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Abstract

Markov-switching dynamic stochastic general equilibrium models allow for discrete,

recurring shifts in the economic or policy environment. Typical solution methods for

this class of models assume that agents perfectly observe the current regime. In this

paper, we relax the perfect information assumption and instead allow agents to perform

Bayesian learning about the current regime. Using this framework, we develop a general

perturbation solution method to handle the learning framework. Our methodology relies

on joint approximations to both the learning process and the decision rules, and highlights

the necessity of second- and higher-order rather than simple linear approximations. We

illustrate the method with three simple examples.
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1 Introduction

What happens when there is a sudden discrete change in the economic environment? Examples

of such changes are plentiful in macroeconomics: Changes in fiscal or monetary policy (Davig

and Leeper (2007) and Lubik and Schorfheide (2004), for example) and changes in the vari-

ances of exogenous shocks (Sims and Zha (2006)) are just two examples. Markov-switching full

information rational expectations models (see Bianchi (2013), for example) offer one route to

incorporate these sudden changes into economic models by modeling them as random variables

that follow a discrete state Markov chain. Underlying these models is the assumption that all

agents in the model are immediately aware both that a shift in the environment has occurred

and that agents know the exact specification of the post-change environment.1

In this paper we show how to effi ciently compute models where we endow agents with a

different information set that does not include the current economic environment (i.e. the

current state of the discrete Markov chain). Instead, the agents in our model use Bayes’law to

infer the current economic environment (or, to be more precise, the probability associated with

each possible environment). Is this assumption more or less reasonable than the assumption of

full information that has been used by the bulk of the literature? The answer certainly depends

on the specific application, but the full information assumption gives agents in the model a

substantial informational advantage relative to any econometrician that analyzes the available

data ex-post, whereas our approach makes the agents in the model face a filtering problem akin

to the problem faced by econometricians. It might be worthwhile to emphasize that our agents

are still fully rational in that they do not leave any information unexploited.

It is well known that solving full information Markov-switching rational expectations models

that are linear apart from the discrete changes in environment is substantially more involved than

solving corresponding models with Markov-switching. In this paper we face further diffi culties

because we introduce learning via Bayes’ rule, which naturally introduces a nonlinearity in

the equilibrium conditions. Furthermore, we are interested in the role of nonlinearities more

generally, so a linear approximation will not suffi ce for our purposes. We build on Foerster

et al. (2016) to show how to construct higher order perturbation solutions in Markov-switching

models where agents have to infer the current economic environment. Using a perturbation-

based method allows us to solve the model much faster than other global solution methods

would allow. The key insight to our approach is that we jointly approximate the decision rules

1Another feature of these models that we will keep in our analysis is that agents are aware that sudden
changes can possibly occur again in the future.
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and the learning process (i.e. Bayes’rule).2 The joint approximation is exactly allows us to rely

on the methods developed by Foerster et al. (2016).

Previous papers that have introduced partial information into rational expectations Markov-

switching models either had to resort to rather laborious global solution methods (Davig (2004))

or have used a less general information structure such as agents observing the current economic

environment, but not knowing how persistent it is (Bianchi and Melosi (2017)), which simplifies

the inference problem that agents in the model face. Our setup allows for information structures

like those used in Bianchi and Melosi (2017), but can also accommodate situations where agents

do not observe the current values of the parameters that are governed by the discrete state

Markov chain. Markov switching environments when agents are not fully rational, but instead

learn adaptively, have been studied by Branch et al. (2013). In terms of model solution, the

assumption of adaptive learning makes solving the model easier because the way expectations

are formed is predetermined (it is part of the model description in adaptive learning models)

rather than jointly determined with the rest of the decision rules as in our approach.3

The remainder of the paper is as follows. In Section 2, we lay out a framework of the class of

models we study, including the Bayesian learning process. Section 3 contains the main part of

our methodology, which shows how to construct approximations to the solution of the framework

considered. Sections 4, 5, and 6 show three examples that build intuition about the methodology

and highlight its features: first a simple filtering example to demonstrate the learning process,

a real business cycle example that layers on economic-decision making, and lastly a taxation

example that contains feedback between the learning process and the economic decision-making.

Finally, Section 7 concludes.

2 The General Framework

This section lays out the general framework that we consider. We show how a general class of

models is combined with a Bayesian learning process, and then characterize the set of solutions to

the problem. As an illustrative guide, we show how a real business cycle model with unobserved

total factor productivity—which we study in detail in Section 5, fits into the framework.

2By studying examples that can be analytically solved, we show that with higher order approximations, the
approximation error in the agents’model probabilities is small.

3To be very clear, we are not making any statement on whether adaptive learning or fully rational learning
as in our approach is preferable. Which of these is preferred by the data most likely depends on the application.
We are interested in developing a fast and reliable algorithm to solve Markov-switching rational expectations
models with partial information, which would allow such a comparison to be undertaken.
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2.1 The Economic Model

We consider a general class of dynamic, stochastic general equilibrium models where some of

the parameters follow a discrete Markov process that is indexed by st ∈ {1, . . . , ns}. The

regime variable st is not directly observed, but has known transition matrix P = [pi,j], where

pi,j = Pr (st+1 = j|st = i). The set of parameters that follow a Markov process is given by

θt = θ (st).

