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Abstract

This paper investigates the macroeconomic sources of the U.S. monetary policy shifts within

a dynamic stochastic general equilibrium (DSGE) model. We introduce regime switching into

the model that links the current regime of monetary policy to the historical fundamental shocks

by an autoregressive regime factor. This generates an endogenous feedback mechanism between

measured economic behavior and the monetary policy stance. We develop a particle-free variant

of the mixture Kalman filter, in conjunction with a solution method that accounts for the endo-

geneity of switching regimes, to estimate the underlying nonlinear state space model. Our key

findings are threefold. First, non-policy shocks, most notably the markup shock, have played a

predominant role in driving future regime changes during the post-World War II period. Second,

the estimated regime factor identifies monetary policy as slowly fluctuating between more aggres-

sive and less aggressive regimes, in ways that are largely consistent with the conventional view

on time variation in the Federal Reserve’s policy behavior. Lastly, the Bayes factor strongly

favors the endogenous switching version of the model over the exogenous case. We conclude

that endogenizing regime changes in monetary DSGE models provides both a theoretically and

empirically promising venue for understanding the purposeful nature of monetary policy.
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1 Introduction

Monetary policy behavior is purposeful and responds endogenously to the state of the economy.

The empirical work by Clarida et al. (2000), Lubik and Schorfheide (2004) and Sims and Zha

(2006) find that Taylor rule describing monetary policy behavior displays important time varia-

tion in the United States. Subsequently, researchers have embedded Markov switching processes

in dynamic stochastic general equilibrium (henceforth DSGE) models to explore these empirical

findings. However, these works assume monetary policy regime shifts as exogenous, and therefore

in an important sense the work is inconsistent with a central tenet underlying the Taylor rule:

monetary policy behavior reacts endogenously to changes in the macroeconomic environment. For

instance, most people who think that policy changed dramatically in the late 1970s in the United

States believed this because inflation appeared to be running out of control, not because an ex-

ogenously evolving switching process happened to call for a change at that time. This belief calls

for a model that makes the policy change a purposeful response of central bank to the state of the

economy. Davig and Leeper (2006) took a step toward resolving this inconsistency by building a

New Keynesian model with threshold switching monetary policy rule. Specifically, policy regime

switches when past inflation crosses a threshold value. But, one would naturally ask: is inflation

the true or the only driving force of monetary policy regime shifts? We aim to address this specific

question: why have monetary policy regimes shifted and what are the driving forces?

In order to tackle this research question, we consider endogenous regime switching monetary

policy, where a latent autoregressive regime factor determines regimes depending upon whether it

takes a value above or below some threshold level.1 Different regimes represent different degrees

of aggressiveness of the monetary authority’s response of policy rate to inflation deviation from

its target. The more aggressive regime is identified as the one with regime factor being higher

than the threshold level. The endogeneity is captured by the feedback mechanism in the model

structure. First, federal funds rates adjust systematically to target variables consisting of past

federal funds rates, inflations and output gaps. Discretionary policy interventions, e.g., surprise

changes in the federal funds rate relative to what the Taylor rule mandates, represent how the

monetary authority react to non-target information. These policy interventions2 will generate

cumulative impacts on the regime factor that eventually lead to a future regime change. This

channel is missing in existing approaches. Second, the response to inflation switches between a

more aggressive regime and a less aggressive regime. These switches alter the observed equilibrium

process of macroeconomic variables in a way that captures the nonlinear features observed in

1 The reduced-form version of our model was introduced by Chang et al. (2017).
2 In our general model presented in Section 4.1, we allow the policy regime factor to depend not only on past

monetary policy intervention but also on other non-policy fundamental shocks, and a non-fundamental regime factor
shock. For ease of exposition, we use the simpler version in Introduction where only past monetary policy intervention
can drive regime shift, which is motivated by Leeper and Zha (2003) and Figure 1.
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the data. For example, if today the Fed sets the federal funds rate above the level implied by

Taylor rule, this positive (contractionary) intervention predicts tomorrow’s regime factor through

the endogenous feedback mechanism. Hence, private agents who observe the policy intervention

would enhance their expectations of being in a more aggressive regime tomorrow.

Figure 1 nicely motivates the endogenous feedback mechanism. The upper panel presents the

actual federal funds rate and the Taylor rule implied rate. The Taylor rule provides a fairly accurate

summary of post-World War II U.S. monetary policy.3 However, there exists several sizable and

persistent discrepancies as shown clearly in the bottom panel of Figure 1. Those are the policy

interventions reflecting policy considerations of non-target information, calculated by subtracting

the Taylor rule implied rate from the actual federal funds rate. The shaded areas indicate the less

aggressive regime identified from the estimation of our DSGE model with endogenous feedback

mechanism. Intriguingly, we see that in the early 1980s, monetary policy was too tight relative

to the Taylor rule. It means that the Fed was implementing contractionary policy intervention,

i.e. surprise increases in the federal funds rate in that period. Private agents observing the unan-

ticipated persistent contractionary intervention would infer that inflation control has become the

Fed’s top priority and gradually reinforce their belief of a switch from less aggressive regime to

more aggressive regime. The adjustment of agents’ belief affects their behaviors and induces the

expectations formation effects on the economy, which might have helped stabilize the price level in

the 1980s.

In our model, the endogenous regime switching is captured by the correlation between current

regime factor and past policy intervention. When the correlation is zero, the endogenous feedback

mechanism is turned off and our model reduces to the conventional exogenous regime switching

DSGE model. The correlation parameter determines to what extent regime change is driven by past

monetary policy intervention. Our estimation shows that monetary policy regime change is 76%

triggered by past monetary policy interventions, while 24% by contemporaneous non-fundamental

regime factor shock. Our numerical experiments also show that the more it is triggered by past

monetary policy interventions, the more sizable the expectations formation effects are. This is

because agents can utilize more information to form their expectations on future regime evolu-

tions. These findings reinforce the claim by Leeper and Zha (2003) that small but sustained policy

intervention may significantly shift agents’ beliefs about policy regime and induce the changes in

behavior that Lucas (1976) emphasizes.

