(
Ī

K̄

)
+ 1− δ

=
a1

1− 1/ξ

(
Ī

K̄

)1−1/ξ

+ a2 + 1− δ.
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Inserting a1 = δ1/ξ and a2 = δ
1−ξ , we arrive at

1 =
δ1/ξ

1− 1/ξ

(
Ī

K̄

)1−1/ξ

+
δ

1− ξ
+ 1− δ.

implying an investment-to-capital ratio of

(
Ī

K̄

)
=

δ − δ
1−ξ

δ1/ξ

1−1/ξ

 1
1−1/ξ

= δ.

Using the Euler equation, we get the capital stock

K̄ =

[
1
β − 1 + δ

αA

] 1
α−1

.

From the capital-to-investment ratio, we can compute the corresponding deterministic steady state

value for investment and from the aggregate resource constraint the one for consumption. Further,

we have Ā = 1 and X̄
C̄

= b̃
ã .

G.3 Calibration

Table 5 summarizes the prototype models described above. The model is calibrated annually and

the parameters should be interpreted accordingly. The values of the parameters are the same as

those used in Section 2. The calibration of the habit formation process is taken from Constantinides

(1990)10. Table 6 summarizes the calibration used for the model with habit formation and capital

adjustment costs.

G.4 Extended RBC model: Results

G.4.1 Comparison of steady states

Using the calibration above, Table 7 presents both the deterministic and the risky the steady state

values for the variables of the model.

G.4.2 Approximated policy functions

Using the calibration in Table 6, Figure (10) plots the approximated policy function for consumption

for the discrete- and continuous-time models along a discretized grid containing nK = 1001 values

for the capital stock around the interval K ∈
[
0.5K̄, 1.5K̄

]
, while keeping the habit persistence

and the TFP levels at their deterministic steady states. We plot the first and second order policy

functions.

10The calibration of the parameters a and b in the dynamics of the habit formation match, in the steady state, the
value of the weight of habit in the utility use in Jermann (1998)
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Table 5. Summary of the two modeling approaches.

Discrete-time Continuous-time

Objective function (U0) E0

[∑∞
t=0 β

t (Ct−Xt)1−γ

1−γ

]
E0

[´∞
0 e−ρt (Ct−Xt)1−γ

1−γ dt
]

Market clearing AtK
α
t = Ct + It AtK

α
t = Ct + It

Capital dynamics Kt+1 =
(Φ (It/Kt) + (1− δ))Kt

dKt = (Φ (It/Kt)− δ)Ktdt

Habit dynamics Xt = bCt−1 + (1− a)Xt−1 dXt = (bCt − aXt) dt

TFP dynamics
logAt+1 = ρ̃A logAt

+σ̃AεA,t+1

d logAt = −ρA logAtdt
+σAdBA,t

Uncertainty εA,t ∼ N (0, 1) (BA,t+∆ −BA,t) ∼ N (0,∆)

Table 6. Parameter values for the RBC model with habit persistence and capital adjustment
costs.

Parameter Discrete-time Continuous-time

Discounting, β/ρ 0.9606 0.0410
Relative risk aversion, γ 5.0000 5.0000
Depreciation rate, δ 0.0963 0.0963
Capital share in output, α 0.3600 0.3600
Persistence of TFP, ρ̃A/ρA 0.8145 0.2052
Volatility of TFP, σ̃A/σA 0.0372 0.0410
Adjustment cost parameter, ξ 0.4350
Weight of current cons., b 0.3500
Weight of past cons., a 0.6000

Figure (11) plots compares the first and second order approximations to the policy functions

for consumption for both the discrete- and the continuous-time model.

The first order approximation to the consumption and the shadow prices of capital and habit

are:

C
(1),CT
t = 1.2854 + 0.0232

(
Kt − K̄

)
+ 0.7850

(
Xt − X̄

)
+ 0.2824

(
At − Ā

)
− 0.0087
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Table 7. Comparison of steady states values.

Variable Determ. Risky

Discrete-time Continuous-time
First Second First Second Global

A 1.0000 1.0000 1.0037 1.0041 1.0041 1.0041
X 0.7498 0.7498 0.7623 0.7631 0.7645 0.7641
K 4.5077 4.5077 4.9077 4.9243 4.9932 4.9761
C 1.2854 1.2854 1.3069 1.3082 1.3105 1.3100

while the second order approximations are:

C
(2),CT
t = 1.2854 +

(
0.0232− 1.8768 × 10−4

) (
Kt − K̄

)
+ (0.7850− 0.0033)

(
Xt − X̄

)
+ (0.2824− 0.0066)