The equilibrium conditions for the class of models that we study can be written as

Ẽtf (yt+1,yt,xt,xt−1, εt+1, εt,θt+1,θt) = 0, (1)

where yt denotes non-predetermined variables at time t, xt denotes predetermined variables,

and εt denote the innovations which are serially uncorrelated and jointly distributed according

with density function φε.

In this case, the expectations operator Ẽt denotes expectations based on an information set
given by It = {yt,xt}. The history of innovations εt, parameters θt, and regimes st is not
part of the information set. The information set produces subjective probabilities of being in

each regime {1, . . . , ns}, denoted by a vector ψt, where ψi,t = Pr (st = i|It). The subjective
probabilities are updated via Bayesian learning.

As an example, consider a prototypical real business cycle economy where total factor pro-

ductivity is a subject to both regime changes and idiosyncratic shocks, but the composition of

these factors is not observed. In this example, a planner maximizes preferences

Ẽ0
∞∑
t=0

βt log ct (2)

subject to a budget constraint

ct + kt = exp (zt) k
α
t−1 + (1− δ) kt−1 (3)

and a driving process for technology

zt = µt + σtεt. (4)

where εt ∼iid N (0, 1). The process for zt is governed in part by a Markov process with µt =

µ (st), and σt = σ (st), where st ∈ {1, 2}. The information set at time t is the complete
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histories of consumption ct, capital kt, and technology zt, but not the components st or εt. As a

result, conditional on an observed value of zt, the planner does not know if the observation was

generated by regime 1 or regime 2. If regimes recur with some high probability, then knowing

whether a realization of TFP is likely to be persistent due to the regime versus transitory due

to the shock would impact consumption and savings decisions.

To solve for the equilibrium, standard optimization implies an Euler equation given by

1 = βẼt
[
ct
ct+1

(
α exp (zt+1) k

α−1
t + 1− δ

)]
, (5)

which, combined with (3) and (4), produce a set of equilibrium conditions. The model is

therefore in the form of equation (1), with yt = [ct, zt], xt = [kt], and θt = [µt, σt], and

f (yt+1,yt,xt,xt−1, εt+1, εt,θt+1,θt) =

 β ct
ct+1

(
α exp (zt+1) k

α−1
t + 1− δ

)
− 1

exp (zt) k
α
t−1 + (1− δ) kt−1 − ct − kt
µt + σtεt − zt

 . (6)

2.2 The Learning Process

Since the regime st is not observed directly, the equilibrium dynamics depend on the subjective

probabilities of being in each regime at time t, conditional on all past observables, which is given

by ψi,t = Pr (st = i|It). The subjective probabilities are updated via Bayesian learning, which
involves combining rior beliefs in the form of last period’s subjective probabilities ψi,t−1, with

information about a known signal ỹt ⊆ yt.4 The signal is generated by a combination of the

predetermined variables xt−1 and the shocks εt and depends on the regime st:

ỹt = λ̃st (xt−1, εt) . (7)

We assume that, given the regime st and the predetermined variables xt−1, there is a one-to-one

mapping between shocks and signals, and hence can write

εt = λst (ỹt,xt−1) . (8)

4The restriction that signals are part of the non-predetermined variables is without loss of generality, since
auxiliary variables can be used to link elements of the set of predetermined and nonpredetermined variables.
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The Jacobian of this mapping is given by

Jst (ỹt,xt−1) =

∣∣∣∣∂λst (ỹt,xt−1)

∂ỹt

∣∣∣∣
where |·| denotes the determinant, and we
Given known signals ỹt ⊆ yt, predetermined variables xt−1, prior probabilitiesψt−1, transiton

probabilities P = [pi,j], and a joint density function of the errors φ
ε, Bayesian updating implies

ψi,t =
Jst=i (yt,xt−1)φ

ε (λst=i (yt,xt−1))
∑ns

s=1 ps,iψs,t−1∑ns
j=1 Jst=j (yt,xt−1)φ

ε (λst=j (yt,xt−1))
∑ns

s=1 ps,jψs,t−1
. (9)

For ease in constructing approximations that appropriately bound the probabilities between

zero and one, define the logit of the probabilities ηi,t = log
(

ψi,t
1−ψi,t

)
, which in turn implies

ψi,t = 1

1+exp(−ηi,t)
. These logits are expressed as

exp ηi,t =
Jst=i (yt,xt−1)φ

ε (λst=i (yt,xt−1))
∑ns

s=1 ps,i
1

1+exp(−ηs,t−1)∑ns
j=1,j 6=i Jst=j (yt,xt−1)φ

ε (λst=j (yt,xt−1))
∑ns

s=1 ps,j
1

1+exp(−ηs,t−1)

. (10)

We denote the vector of probabilities as ψt, and the vector of logits of the probabilities as ηt.
5

As a result, we write the equations characterizing the learning process as

Φ
(
yt,xt−1,ηt,ηt−1,Θ

)
= 0 (11)

where the i-th equation of Φ is given by rearranging (10), and Θ = [θ (1) , · · · ,θ (ns)]
′ denotes

the complete set of regime-switching parameters. The full vector of regime-switching parameters,

and not just the current regime’s values, matter for the learning process because the Bayesian

updating weighs the relative likelihood of the observables being generated by each possible

regime.