Besides this substantive finding, we also make two methodological contributions. First, we bring

the advanced reduced-form endogenous regime switching approach to the widely used DSGE mod-

els. Prior to this paper, endogenous regime switching was studied separately by econometricians

and macroeconomists. From an econometric standpoint, Filardo (1994) and Filardo and Gordon

3 Data and parameters used to construct the Taylor rule are the same as in Taylor (1993), which are shown on
the top-right of the plot: i denotes net federal funds rate, pi inflation and y output gap.
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Figure 1: Relationship between Monetary Policy Intervention and Policy Regime

Notes: The shaded areas on the top and bottom panels indicate the less aggressive monetary policy regime.

(1998) have estimated Markov switching regressions with time-varying transition probabilities, fol-

lowing the seminal paper by Hamilton (1989). Kim et al. (2008a) consider a regression model where

the state dependent coefficients are determined by an i.i.d. latent random variable that is contem-

poraneously correlated with innovation in regression error. More recently, Chang et al. (2017)

introduces a more general model with endogenous regime switching which is driven by a latent au-

toregressive regime factor correlated with the past innovation to the observed time series. On the

other hand, from a macroeconomic standpoint, solution methods for regime switching rational ex-

pectations models with time-varying transition probabilities have only become available recently in

Maih (2015), Foerster et al. (2016) and Barthélemy and Marx (2017). The time-varying transition

probabilities considered in these papers can be introduced, for example, by a prescribed function of

some observed endogenous variables. Barthélemy and Marx (2017) in particular apply an implicit

function theorem to numerically ensure both determinacy and accuracy of the approximate solu-

tion in a regime switching DSGE model with time-varying transition probabilities given as a linear

function of past inflation deviation from target inflation. However, the aforementioned significant

progress on reduced-form endogenous regime switching literature has not been introduced yet to

construct and estimate the regime switching rational expectations models. Our paper contributes

to advance in such a direction. We introduce a threshold-type endogenous regime switching into

the model and derive from it smooth TVTPs, rather than simply imposing a functional form for the

TVTPs. This derivation bridges the two literature streams and makes those solution algorithms
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applicable to our model.

Second, we develop a particle-free variant of the mixture Kalman filter to estimate our en-

dogenous regime switching DSGE model, either by classical or Bayesian approach. Calculations

are simplified by augmenting the model solution with the regime factor and exploiting the con-

ditionally linear and Gaussian structure. Compared to a bootstrap particle filter, the algorithm

is shown to be both more accurate in approximating the likelihood function and computationally

more efficient. The latent regime factor can be readily extracted. The estimation methodology is

completed by comparing the model fit of the endogenous regime switching DSGE model with its

exogenous counterpart using Geweke (1999)’s harmonic mean estimator.

The remainder of the paper is organized as follows. Section 2 summarizes the relation to the

literature. An analytical solution to a regime-switching Fisherian model with endogenous feedback

mechanism is derived in Section 3. Section 4 embeds the endogenous feedback mechanism into a

prototypical monetary DSGE model and solves the model using a first-order perturbation method.

Section 5 discusses estimation strategy and shows empirical results. Section 6 discusses several

potentially important extensions and concludes.

2 Relation to the Literature

The original Taylor rule is state-contingent in the sense that the policy instrument, i.e., federal

funds rate, adjusts to the state of the economy, where a set of fixed parameters govern the degree

of adjustment. In an environment with endogenous regime switching, the policy rule is state-

contingent in this conventional sense, but also in a broader sense. Namely, the parameters governing

the degree of adjustment of the federal funds rate to target variables are themselves a function of the

economic state. We will first review the fixed regime and the exogenous regime switching monetary

policy processes. Then, based on that, we introduce our endogenous regime switching monetary

policy process.

The Great Moderation which started in the mid-1980s raised the ”good luck” or ”good policy”

debate. The evidence on this question is mixed. But the profession resolved this largely by trusting

its priors that Great Moderation was due to improved policy. Among many other papers on the

issue of how the monetary policy is conducted, Taylor (1993) rule has become the most well-known

and accepted functional form for monetary policy. Rare is the paper now that posits an exogenous

process for money growth and claims to offer practical policy advice. Taylor (1993) suggests that

monetary policy behavior is purposeful and reacts systematically to changes in the macroeconomic

environment. In particular, the nominal interest rate adjusts to the past interest rate, inflation

gap and output gap. These policy targets are themselves functions of the underlying states of the

economy. Although the Federal Reserve does not explicitly follow the Taylor rule, many analysts

have argued that the rule provides a fairly accurate summary of US monetary policy under Paul
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Volcker and Alan Greenspan. It has been well studied that Taylor rule in a New Keynesian model

delivers a strong case for price stability, and hence output stability. It is also intended to increase

the credibility of future actions by the central bank. However, there is a major limitation of the

Taylor rule: the parameters governing the systematic adjustment of policy instrument are constant.

All deviations of the nominal interest rate from its systematic adjustments to target variables are

folded into the exogenous monetary policy shock.

Empirical works by Clarida et al. (2000), Lubik and Schorfheide (2004) and Sims and Zha (2006)
4 found important time variation of Taylor rule in the United States, which calls for a model where

policy parameters of Taylor rule could potentially change. They agree that monetary policy in the

United States has been relatively well managed from the time Paul Volcker took over the helm in

late 1979. It is also generally agreed that monetary policy was not so well managed in the fifteen

years or so prior to Volcker. Moreover, Lucas (1976) emphasized that: if policy has changed in

the past, based on the rational expectations assumption, it will be expected to change again in the

future. A Markov switching model allows agents to take account of this possibility. Further, in a

Markov switching framework, Leeper and Zha (2003) distinguish two effects from exogenous shocks.

Direct effects capture the usual impacts of shocks in a fixed regime model where agents treat the

policy regime as forever fixed in the future. Expectations formation effects arise whenever agents’

rational expectations of future regime change induce them to alter their expectations functions.