(
At − Ā

)
− 0.0087 + 0.0390

(
Kt − K̄

) (
Xt − X̄

)
−0.0423

(
Kt − K̄

) (
At − Ā

)
+ 0.6533

(
Xt − X̄

) (
At − Ā

)
+

1

2

[
−0.0081

(
Kt − K̄

)2 − 0.4065
(
Xt − X̄

)2 − 1.1480
(
At − Ā

)2 − 9.4246 × 10−4
]
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Figure 10. Policy functions for consumption. The graph plots the first order approximation (top
panel) and the second order approximation (bottom panel) to the policy function for aggregate consumption
along the capital lattice while keeping habit persistence and productivity at their determinisitic steady
states, C

(
K, X̄, Ā

)
. A circle denotes the deterministic steady state, a star denotes the risky steady state

approximated from the continuous-time model, and a square the risky steady state approximated from the
discrete-time model
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Figure 11. Policy functions for consumption. The graph plots the first and second order approximation
to the policy function for aggregate consumption along the capital lattice while keeping habit persistence
and productivity at their determinisitic steady state, C

(
K, X̄, Ā

)
for the model in continuous-time (top

panel) and the model in discrete-time (bottom panel). A circle denotes the deterministic steady state, a star
denotes a first order approximation to the risky steady state approximated, while a square denotes a second
order approximation to the risky steady state.

G.4.3 Impulse Response Functions

This section compares the response of the endogenous variables of the discrete- and continuous-time

models to a temporary shock on the level of total factor productivity.

Figure 12 plots the impulse response functions (IRFs) for the levels of aggregate consumption,

aggregate capital, habit persistence, and future productivity when the discrete-time economy is

subject to a one standard deviation shock in the TFP. The blue lines plot the IRFs based on the

first order approximation, and the red lines those based on the second order approximation to the

policy functions. For the sake of comparison, we assume that before the shock hits, the economy

rests in its deterministic steady state. Up to a first order approximation, the model converges to the

deterministic steady state as time passes. However, when the model is approximated to a second

order, the economy converges instead to its (approximated) risky steady state.
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Figure 12. Impulse-Response function to a TFP shock: Discrete-time. The graph plots the impulse
response functions (IRFs) for the levels of aggregate consumption, aggregate capital, habit persistence when
time in the economy is assumed to be discrete. The economic system is assumed to be in its deterministic
steady state before the shock hits. The dash-dotted line corresponds to the deterministic steady state, and
the dashed line to the approximated risky steady state.

Figure 13 plots the responses of aggregate consumption, aggregate capital stock, habit persis-

tence and future productivity to the same TFP shock when time in the economy is assumed to be

continuous. The blue lines plot the IRFs based on the first order approximation, and the red lines

those based on the second order approximation to the policy functions. The IRF’s are computed

by iterating forward, from the deterministic steady state, the system of equations consisting of

Euler-discretized versions of the stochastic process for the state variables and the approximated

consumption function.

49



10 20 30 40 50 60

1.285

1.29

1.295

1.3

1.305

1.31

1.315

10 20 30 40 50 60

4.5

4.6

4.7

4.8

4.9

5

10 20 30 40 50 60

0.745

0.75

0.755

0.76

0.765

10 20 30 40 50 60

1

1.01

1.02

1.03

1.04

Figure 13. Impulse-Response function to a TFP shock: Continuous-time. The graph plots the
impulse response functions (IRFs) for the levels of aggregate consumption, aggregate capital, and habit
persistence when time in the economy is assumed to be continuous. The economic system is assumed to be
in its deterministic steady state before the shock hits. The dash-dotted line corresponds to the deterministic
steady state.

For completeness, Figures 14 and 15, compare the effect of the timing assumption on the IRFs

for each type of approximation.
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Figure 14. First order Impulse-Response function to a TFP shock: Discrete-time vs.
Continuous-time. The graph plots the first order impulse response functions (IRFs) for the levels of
aggregate consumption, aggregate capital, and habit persistence for both discrete- and continuous-time
models. The economic system is assumed to be in its deterministic steady state before the shock hits.
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Figure 15. Second order Impulse-Response function to a TFP shock: Discrete-time vs.
Continuous-time. The graph plots the second order impulse response functions (IRFs) for the levels
of aggregate consumption, aggregate capital, and habit persistence for both discrete- and continuous-time
models. The economic system is assumed to be in its deterministic steady state before the shock hits.The
dash-dotted line corresponds to the deterministic steady state.
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H A model with rare disasters

[WORK IN PROGRESS] Posch and Trimborn (2013) model, solution using first-order perturbation;

shows how first-order perturbation performs relatively to the certainty equivalent solution

H.1 Continuous-time: Central planner

H.1.1 Technology

H.1.2 Households

H.1.3 The HJB equation and the first-order conditions
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