Turning back to the RBC model, the signal is generated by equation (4), and so conditional

on the regime and the capital stock (which is irrelevant in this case), the shock could inferred

by inverting the signal equation:

εt =
zt − µ (st)

σ (st)

5In practice, we can use the fact that
∑ns

i=1 ψi,t = 1 and only generate approximations to ns − 1 elements of
the vector ηt.
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Hence, via Bayes rule, the subjective probability of regime i given an observed level of technology

zt is given by

ψi,t =

1
σ(i)

φ
(
zt−µ(i)
σ(i)

) (
p1,iψ1,t−1 + p2,iψ2,t−1

)
∑2

j=1
1

σ(j)
φ
(
zt−µ(j)
σ(j)

) [
p1,jψ1,t−1 + p2,jψ2,t−1

] (12)

where φ (·) denotes the PDF of the standard normal distribution. As a result, the logit of the
probabilities are

Φ
(
yt,xt−1,ηt,ηt−1,Θ

)
=



1
σ(1)

φ
(
zt−µ(1)
σ(1)

)(
P1,1

1+exp(−η1,t−1)
+

P2,1

1+exp(−η2,t−1)

)
1

σ(2)
φ
(
zt−µ(2)
σ(2)

)(
P1,2

1+exp(−η1,t−1)
+

P2,2

1+exp(−η2,t−1)

) − exp η1,t

1
σ(2)

φ
(
zt−µ(2)
σ(2)

)(
P1,2

1+exp(−η1,t−1)
+

P2,2

1+exp(−η2,t−1)

)
1

σ(1)
φ
(
zt−µ(1)
σ(1)

)(
P1,1

1+exp(−η1,t−1)
+

P2,1

1+exp(−η2,t−1)

) − exp η2,t


. (13)

Note that, since the learning process is independent of future variables, we trivially have

ẼtΦ
(
yt,xt−1,ηt,ηt−1,Θ

)
= Φ

(
yt,xt−1,ηt,ηt−1,Θ

)
. (14)

2.3 Equilibrium Conditions with Learning

To characterize the full equilibrium conditions with the Bayesian updating of subjective proba-

bilities, we can simply append the equations (9) to the original equilibrium conditions in equation

(1). This produces a system of the form

Ẽtf̃
(
yt+1,yt,xt,xt−1,ηt,ηt−1, εt+1, εt,θt+1,θt,Θ

)
= (15)

Ẽt

[
f (yt+1,yt,xt,xt−1, εt+1, εt,θt+1,θt)

Φ
(
yt,xt,xt−1,ηt,ηt−1,Θ

) ]
= 0.

Further, the expectation can be decomposed into the subjective probabilities, transitions be-

tween regimes, and expectations over future shocks:

ns∑
s=1

ns∑
s′=1

ps,s′

1 + exp
(
−ηs,t

) ∫ f̃
(
yt+1,yt,xt,xt−1,ηt,ηt−1, ε

′, εt,θ (s′) ,θ (st) ,Θ
)
φε (ε′) = 0. (16)
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In our simple RBC example, the new set of equilibrium conditions is written as

f̃
(
yt+1,yt,xt,xt−1,ηt,ηt−1, ε

′, εt,θ (s′) ,θ (st) ,Θ
)

(17)

=



β ct
ct+1

(
α exp (zt+1) k

α−1
t + 1− δ

)
− 1

exp (zt) k
α
t−1 + (1− δ) kt−1 − ct − kt

µ (st) + σ (st) εt − zt
1

σ(1)
φ
(
zt−µ(1)
σ(1)

)(
P1,1

1+exp(−η1,t−1)
+

P2,1

1+exp(−η2,t−1)

)
1

σ(2)
φ
(
zt−µ(2)
σ(2)

)(
P1,2

1+exp(−η1,t−1)
+

P2,2

1+exp(−η2,t−1)

) − exp η1,t

1
σ(2)

φ
(
zt−µ(2)
σ(2)

)(
P1,2

1+exp(−η1,t−1)
+

P2,2

1+exp(−η2,t−1)

)
1

σ(1)
φ
(
zt−µ(1)
σ(1)

)(
P1,1

1+exp(−η1,t−1)
+

P2,1

1+exp(−η2,t−1)

) − exp η2,t


.

3 Generating Approximations

3.1 Solutions

Extending Foerster et al. (2016) to the case where subjective probabilities are now a state

variable, minimum state variable solutions to the model in equation (16) have the form

yt = gst
(
xt−1,ηt−1, εt, χ

)
, (18)

xt = hxst
(
xt−1,ηt−1, εt, χ

)
, (19)

and

ηt = hηst
(
xt−1,ηt−1, εt, χ

)
, (20)

The form of these solutions show that the evolution of non-predetermined variables yt, prede-

termined variables xt, and beliefs ηt, depends upon the actual realized regime st, the previous

values of xt−1 and ηt−1, the realization of shocks εt, and a perturbation parameter χ.