Expectations formation effects are the difference between the impact of a shock where the regime

can change and the impact where the regime is forever fixed.

The fact that expectations formation effects arise from the changes in agents’ behaviors lie

at the heart of Lucas’s critique. The specification of Markov switching monetary policy processes

consists of two different rules of the form same as the Taylor rule with different response coefficients,

and an exogenous Markov chain governing the dynamic switching between the rules. This makes

the policy rule rather than just the policy instrument (the federal funds rate) state-contingent.

The key feature of this Markov switching monetary policy process is that it introduces a new

source of exogenous disturbance (the Markov chain governing the regime change) to the economy

with important implications for the expectations formation effects. But, the exogenous Markov

switching would imply that the policy change, which most economists believe helped stabilize the

high inflation during the 1980s, was due to an exogenously evolving switching process that happened

to call for a change at that date, but not due to an endogenous reaction of the Federal Reserve to

the high inflation appeared to be running out of control. The discrepancy between the implication

of exogenous Markov switching framework and the common view held by most people calls for

4 Clarida et al. (2000) and Lubik and Schorfheide (2004) estimate fixed regime monetary DSGE over subsamples
of pre-Volcker and Volcker-Greenspan periods. Sims and Zha (2006) estimate a reduced-form exogenous regime-
switching model with potential switching in variances of monetary policy disturbance and structural shocks and also
monetary policy coefficients.
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modelling the policy regime change as a purposeful response of central bank to the state of the

economy.

Davig and Leeper (2006) took a first step to introduce endogeneity into monetary policy regime

switches by building a New Keynesian model with threshold switching monetary policy. More

specifically, policy regime switches when past inflation crosses a threshold value. Nevertheless,

no empirical evidence about how and why monetary policy regime has shifted endogenously was

provided in literature. To address this question, we believe it is important to investigate the

macroeconomic sources of the U.S. monetary policy shifts within a DSGE model. Following Chang

et al. (2017) and Chang and Kwak (2017), we introduce a threshold-type regime switching into the

model that links the current regime of monetary policy to the historical fundamental shocks by an

autoregressive regime factor. This generates an endogenous feedback mechanism between measured

economic behavior and the monetary policy stance. For instance, the monetary policy intervention

that reflects how federal funds rate reacts to non-target information carries information, through the

endogenous feedback mechanism, about future realizations of the regime factor that determines the

policy regime. Private agents who observe the policy intervention would adjust their expectations

of future policy regime evolutions, which induces the endogenous expectations formation effects.

Indeed, the new endogenous feedback mechanism creates a channel for the fundamental shocks to

induce the expectations formation effects. In the exogenous Markov switching framework of Leeper

and Zha (2003), such a channel is absent.

3 Endogenous Switching in a Fisherian Model

In this section, we introduce the aforementioned endogenous feedback mechanism into a regime-

switching Fisherian model. We derive an analytical solution for this simple model and show that

it reduces to the solutions for the exogenous switching models and the fixed regime models as

limiting cases. Based on these solutions, we demonstrate that how the newly introduced endogenous

feedback mechanism modifies the macroeconomic dynamics and the expectations formation effects.

3.1 The Model

We consider the regime-switching Fisherian model studied in Davig and Leeper (2006). This simple

model of inflation determination combines a Fisher equation with an interest rate rule for monetary

policy. The Fisher equation can be derived from a perfectly competitive endowment economy with

flexible prices and a one period nominal bond.5 A linearized asset pricing equation for the nominal

5 Since we derive the Fisher equation from an intertemporal optimization problem for agents, the expected real
interest rate appears in the Euler equation, hence the Fisher equation. The real interest rate equals the intertem-
poral marginal rate of substitution and measures how expensive today’s consumption is relative to tomorrow. In a
conventional Fisher equation, the expected real interest rate is replaced with real interest rate at time t.
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bond is given by

it = Etπt+1 + Etrt+1, (1)

where it denotes the nominal interest rate, Etπt+1 the expected inflation and Etrt+1 the expected

real interest rate conditional on the information available at time t, which we define more explicitly

below in (8). The real interest rate evolves exogenously according to

rt = ρrrt−1 + σrϵ
r
t , (2)

where 0 ≤ ρr < 1 and ϵrt is an i.i.d. standard normal innovation.

We assume a monetary policy process that permits the monetary authority to vary its response

to inflation, depending on the state of economy. For example, a monetary authority may systemat-

ically respond more aggressively when its policy regime factor exceeds a particular threshold. The

monetary policy may then be given as

it = α(st)πt + σeϵ
e
t (3)

with α1 > α0, where α0 = α(st = 0) and α1 = α(st = 1). The regime is determined by an index

function

st = 1{wt ≥ τ} (4)

defined with the policy regime factor wt, which evolves as an AR(1) process

wt+1 = ϕwt + vt+1. (5)

The innovation vt+1 to the policy regime factor wt is allowed to interact with the monetary policy

shock in the previous period ϵet and we specify their joint distribution as(
ϵet

vt+1

)
=d N

(
0,

(
1 ρ

ρ 1

))
, (6)

where ρ measures the correlation between ϵet and v+1.

It follows from (5) and (6) that6

wt+1 = ϕwt + ρϵet + ηt+1, ηt+1 =d N(0, 1− ρ2). (7)

6 We project vt+1 onto the direction of ϵet and obtain

vt+1 =
cov(vt+1, ϵ

e
t )

var(ϵet )
ϵet + ηt+1 = ρϵet + ηt+1,

where ηt+1 =d N(0, 1− ρ2). Indeed, ρϵet is the linear least squares estimator of vt+1 and ηt+1 the estimation error.
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This representation highlights the endogenous feedback mechanism from current monetary policy

intervention ϵet to future regime selection st+1 through regime factor wt+1. The endogeneity pa-

rameter ρ measures the strength of the feedback channel. When ρ = 0, monetary policy regimes

shift completely based on the realizations of non-fundamental shock ηt+1. If |ρ| = 1, future regimes

become predetermined. When they select policy regimes, policy makers do not consider any infor-

mation beyond that embedded in the past policy interventions. In general, we expect 0 < |ρ| < 1.