Perturbation seeks to generate Taylor series expansions to the functions gst , h
x
st, and h

η
st ,

around a given point. The following section turns to how to define this point and construct the

approximations.
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3.2 The Refined Partition Principle

The Partition Principle in Foerster et al. (2016) dictates separating the switching parameters

θ (k) into blocks denoted θ1 (k) and θ2 (k), for k ∈ {1, . . . , ns}, where the first set are perturbed
and the second set are not. This partition of the parameters allows for finding a steady state

and preserving the maximum information at lower orders of approximation. In particular, the

perturbation function is

θ (k, χ) = χ

[
θ1 (k)

θ2 (k)

]
+ (1− χ)

[
θ̄1

θ2 (k)

]
(21)

for for k ∈ {1, . . . , ns}. The set of parameters included in θ2 (k) is chosen to be the maximal set

such that a steady state is defined.

The definition of a steady state is when εt = 0, χ = 0, and hence for all st

yss = gst (xss,ηss,0, 0) , (22)

xss = hxst (xss,ηss,0, 0) , (23)

and

ηss = hηst (xss,ηss,0, 0) . (24)

In the case with learning as shown in the set of equilibrium equations (16), the presence

of all the regime-switching parameters Θ in the learning process poses a challenge. A natural

extension of the Partition Principle would suggest perturbing the same sets of parameters in Θ

that are perturbed in equation (21). That is, we could write

Θ (χ) =χ



θ1 (1)

θ2 (1)
...

θ1 (ns)

θ2 (ns)


+ (1− χ)



θ̄1

θ2 (1)
...

θ̄1

θ2 (ns)


, (25)

and the steady state would be defined by

f̃
(
yss,yss,xss,xss,ηss,ηss,0,0, θ̄1, θ̄2 (s′) , θ̄1, θ̄2 (s) ,Θ (0)

)
= 0
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for all s′, s.

However, this assumption would lead to a loss of information in the steady state and at

low orders of approximation. To see this point, let us return to the RBC example, where in

the context of a full information regime-switching model, the Partition Principle would require

perturbing µt and not σt. In the case with learning, though, the steady state would be defined

by 

β (α exp (zss) k
α−1
ss + 1− δ)− 1

exp (zss) k
α
ss + (1− δ) kss − css − kss

µ̄− zss
1

σ(1)
φ( zss−µ̄σ(1) )

(
P1,1

1+exp(−η1,ss)
+

P2,1

1+exp(−η2,ss)

)
1

σ(2)
φ( zss−µ̄σ(2) )

(
P1,2

1+exp(−η1,ss)
+

P2,2

1+exp(−η2,ss)

) − exp η1,ss

1
σ(2)

φ( zss−µ̄σ(2) )
(

P1,2

1+exp(−η1,ss)
+

P2,2

1+exp(−η2,ss)

)
1

σ(1)
φ( zss−µ̄σ(1) )

(
P1,1

1+exp(−η1,ss)
+

P2,1

1+exp(−η2,ss)

) − exp η2,ss


= 0

Note that, while the first three equations are absent σ (st), both the learning equuations are still

functions of σ (1) and σ (2). So, one could simply perturb the parameter σt as well, in which

case the steady state is defined by

β (α exp (zss) k
α−1
ss + 1− δ)− 1

exp (zss) k
α
ss + (1− δ) kss − css − kss

µ̄− zss
1
σ̄
φ( zss−µ̄σ̄ )

(
P1,1

1+exp(−η1,ss)
+

P2,1

1+exp(−η2,ss)

)
1
σ̄
φ( zss−µ̄σ̄ )

(
P1,2

1+exp(−η1,ss)
+

P2,2

1+exp(−η2,ss)

) − exp η1,ss

1
σ̄
φ( zss−µ̄σ̄ )

(
P1,2

1+exp(−η1,ss)
+

P2,2

1+exp(−η2,ss)

)
1
σ̄
φ( zss−µ̄σ̄ )

(
P1,1

1+exp(−η1,ss)
+

P2,1

1+exp(−η2,ss)

) − exp η2,ss


= 0

which can be solved in a straightforward manner to get

zss = µ̄, kss =

(
1

α exp (zss)

(
1

β
− 1 + δ

)) 1
α−1

,

css = exp (zss) k
α
ss − δkss,
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η1,ss = log

(
1− P2,2
1− P1,1

)
, and η2,ss = log

(
1− P1,1
1− P2,2

)
.

This ability to find a steady state that is independent of Markov-switching parameters comes at

a cost, though, in that perturbing σt leads to a loss of information at low levels of approximation.

To resolve this issue, one option is to not perturb any part of Θ, treating it differently than

θt entirely. In this Partition Principle Refinement, we would write leave Θ unchanged, and

hence the steady state would be defined by

f̃
(
yss,yss,xss,xss,ηss,ηss,0,0, θ̄1, θ̄2 (s′) , θ̄1, θ̄2 (s) ,Θ

)
= 0 (26)

for all s and s′.

Returning again to the RBC example, the steady state would thus satisfy

β (α exp (zss) k
α−1
ss + 1− δ)− 1

exp (zss) k
α
ss + (1− δ) kss − css − kss

µ̄− zss
1

σ(1)
φ( zss−µ(1)

σ(1) )
(

P1,1

1+exp(−η1,ss)
+

P2,1

1+exp(−η2,ss)

)
1

σ(2)
φ( zss−µ(2)

σ(2) )
(

P1,2

1+exp(−η1,ss)
+

P2,2

1+exp(−η2,ss)

) − exp η1,ss

1
σ(2)

φ( zss−µ(2)
σ(2) )

(
P1,2

1+exp(−η1,ss)
+

P2,2

1+exp(−η2,ss)

)
1

σ(1)
φ( zss−µ(1)

σ(1) )
(

P1,1

1+exp(−η1,ss)
+

P2,1

1+exp(−η2,ss)

) − exp η2,ss


= 0

where zss, kss, and css are unchanged from above, and η1,ss and η2,ss can be solved nonlinearly.

3.3 Perturbation Setup

Having discussed a Refined Partition Principle, we return to a full definition of the equilibrium,

which is

ns∑
s=1

ns∑
s′=1

ps,s′

1 + exp
(
−ηs,t

) ∫ f̃
(
yt+1,yt,xt,xt−1,ηt,ηt−1, ε

′, εt,θ1 (s′) ,θ2 (s′) ,θ1 (st) ,θ1 (st) ,Θ
)
φε (ε′) = 0.

(27)

Using the functional forms (18), (19), (20), and[
θ1 (k)

θ2 (k)

]
= χ

[
θ1 (k)

θ2 (k)

]
+ (1− χ)

[
θ̄1

θ2 (k)

]
(28)
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for k = st, s
′ produces an equation of the form

Fst

(
xt−1,ηt−1, εt, χ

)
= 0.

We will take derivatives of this function, evaluated at steady state, to find approximations to

the policy functions (18), (19), (20).

3.4 Steady State

The steady state is given by the set of equations

Fst (xss,ηss,0, 0) = 0,

for all st. The definitions of the functions at steady state imply

f̃
(
yss,yss,xss,xss,ηss,ηss,0,0, θ̄1,θ2 (s′) , θ̄1,θ2 (st) ,Θ

)
= (29)[

f
(
yss,yss,xss,xss,0,0, θ̄1,θ2 (s′) , θ̄1,θ2 (st)

)
Φ (yss,xss,xss,ηss,ηss,Θ)

]
= 0.

Since the first n equations of f̃ are the original equilibrium conditions in equation (1), then

the steady state satisfies

f
(
yss,yss,xss,xss,0,0, θ̄1,θ2 (st+1) , θ̄1,θ2 (st)

)
= 0, (30)

or in other words, is identical to the steady state to a version of the model with full information

and can be used to solve for the n unknowns {yss,xss}. The second set of ns equations of f̃ are
the Bayesian updating equations, and so

Φ (yss,xss,xss,ηss,ηss,Θ) = 0

pins down the ns unknowns ηss.

After solving for the steady state, the next sections discuss generating first- and higher-order

approximations.
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3.5 Deriving Approximations

We can take derivatives of Fst

(
xt−1,ηt−1, εt, χ

)
with respect to its arguments to get equations

that allow us to solve for the coeffi cients in the expansions of (18), (19), and (20).

First, the derivative with respect to xt−1 evaluated at steady state is given by

Fxt−1,st =

ns∑
s=1

ns∑
s′=1

ps,s′

1 + exp
(
−ηs,ss

)
 f̃yt+1 (s′, st)

(
gxt−1,s′h

x
xt−1,st

+ gηt−1,s
′hηxt−1,st

)
+f̃yt (s′, st) gxt−1,st + f̃xt (s′, st)h

x
xt−1,st

+f̃xt−1 (s′, st) + f̃ηt (s′, st)h
η
xt−1,st

 = 0 (31)

and with respect to ηt−1 is given by

Fηt−1,st =
ns∑
s=1

ns∑
s′=1

ps,s′

1 + exp
(
−ηs,ss

)


f̃yt+1 (s′, st)
(
gxt−1,s′h

x
xt−1,st

+ gηt−1,s
′hηηt−1,st

)
+f̃yt (s′, st) gηt−1,st + f̃xt (s′, st)h

x
ηt−1,st

+f̃ηt (s′, st)h
η
ηt−1,st

+ f̃ηt−1
(s′, st)

 = 0 (32)

These two expressions can be concatenated together and across regimes to produce a system of

the form

F[xt−1ηt−1] =


Fxt−1,st=1 Fηt−1,st=1

...
...

Fxt−1,st=ns Fηt−1,st=ns

 = 0, (33)

which is a quadratic form in the unknowns
{
gxt−1,st , gηt−1,st , h

x
xt−1,st

, hxηt−1,st
, hηxt−1,st

, hηηt−1,st

}ns
st=1

.

Further, the expression is of the form shown by Foerster et al. (2016) to be a general quadratic

form that is solvable by using Gröbner bases rather than the standard Eigenvalue problem found

in constant parameter models. Gröbner bases have the advantage that they will find all possible

solutions to the quadratic form (33), each of which can be checked for stability. The concept

of mean square stability (MSS), defined in Costa et al. (2005), and advocated by Farmer et al.

(2009) and Foerster et al. (2016) allows for unbounded paths provided that first and second

moments of the solutions are finite. In the context of learning, MSS has the advantage over an

alternative concept of bounded stability—which requires all possible solutions to be bounded—

since it allows for ηi,t → ±∞ and hence the subjective probabilities to become arbitrarily close

to either 0 or 1. In other words, it includes possible realizations of shocks and regimes such that

the current regime is learned with near-perfect precision.