Further, by iterating wt+1 backwards in (7), we can rewrite it as

wt+1 = ρϵet + ηt+1 +

∞∑
k=1

ϕk(ρϵet−k + ηt−k+1),

where ηs =d N(0, 1−ρ2) for all s. We call the autoregressive coefficient ϕ policy persistency since it

captures how much historical policy interventions and non-fundamental shocks would affect policy

regime selection. One extreme case with ϕ = 0 would mean that such influence on policy regime

selection only lasts one period. For the other extreme case with ϕ = 1, policy makers would put

the same weight on information across all past periods. In the latter case, policy regime selection

becomes most persistent.

We assume that private agents and the monetary authority can observe all current and historical

values of endogenous variables (it), (πt) and (rt), exogenous shocks (ϵ
r
t ) and (ϵet ), and states of regime

(st), but not the current and historical policy regime factor (wt)
7. Under this information structure,

agents form their expectations of next period inflation by

Etπt+1 = E(πt+1|Ft), Ft = {ik, πk, rk, ϵrk, ϵek, sk}tk=0. (8)

However, econometricians only observe realized values of endogenous variables, and therefore they

would employ a filtering technique to obtain other information.

3.2 Analytical Solution

We solve the system of expectational nonlinear difference equations consisting of (1)∼(6) using the

guess and verify method. Davig and Leeper (2006) show that the analytical solution for the model

with fixed regime monetary policy process is given as πt+1 = a1rt+1 + a2ϵ
e
t+1 with some constants

7 This assumption on information structure is critical for the subsequent analysis. Two potentially important
extensions of our work can be made by modifying this information structure. First, we may allow both agents
and monetary authority to observe regime factor. In this case, deriving an analytical solution is more challenging.
Numerical algorithms for solving the monetary DSGE model should also be modified. It is however interesting to
see that how macroeconomic dynamics and expectations formation effects vary when agents and policy makers are
allowed to observe the additional information on regime strength which is determined by the level of the regime factor
relative to the threshold. Second, we may assume that regime factor is observable only to monetary authority but
remains latent to agents. This is more realistic but raises the issue of how agents would learn what regime factor is.
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a1 and a2. Motivated by their solution, we start with the following guess for the true solution form

with undetermined coefficients

πt+1 = a1(st+1, pst+1,0(ϵ
e
t+1))rt+1 + a2(st+1)ϵ

e
t+1, (9)

where st+1 is the regime at period t+1, pst+1,0(ϵ
e
t+1) the time-varying transition probability (hence-

forth TVTP) from regime st+1 to regime 0 at period t+ 2. Accordingly, pst+1,1 = 1− pst+1,0. It is

worth noting that the TVTP from regime st+1 to regime 1 at t+2, pst+1,1(ϵ
e
t+1), can be simply com-

puted as 1− pst+1,0(ϵ
e
t+1). Given the information available at time t, Ft = {ik, πk, rk, ϵrk, ϵek, sk}tk=0,

agents solve the problem and obtain8

πt+1 =
ρr

α(st+1)

(α1 − α0)pst+1,0(ϵ
e
t+1) + α1

(
α0

ρr
− Ep00(ϵet+1)

)
+ α0Ep10(ϵet+1)

(α1 − ρr)

(
α0

ρr
− Ep00(ϵet+1)

)
+ (α0 − ρr)Ep10(ϵet+1)︸ ︷︷ ︸

a1(st+1,pst+1,0(ϵ
e
t+1))

rt+1−
σe

α(st+1)︸ ︷︷ ︸
a2(st+1)

ϵet+1,

(10)

where random coefficient a1 depends on st+1 and ϵet+1, and the constants Ep00(ϵet+1) and Ep10(ϵet+1)

are to be evaluated. If we impose the restriction ρ = 0, (10) reduces to

πt+1 =
ρr

α(st+1)

(α1 − α0)pst+1,0 + α1

(
α0

ρr
− p00

)
+ α0p10

(α1 − ρr)

(
α0

ρr
− p00

)
+ (α0 − ρr)p10︸ ︷︷ ︸

a1(st+1)

rt+1−
σe

α(st+1)︸ ︷︷ ︸
a2(st+1)

ϵet+1, (11)

which is the solution for the exogenous regime switching model.

Two important implications can be drawn by comparing solutions (10) and (11): First, because

monetary policy intervention ϵet+1 carries with it information about regime changes in the future, its

realization would affect agents’ expectations on future regime evolution. This adjustment of agents’

expectations alters their behaviors and, in equilibrium, causes changes in the current realization

of inflation. We call these changes the expectations formation effects, which are the forward-

looking effects identified by the endogenous feedback mechanism. The solution (10) clearly shows

that the monetary policy intervention ϵet+1 at time t + 1 influences the distribution of the policy

regime factor, and consequently also the policy regime, in the next period through the terms

pst+1,0(ϵ
e
t+1),Ep00(ϵet+1) and Ep10(ϵet+1). However, in solution (11) to an exogenous regime switching

model where ρ equals zero, the endogenous feedback mechanism is turned off and hence there is no

channel through which the monetary policy intervention could affect agents’ expectations on future

8 Detailed derivation is provided in Appendix A.
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regime changes. Second, the realization of policy regime st+1 in solution (10) is selected by the policy

makers following the endogenous regime switching monetary policy rule. That is, the information

embedded in all historical monetary policy interventions is used to determine the policy regime

st+1. Then, it changes the realization of inflation. These changes are called the selection effects,

which are the backward-looking effects raised by the endogenous feedback mechanism. In contrast,

in solution (11), the policy regime is simply selected by an exogenous state variable evolving as a

two-state Markov chain. In this paper, we will only study the endogenous expectations formation

effects which are more relevant for the rational expectations models.