After solving equation (33), the other terms that make up the first order approximations can
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be solved via standard linear methods. First, the derivative with respect to εt is given by

Fεt,st =
ns∑
s=1

ns∑
s′=1

ps,s′

1 + exp
(
−ηs,ss

)
 f̃yt+1 (s′, st)

(
gxt−1,s′h

x
εt,st + gηt−1,s

′hηεt,st
)

+f̃yt (s′, st) gεt,st + f̃xt (s′, st)h
x
εt,st

+f̃ηt (s′, st)h
η
εt,st + f̃εt (s′, st)

 (34)

which can be concatenated to generate

Fεt =


Fεt,st=1
...

Fεt,st=ns

 = 0, (35)

which is a linear system in the unknowns
{
gεt,st , h

x
εt,st , h

η
εt,st

}ns
st=1

.

Lastly the derivative with respect to χ is given by

Fχ,st =
ns∑
s=1

ns∑
s′=1

ps,s′

1 + exp
(
−ηs,ss

)
 f̃yt+1 (s′, st)

(
gxt−1,s′h

x
χ,st + gηt−1,s

′hηχ,st + gχ,s′
)

+f̃yt (s′, st) gχ,st + f̃xt (s′, st)h
x
χ,st + f̃ηt (s′, st)h

η
χ,st

f̃θ1,t+1

(
θ1 (s′)− θ̄1

)
+ f̃θ1,t

(
θ1 (st)− θ̄1

)
 (36)

which produces a system given by

Fχ =


Fχ,st=1

...

Fχ,st=ns

 = 0, (37)

which is linear in the unknowns
{
gχ,st , h

x
χ,st , h

η
χ,st

}ns
st=1

.

These expressions thus can be used to solve for the coeffi cients of the first-order expansion.

We can take derivatives of
(
xt−1,ηt−1, εt, χ

)
multiple times to solve for second- or higher-order

approximations, which are simply progressively larger linear systems. For expositional simplicity,

we relegate these expressions to the appendix.

3.6 Properties of Approximations

Having provided the analytical expressions for the derivatives, we now characterize several im-

portant features of the solution and approximation.

• Subjective probabilities are constant at first order, show up at second order
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• Important interaction that shows up in third order.

4 A Simple Filtering Example

To illustrate the impact of approximating the subjective probabilities, we now consider a simple

filtering problem devoid of any economic decision making.

4.1 Filtering Model

In this example, the signal follows a process akin to that in our RBC example equation (4)

zt = µ (st) + σ (st) εt, (38)

where zt is observable but the individual components are not. In this example yt = zt, xt is

empty, θ1 (st) = µ (st), and θ2 (st) = σ (st). Simple Bayesian updating implies the probabilities

of being in each regime evolve according to

ψi,t =
φ
(
zt−µ(i)
σ(i)

) (
P1,iψ1,t−1 + P2,iψ2,t−1

)
∑2

j=1 φ
(
zt−µ(j)
σ(j)

) [
P1,jψ1,t−1 + P2,jψ2,t−1

] (39)

for i = 1, 2. Then we can write the system (16) as

µ (st) + σ (st) εt − zt

log

φ
(
zt−µ(1)
σ(1)

)(
P1,1

1+exp(−η1,t−1)
+

P2,1

1+exp(−η2,t−1)

)

φ
(
zt−µ(2)
σ(2)

)(
P1,2

1+exp(−η1,t−1)
+

P2,2

1+exp(−η2,t−1)

)
− η1,t

log

φ
(
zt−µ(2)
σ(2)

)(
P1,2

1+exp(−η1,t−1)
+

P2,2

1+exp(−η2,t−1)

)

φ
(
zt−µ(1)
σ(1)

)(
P1,1

1+exp(−η1,t−1)
+

P2,1

1+exp(−η2,t−1)

)
− η2,t


= 0, (40)

and we note that since this a simple filtering example, there is no forward looking component,

so expectations are irrelevant.

We calibrate as shown in Table 1, with two separate parameterizations. In the switching

volatility case, the first regime has a high average signal with low variance, and the second

regime has a low average signal with high variance. In the constant volatility case, the average
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Table 1: Calibration of Filtering Example
P1,1 P2,2 µ (1) µ (2) σ (1) σ (2)

Example 1 0.95 0.95 0.01 0.005 0.0031 0.0075
Example 2 0.95 0.95 0.01 0.005 0.0031 0.0031
Example 3 0.95 0.95 0.0075 0.0075 0.0031 0.0075

signal changes across regimes, but both regimes have low variance. These two examples will

help illustrate our methodology when the regime is relatively hard to identify in the switching

volatility case, versus relatively easy to identify in the constant volatility case.

4.2 Filtering Results

We first consider the implications of the switching volatility model for the evolution of sub-

jective probabilities. Figure 1 shows the results of simulations and their implications for the

distributions of the signal zt and the probabilities ψ1,t and ψ2,t. The top left panel shows the

unconditional distribution of zt, which is left skewed as the mixture of two normal distributions.

The top right panel shows the conditional distributions based on the realization of each regime.

In regime st = 1, the realizations of zt tend to be relatively tightly centered around the condi-

tional mean, while in regime st = 2 the distribution has larger variance around a lower mean.

The implications for the learning process from these conditional distributions is that st = 2

is relatively easier to identify because of its tendency to produce outcomes that are very low

probability events in the st = 1 regime. On the other hand, regime st = 1 is relatively hard to

identify, as outcomes tend to be somewhat likely under both regimes.

The remaining panels of Figure 1 show the distribution of subjective probabilities, conditional

on the realization of each regime, for different orders of approximation. The second row of panels

show that, with a third-order approximation, the first regime is rarely identified correctly, as

most of the time there is a low probability placed on being in the first regime, ψ1,t, when the

regime is actually st = 1. On the other hand, the second regime is identified correctly nearly all

of the time, with most of the mass of ψ2,t being near 1 when the regime is actually st = 1. The

third row of panels show these traits are true at a second-order approximation as well. Given

the conditional distributions of zt in each regime, we would in fact expect this behavior for the

subjective probabilities; the inability to correctly identify regime 1 while identifying regime 2

with high accuracy is a feature of the environment that our approximation picks up well, rather

than being an indication if inaccurate approximations. We highlight this momentarily with
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Figure 1: Simulations of the Switching Volatility Model

our second calibration and some additional accuracy checks. However, it is important to note

that the last row of panels shows the distribution of beliefs for a first-order approximation, and

how they are invariant at the steady state of the probabilities, which is 0.5 for this numerical

example. In other words, first-order approximations are not enough to pick up any variation in

beliefs.

The second calibration, which has constant volatilities across regimes rather than a higher

volatility in the second regime, demonstrates how inference about the regime can be more

accurate given different signal processes. Figure 2 shows simulation results for this alternative

calibration. The upper right panel highlights there is now symmetry of the conditional regimes

across regime, suggesting that the learning process should be symmetric. The panels showing

third- and second-order approximations verify this feature, with both regimes being correctly

identified with high probability, but with some slight chance of placing low weight on the true

regime. Again, however, the first-order approximations are completely uninformative, with all

mass being placed on the steady state probability and being invariant to the signal.

Turning back to the issue of accuracy of our approximation, Figures 1 and 2 are insuffi cient

for this purpose, as they compare beliefs with actual realizations of the regime, and without full

information there is no reason to believe these should be fully accurate given the distribution of

the signal. A more proper way of assessing accuracy of the approximation is to compare these

simulations with the fully nonlinear updating of beliefs in equation (39). In Table 2 we compare

mean square error of our approximations, which is given by

MSEorder = T−1
T∑
t=1

(
ψ̂
order

1,t − ψ1,t
)2

(41)

where ψ̂
order

1,t is the approximated beliefs for order ∈ {1, 2, 3}, and ψ1,t is the true beliefs based
upon the fully nonlinear updating. The table shows that for the switching volatility example, the

second- and third-order approximations achieve a high degree of accuracy, while the first-order

approximation performs relatively poorly. The constant volatility parameterization, which has a

slightly different distribution of subjective probabilities, produces slightly less accurate approx-

imations, but the degree of accuracy remains high for second- and third-order approximations,

but low for first-order approximations.

The results in this simple filtering example therefore lead us to conclude that approximating
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Figure 2: Simulations of the Constant Volatility Model

the Bayesian updating of subjective probabilities can be done with high accuracy using second-

and third-orders, while first-order approximations are insuffi cient. However this example was

by design without any economic decision-making, which limits our ability to characterize how

the learning process interacts with other parts of the economy. In the following section, we

return to the RBC example to supplement our results about the learning process with how it

affects consumption and capital accumulation. In Section 6, we consider another example where

learning and economic decision-making have feedback in both directions.

5 Application to the RBC Model

Having studied the learning mechanism in isolation, we now return to the RBC example intro-

duced in Section 2. The set of parameters is given in Table 3. The parameters for preferences

and production are standard values, while the processes for technology are exactly identical to

those considered in the switching volatility parameterization in Section 4. In this way, we can

supplement our analysis that focused solely on the learning to one in which learning impacts

the consumption and capital accumulation decisions of a planner.

Figure 3 highlights the impact of learning and the importance of higher-order approximations

in the RBC example by plotting simulated distributions of consumption and capital.6 Given

the parameterization in Table 3, the distribution of TFP and of the subjective probabilities

under learning are identical to those shown in Figure 1. The top panels of Figure 3 show the

distributions of capital and consumption under full information where the planner perfectly

observes the regime. For first-, second-, and third-order of approximation, the distributions of

capital and consumption look nearly identical, suggesting in this parameterization there are not

major differences from higher-order approximations. Given regime-switching in the volatility of

shocks, using second-order approximations may capture precautionary behavior, but given log

preferences the effect appears to be modest.

The bottom panels in Figure 3 show that, with learning, a precautionary effect only shows up

at third-order. When the regime is not perfectly revealed, recall from the discussion of Figure

1 that the first regime—with high average productivity and low variance—is relatively hard to

identify, while the second regime—with low average productivity and high variance—is relatively

6For improved accuracy, and since log-linearization tends to be more typical in RBC models than simple
linearization, we approximate the solution in logarithms rather than levels and present the corresponding results.