If we impose the restriction α0 = α1 = α, solution (10) would reduce to the equilibrium inflation

in the fixed regime model

πt+1 =
ρr

α− ρr︸ ︷︷ ︸
a1

rt+1−
σe
α︸︷︷︸

a2

ϵet+1, (12)

where both coefficients a1 and a2 are deterministic constants. In this solution, monetary policy

intervention only has direct effects through the second term. This is the result obtained in Davig

and Leeper (2006). Therefore, our solution generalizes their result in a meaningful way.

3.3 Macroeconomic Dynamics

This subsection employs the simple Fisherian model with endogenous feedback mechanism to revisit

the Great Inflation periods. We show the importance of endogenous expectations formation effects,

generated by the feedback mechanism, in explaining the effective price stabilization in the early

1980s. In contrast, without taking the endogeneity into account, exogenous expectations formation

effects fail to generate significant price stabilization.

3.3.1 Price Stabilization

As in early 1980s, we suppose the economy is under less aggressive regime (henceforth regime 0) at

period T and there will be a contractionary monetary policy shock at period T +1. Using solution

(10), we compute inflation rate at period T +1 under different realizations of regime. In this simple

Fisherian model, zero inflation is regarded as the monetary authority’s target. From Figure 2, it is

clear that comparing to regime 0, when the monetary authority selects regime 1, the destabilizing

effect of contradictionary monetary policy shock on inflation is smaller. That is, the deviation from

inflation target is smaller. This means that the switch of monetary policy to regime 1 reduces the

size of the impact of the shock. Hence, a switch of monetary policy to the more aggressive regime

helps stabilize price levels.
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Figure 2: Realized Inflation at Each Regime

3.3.2 Expectations Formation Effects

We define direct effects and expectations formation effects as in Leeper and Zha (2003). Direct

effects and expectations formation effects from a policy intervention are computed from forecasts

from fixed-regime and endogenous regime switching models, respectively, conditional on a given

intervention. Both of these effects are reported relative to baseline effects computed as the forecast

obtained from the fixed regime model without conditioning on the given policy interventions. Sup-

pose the economy is under regime 0 at period T . Let IT be a hypothetical intervention at time T ,

specified as a K-period sequence of exogenous policy actions, IT = {ϵ̃eT+1, . . . , ϵ̃
e
T+K}. Although the

policy advisor chooses IT , private agents treat it as random. In Appendix B, we derive the direct

effects and total effects of IT relative to the baseline and isolate expectations formation effects as

the difference between them, and present the results here:

Baseline Effects = E[a1(sT+K = 0, p00(ϵ
e
T+K))]ρKr rT ,

Direct Effects = a1(sT+K = 0, p00(ϵ̃
e
T+K))ρKr rT + a2(sT+K = 0)ϵ̃eT+K − Baseline Effects,

Total Effects = [a1(sT+K = 0, p00(ϵ̃
e
T+K))ρKr rT + a2(sT+K = 0)ϵ̃eT+K ]P(sT+K = 0|sT = 0, IT , ϵ̃

e
T )

+ [a1(sT+K = 1, p10(ϵ̃
e
T+K))ρKr rT + a2(sT+K = 1)ϵ̃eT+K ]P(sT+K = 1|sT = 0, IT , ϵ̃

e
T )

− Baseline Effects,

Expectations Formation Effects = Total Effects−Direct Effects.

Suppose the monetary authority decides to implement a contractionary monetary policy in-
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Figure 3: Impulse Response of Contractionary Policy Intervention

tervention over the next eight periods, and they wish to know what are the effects of this policy

intervention throughout the next sixteen periods9 . We may write this intervention as

IT = {4%, . . . , 4%︸ ︷︷ ︸
8 periods

, 0, . . . , 0︸ ︷︷ ︸
8 periods

}.

In order to analyze how direct, total and expectations formation effects depend on the level of

endogeneity ρ and policy persistency ϕ, we set threshold τ at 3 and consider the period T +2. The

results are summarized in Figure 3. The black dot indicates the value of total effect at T +2 when

ρ = 0.9 and ϕ = 0.9.

Figure 4 shows that: (i) for ρ positive with ϕ fixed, policy intervention at period T +1 conveys

more information about policy regime at period T + 2 as ρ increases, or more precisely, agents

believe that positive realization of policy intervention at period T + 1 will significantly drive up

(since ρ > 0) the policy regime factor at period T + 2, and consequently the policy regime will be

more likely to switch. As a result, the expectations formation effect increases in magnitude. When

ρ is negative, the results are reversed but insignificant as shown in the figure. In the exogenous

regime switching case with ρ = 0, we have insignificant expectations formation effects. Clearly, price

level is more stabilized in the endogenous regime switching model especially with positive ρ, because

agents adjust their beliefs on future regimes through the endogenous feedback mechanism, compared

to the exogenous case. The strength of this stabilization effect is measured by the expectations

9 Parameters are calibrated according to quarterly frequency. We choose a 4-year forecast horizon to coincide with
a typical horizon the Federal Reserve considers in their routine policy making.
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Figure 4: Effects of Contractionary Policy Intervention

formation effects. In other words, if one fails to properly take into account the endogenous feedback

mechanism, the computation of the expectations formation effects can be significantly biased. (ii)

Overall, the influence of policy persistency ϕ on the expectations formation effects is indeterminate.

When ρ is positive and large, policy persistency and the expectations formation effects are negatively

related. In other cases, it seems that they become positively related but insignificantly.

We also compute and compare the impulse response functions from the endogenous and ex-

ogenous regime switching models throughout the sixteen periods. We set parameters (ϕ, ρ, τ) at

(0.9, 0.9, 3). Figure 3 shows clearly that endogenous feedback mechanism helps explain the price

stabilization in the 1980s. As already shown in Figure 4, when ρ is positive and large, monetary

policy is more likely to switch to the more aggressive regime and the expectations formation effects

become larger. Therefore, price level is more stabilized in the strong presence of positive endoge-

nous feedback. There are jumps in inflation because prices are flexible in Fisherian model and

hence adjust immediately after policy shock realizes.