18



Table 2: Accuracy Check - MSEs
order=3 order=2 order=1

Example 1 0.0273 0.0273 0.1544
Example 2 0.0862 0.0865 0.1789
Example 3 0.0081 0.0081 0.1848

easy to identify. As a result, there is a strong precautionary effect that induces the planner

to accumulate additional capital and hence allow a higher level of consumption. However, this

effect is absent in first- and second-order terms.

6 A Model with Feedback to Learning

One of the possible downsides of considering the RBC model as an application is that it lacks

any feedback between economic decision-making and the learning mechanism. In other words,

the learning is dependent only on an exogenous process and not endogenous variables. We now

turn to an example where there is in fact feedback, as the speed of learning about a taxation

regime depends on output, which in turn varies depending on the learning.

In this example, Households supply nt = 1 units of labor inelastically and maximize

Ê0

∞∑
t=0

βt log ct (42)

subject to a sequence of budget constraints

ct + kt = wt + (1− τ t) rtkt−1 + (1− δ) kt−1, (43)

where wt denotes the real wage, rt is the rental rate on capital, and τ t is the rate of capital

taxation. Standard optimality conditions give an Euler equation of the form

1 = βÊt
ct
ct+1

((1− τ t+1) rt+1 + 1− δ) . (44)

Firms produce according to

yt = exp (zt) k
α
t−1n

1−α
t (45)

where productivity

zt = σzεz,t, (46)
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Table 3: Calibration of RBC Example
α β δ P1,1 P2,2 µ (1) µ (2) σ (1) σ (2)

0.33 0.99 0.025 0.95 0.95 0.01 0.005 0.0031 0.0075

and εz,t ∼ N (0, 1). The tax rate follows the feedback rule

τ t = µ+ γ(st)(log yt−1 − log yss) + στετ ,t, (47)

and government purchases equalling gt = τ trtkt−1 are unproductive. The information set of

households and firms includes It = {ct, kt, rt, wt, yt, τ t, zt}, but importantly the components of
the tax process are not observed.7

We can simplify to produce a set of equilibrium conditions of the form in equation (1),

f (yt+1,yt,xt,xt−1, εt+1, εt,θt+1,θt) = (48)
β ct
ct+1

(
(1− τ t+1)α exp (zt+1) k

α−1
t + 1− δ

)
− 1

yt + (1− δ) kt−1 − ct − kt − τ tαyt
exp (zt) k

α
t−1 − yt

σzεz,t − zt
µ+ γ(st)(log yt−1 − log yss) + στετ ,t − τ t

 . (49)

where yt = [ct, zt, τ t], xt = [kt, yt], θ1,t is empty, and θ2,t = γ (st).

7 Conclusion
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Figure 3: Simulations of the RBC Model

3.7 3.71 3.72 3.73 3.74 3.75 3.76
0

20

40

60

80

100

120
log k  Full Info

0.86 0.865 0.87 0.875 0.88 0.885 0.89
0

50

100

150

200
log c  Full Info

3rd Order
2nd Order
1st Order

3.7 3.71 3.72 3.73 3.74 3.75 3.76
0

20

40

60

80

100

120
log k  Learning

0.86 0.865 0.87 0.875 0.88 0.885 0.89
0

50

100

150

200
log c  Learning

Costa, O., M. Fragoso, and R. Marques (2005). Discrete-Time Markov Jump Linear Systems.

Springer.

Davig, T. (2004, May). Regime-switching debt and taxation. Journal of Monetary Eco-

nomics 51 (4), 837—859.

Davig, T. and E. M. Leeper (2007, September). Fluctuating Macro Policies and the Fiscal

Theory. In NBER Macroeconomics Annual 2006, Volume 21, NBER Chapters, pp. 247—316.

National Bureau of Economic Research, Inc.

Farmer, R., D. Waggoner, and T. Zha (2009). Understanding Markov-Switching Rational Ex-

21



Table 4: Calibration of Taxation Example
α β δ P1,1 P2,2 µ γ (1) γ (2) στ σz

0.33 0.99 0.025 0.95 0.95 0.20 0 5.0 0.01 0.01

pectations Models. Journal of Economic Theory 144 (5), 1849—1867.

Foerster, A., J. Rubio-Ramirez, D. Waggoner, and T. Zha (2016). Perturbation Methods

for Markov-Switching Dynamic Stochastic General Equilibrium Models. Quantitative Eco-

nomics 7 (2), 637—669.

Lubik, T. A. and F. Schorfheide (2004, March). Testing for Indeterminacy: An Application to

U.S. Monetary Policy. American Economic Review 94 (1), 190—217.

Sims, C. A. and T. Zha (2006, March). Were There Regime Switches in U.S. Monetary Policy?

American Economic Review 96 (1), 54—81.

22



Figure 4: Conditional Simulations of the Taxation Model with Full Information
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Figure 5: Comparison of Unconditional Simulations of the Taxation Model
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Figure 6: Response to a Positive Tax Shock in the Taxation Model
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Note: Top graphs are conditional on regime st = 1, bottom graphs are conditional on regime
st = 2
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