In this section, by solving analytically the simple Fisherian model, we show that our endogenous

feedback mechanism creates a channel for the monetary policy intervention to induce the expecta-

tions formation effects. Moreover, using a calibrated version of the model, we also demonstrate that

the endogenous feedback mechanism need to be taken into account properly to be able to correctly

compute the expectations formation effects. In Section 5, we will conduct the same exercise within

a more prototypical regime switching monetary DSGE model with endogenous feedback.
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4 Endogenous Switching in a New Keynesian Model

This section first presents a regime-switching monetary DSGE model, which is a New Keynesian

model with a relatively standard private sector specification as in Ireland (2004), An and Schorfheide

(2007) and Davig and Doh (2014). Indeed, this model has become a benchmark specification for the

analysis of monetary policy and is analyzed in detail, for instance, in Woodford (2011). The primary

difference relative to these specifications is that the monetary policy rule is subject to a threshold-

type switching that links the current regime of monetary policy to the historical fundamental shocks

by an autoregressive regime factor. This generates an endogenous feedback mechanism between the

monetary policy stance and measured economic behavior. Then, we solve the endogenous regime

switching monetary DSGE model by first-order perturbation method used in Barthélemy and Marx

(2017).

4.1 The Model

The economy includes a representative household, a representative firm that produces a final good,

a continuum of monopolistically competitive firms that each produce an intermediate good indexed

by j ∈ [0, 1], and a monetary authority. For convenience, we abstract from investment and capital

accumulation. This abstraction, however, does not affect any qualitative conclusions, as Clarida

et al. (1999) discussed.

The Representative Household The representative household chooses consumption Ct of a

composite good relative to a habit stock10, hours worked Lt and debt holding Bt to maximize

lifetime utility

Et

∞∑
s=0

ξt+sβ
s

(
(Ct+s/At+s)

1−ϵ

1− ϵ
− Lt+s

)
,

where β ∈ (0, 1) is the discount factor, ϵ > 0 the coefficient of relative risk aversion, and ξt a

preference shock affecting the discount factor, subject to the intertemporal budget constraint

PtCt +QtBt = Bt−1 +WtLt + PtDt − PtTt,

where Pt is the aggregate price level, Qt the price of a zero-coupon bond at time t yielding 1 in

period t + 1, Wt the nominal wage per hour, Dt the real profits from ownership of firms, and Tt

lump-sum taxes. Note that the scale factor for Lt is implicitly assumed to be 1 as in An and

Schorfheide (2007).

The Intermediate-Goods-Producing Firms Intermediate-goods-producing firm j produces

10We assume that the habit stock is given by the level of technology At. This assumption ensures that the economy
evolves along a balanced growth path even if the utility function is additively separable in consumption and leisure.
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output Yjt using labor Ljt as only input. The production technology is linear in labor for simplicity

and given by

Yjt = AtLjt,

where At is common to all firms. The labor market is perfectly competitive, and firms are able to

hire as many as demanded at the real wage.

To allow for a real effect of monetary policy, we introduce nominal rigidities à la Rotemberg

(1982). The monopolistic intermediate-goods-producing firms pay a real adjustment cost11

ACjt =
φ

2

(
Pjt

Π∗Pjt−1
− 1

)2

Yt

when they adjust their prices, where φ ≥ 0 governs the price stickiness in the economy, Π∗ denotes

the steady-state gross inflation that coincides with the central bank’s inflation target, and Pjt

denotes the nominal price set by firm j ∈ [0, 1] at time t. The price adjustment cost is in terms of

the final good Yt. Each intermediate-goods-producing firm maximizes the expected present value

of the current and future real profits

Et

∞∑
s=0

βsλt+sDjt+s.

We use MUt to denote the representative household’s marginal utility of a unit of the consumption

good at time t. Then, the stochastic discount factor for real profits can be written as

βsλt+s = βs
MUt+s

MUt
= βs

(
Ct+s

Ct

)−ϵ( At

At+s

)1−ϵ

.

It measures the time t real value of a unit of the consumption good in period t+s to the household,

which is treated as exogenous by the firm. Real profit Djt at time t is given by

Djt =
PjtYjt
Pt

− Wt

Pt
Ljt −

φ

2

(
Pjt

Π∗Pjt−1
− 1

)2

Yt.

The Representative Final-Goods-Producing Firm The representative final-goods-producing

firm purchases a continuum of intermediate goods indexed by j ∈ [0, 1] at prices Pjt and combines

them into a final good using the following constant-returns-to-scale technology in the familiar

Dixit-Stiglitz (1977) form as

Yt =

[∫ 1

0
Y

θt−1
θt

jt dj

] θt
θt−1

,

11In our paper, we assume the inflation target Π∗ is regime-independent which leads to regime-independent steady
states for all variables. This result is summarized formally as Proposition 5 in Liu et al. (2011).
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where θt > 1 is the time-varying elasticity of substitution between goods. Therefore, the monopoly

power of each intermediate-goods-producing firm and its desired markup ut over marginal costs is

also constantly changing. The steady-state markup can be solved as

u =
θ

θ − 1

where θ is the steady-state elasticity of substitution. The profit maximization problem for the

final-goods-producing firm yields a demand for each intermediate good given by

Yjt =

(
Pjt

Pt

)−θt

Yt.

Then, the zero-profit condition for the perfectly competitive final-goods-producing firm implies that

the aggregate price level is

Pt =

[∫ 1

0
P 1−θt
jt dj

] 1
1−θt

.

Monetary Policy The monetary authority sets the short-term nominal rate using the following

modified Taylor rule:

Rt

R∗ =

(
Rt−1

R∗

)ρR
[(

Πt

Π∗

)α(st)( Yt
Y ∗
t

)γ
]1−ρR

et, (13)

where Rt is the gross nominal interest rate, Πt is the gross inflation which equals Pt/Pt−1. The

parameters α(st) and γ measure the reaction to the inflation gap and output gap. The reaction

to the inflation gap switches between two values depending on the regime st. The parameter ρR

captures the smoothing motive of the policy maker who sets the interest rate. Steady-state nominal

gross interest rate R∗ equals to r∗Π∗ where r∗ is the steady-state real gross interest rate. Y ∗
t is

the steady state level of output that would prevail in the absence of nominal rigidities. Finally,

the monetary policy shock et stands for the unsystematic monetary policy component, following a

lognormal distribution, i.e., ln et ∼ i.i.d.N(0, σ2e). Taking logarithm of equation (13) yields

R̂t = ρRR̂t−1 + (1− ρR)[α(st)Π̂t + γŶt] + êt,

where êt = ln et is an iid normal shock. The hat denotes the log-deviation from the steady state

or, in the case of output, from a trend path. The regime st is governed by an autoregressive regime

factor wt as

st = 1{wt ≥ τ}, (14)
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and the regime factor wt evolves as a first order autoregressive process specified as

wt+1 = ϕwt + vt+1. (15)

Market Clearing The goods market clears when production equals consumption plus a real

adjustment cost as

Yt = Ct +
φ

2

[
Πt

Π∗ − 1

]2
Yt

Shocks The economy is perturbed by four exogenous fundamental shocks. Aggregate productivity

At evolves according to

lnAt+1 = lnψ + lnAt + ln at+1,

where lnψ is the average technology growth rate. The exogenous fluctuations at of the technology

growth rate are given by

ln at+1 = ρa ln at + σaε
a
t+1,

where |ρa| < 1 and the innovation εat+1 follows a standard normal distribution. The preference

shock ξt follows a first order autoregressive process

ln ξt+1 = ρξ ln ξt + σξε
ξ
t+1,

where |ρξ| < 1 and the innovation εξt+1 follows a standard normal distribution. The markup shock

ut follows

lnut+1 = (1− ρu) lnu+ ρu lnut + σuε
u
t+1,

where |ρu| < 1 and the innovation εut+1 follows a standard normal distribution, and as discussed

earlier, the monetary policy shock is given by

ln et+1 = σeε
e
t+1,

where the innovation εet+1 follows a standard normal distribution. The four innovations are inde-

pendent of each other.

In addition, the endogenous regime factor brings in a regime factor innovation vt+1, which is

distributed as multivariate normal together with the past fundamental shocks εt = (εat , ε
ξ
t , ε

u
t , ε

e
t )

′,
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viz., 
εat

εξt
εut

εet

vt+1

 ∼ N

0,


1 0 0 0 ρav

0 1 0 0 ρξv

0 0 1 0 ρuv

0 0 0 1 ρev

ρav ρξv ρuv ρev 1



 , (16)

where ρ = (ρav, ρξv, ρuv, ρev)
′, with the normalization ρ′ρ < 1. Full characterization of the model

is summarized in appendix C.

By projecting vt onto εt−1, we can rewrite vt as

vt = ρ′εt−1 +
√

1− ρ′ρηt, ηt ∼ N(0, 1),

where ηt is an iid standard normal innovation, εet−1 and ηt are orthogonal, and each has unit

variance. Hence, equation (15) is further specified as

wt+1 = ϕwt + ρ′εt +
√

1− ρ′ρηt+1. (17)

Now, note that

wt+h = ϕhwt +
h∑

j=1

ϕh−jvt+j

for h ≥ 1, and hence forecast error variance decomposition of wt+h can be derived as

FEV (wt,h) = V ar(wt+h − E(wt+h|Ft))

=
h∑

j=1

ϕ2(h−j) =
4∑

k=1

h∑
j=1

ρ2kϕ
2(h−j)

︸ ︷︷ ︸
k-th fundamental

+
h∑

j=1

(
1−

4∑
k=1

ρ2k

)
ϕ2(h−j)

︸ ︷︷ ︸
non-fundamental

(18)

for h ≥ 1. It follows that the percent of the h-step ahead forecast error variance due to the k-th

fundamental shock is given by ρ2k, which is independent of h. Hence, we interpret the magnitude

of ρ2k as ”the contribution of the k-th fundamental shock to the monetary policy shifts”.

4.2 Solving Endogenous Regime-Switching Monetary DSGE Model

We solve our endogenous regime-switching monetary DSGE model using a first-order perturba-

tion method, which largely facilitates the estimation. Maih (2015), Foerster et al. (2016) and

Barthélemy and Marx (2017) all solve non-linear regime-switching rational expectations models

using a perturbation method. Maih (2015) and Foerster et al. (2016) propose algorithms based on

successive differentiations in the vein of Kim et al. (2008b). Barthélemy and Marx (2017), follow-
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ing Cho (2016), use a functional iteration technique to find the solution of a fixed-point problem.

Moreover, they complement other papers by showing how to apply the implicit function theorem to

numerically ensure both determinacy and accuracy of the approximate solution. Because we are in-

terested in eventually evaluating how switching parameters would affect the determinacy condition,

we choose to use Barthélemy and Marx (2017)’s algorithm in this paper.

In order to apply Barthélemy and Marx (2017)’s perturbation method, we must first compute the

time-varying transition probabilities. It is important to notice that our threshold-type switching

consisting of equations specified in (14) - (16) can be represented as the TVTP-type switching

employed in Barthélemy and Marx (2017). In our model, the transition probability from regime 0

to regime 0 can be computed as

P{st+1 = 0|st = 0, εt} =

∫ τ
√

1−ϕ2

−∞
Φρ

(
τ − ϕx√

1− ϕ2
−

4∑
k=1

ρkε
k
t

)
φ(x)dx

Φ(τ
√

1− ϕ2)
(19)

Analogously, the transition probability from regime 1 to regime 0 is computed as

P{st+1 = 0|st = 1, εt} =

∫ ∞

τ
√

1−ϕ2

Φρ

(
τ − ϕx√

1− ϕ2
−

4∑
k=1

ρkε
k
t

)
φ(x)dx

1− Φ(τ
√

1− ϕ2)
(20)

Then, the transition probabilities from regime 0 to regime 1 and from regime 1 to regime 1 can be

readily obtained as

P{st+1 = 1|st = 0, εt} = 1− P{st+1 = 0|st = 0, εt} (21)

P{st+1 = 1|st = 1, εt} = 1− P{st+1 = 0|st = 1, εt} (22)

The above TVTPs are computed following the steps summarized in Appendix A.2. With these

TVTPs, we can rewrite the full characterization as a set of equations consisting of four equilibrium

conditions (42) - (45), technology process (48) and four exogenous shocks (49)-(52), and the TVTPs

(19)-(22).

Since the nonstationary technology process At induces a stochastic trend in output and con-

sumption, it is convenient to express the model in terms of detrended variables ct = Ct/At and

yt = Yt/At. A non-stochastic steady state is defined as an equilibrium when shocks are turned off

and inflation is at its target rate. In terms of detrended variables, the non-stochastic steady state
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can be computed as12

Z =
(
y,Π, R, a, ξ, u, e

)′
=

((
θ − 1

θ

)1/ϵ

,Π∗,
ψΠ∗

β
, 1, 1, u, 1

)′

.

We rewrite all variables in terms of log-deviations from their steady states which are signified by

‘hat’ and collected in a (7× 1) vector Zt as

Zt = (ŷt, Π̂t, R̂t, ât, ξ̂t, ût, êt)
′.

Then, our model can be represented as

Et[fst(Zt+1, Zt, Zt−1, χεt)] = 0, (23)

where εt is a 4-dimensional vector of innovations, i.e., εt = (εat , ε
ξ
t , ε

u
t , ε

e
t ),

′ and χ is a positive

scalar. The transition probabilities of st from regime i to regime j are given in (19)-(22). Let

the set U∞ represent an infinite sequence including the current and entire past states and shocks,

i.e., (st, εt) = ((st, εt), (st−1, εt−1), · · · ). We describe a solution for our model as a continuous and

bounded function g : U∞ → R7 of all the current and past states13 and shocks, satisfying the

condition (23) specified by the full characterization provided in Appendix C. We denote by B the

set of all such continuous and bounded functions g. The left-hand side of (23) can be denoted as

an operator N acting on a bounded continuous function g in B and the scale parameter χ. We

may therefore rewrite (23) as

N (g, χ)(st, εt) =
∑
j

∫
pst,j(εt)fst(g(js

t, εεt), g(st, εt), g(st−1, εt−1), χεt)p(ε)dε = 0,

where p(ε) denotes the Gaussian probability density function for ε. In this functional framework,

the problem can be reinterpreted as finding the zeros of the operator N . This can be done by

applying the implicit function theorem to the operator N (g, χ) as shown in Barthélemy and Marx

(2017).

For the variables in log-deviations, the steady state for model (23) given in (23) is simply given

by Zss = 0. By application of the implicit function theorem around the steady state Zss = 0 and

12 ct is substituted using market clearing condition.
13 Essentially, regime change should be regarded as an additional source of shock. But, this shock is very different

from the i.i.d. Gaussian fundamental shocks εt. This is because the regime state st is a time-inhomogeneous Markov
process.
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with χ set at 1, we obtain the following first-order perturbation solution for our model

Zt = A1(st)︸ ︷︷ ︸
7×7

Zt−1 +A2(st)︸ ︷︷ ︸
7×4

εt (24)

where the four coefficient matrices A1(st = j) and A2(st = j) for j = 0, 1 are obtained numerically

by using Barthélemy and Marx (2017)’s solution algorithm.14 Due to our assumption that the

inflation target Π∗ is invariant across regimes, the steady-state of our model given in (23) is state-

invariant. This, together with the fact that the steady-state values e of the structural shocks are

zero, implies that the channel that provides endogenous feedback from structural shocks to the

regime factor vanishes in the steady-state. This is why the coefficient matrix A1 in the above

solution depends only on st. The other parameters defining the our TVTP’s, the persistency of

the regime factor ϕ and the threshold τ , are still present in the coefficient A1. We may obtain a

solution which explicitly reflects the presence of endogenous feedback by letting the inflation target

Π∗ be regime specific, which yields a regime-dependent steady-state.15

5 Estimation of Monetary DSGE Models

5.1 Contact with the Literature

The Great Moderation which started in the mid-1980s raised the famous “good luck” or “good

policy” debate. To answer this question, literature has used the workhorse New Keynesian model

with a simple monetary policy rule – the Taylor rule. The nominal rigidity (price stickiness) in the

New Keynesian model allows for a real effect of monetary policy. Lubik and Schorfheide (2004)

use Bayesian approach (with Kalman filter) to estimate a fixed-regime monetary DSGE model over

three subsample periods. Marginal likelihood comparison suggests that the pre-Volcker posterior

concentrates almost all of its probability mass in the indeterminacy region, while the post-1982

posterior concentrates in the determinacy region. According to this result, they conclude that

the U.S. monetary policy post-1982 is consistent with determinacy, whereas the pre-Volcker policy

is not, which supports the ”good policy” argument. The fixed-regime monetary DSGE model is

solved by the approach developed by Sims (2002), and extended in Lubik and Schorfheide (2003).

In the spirit of the Lucas (1976) critique, the empirical observations of time variation in the

14 Barthélemy and Marx (2017)’s solution algorithm requires the TVTPs to be smooth functions (at least C2). In
our model, TVTPs are indeed smooth functions as shown in Figure 6. However, it is worth noting that for a simple
threshold-type switching model where regime is determined by an observed variable crossing a certain threshold, its
TVTPs are step functions which makes Barthélemy and Marx (2017)’s perturbation method not applicable. This
type of discontinuity does not occur in our model since the transition is determined by a continuous latent regime
factor.

15 In fact, Barthélemy and Marx (2017) allows for the existence of a regime-dependent steady-state. See their
Assumption 2.
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Taylor rule call for regime switching monetary policy: If policy has switched in the past, it might

be expected to switch again in the future. Davig and Doh (2014) use a Bayesian approach (with

approximate Kalman filter of Kim and Nelson (1999)) to estimate a Markov-switching monetary

DSGE model that allows shifts in the monetary policy reaction coefficients and structural shock

volatilities. They find that a more aggressive monetary policy regime was in place after the Volcker

disinflation and before 1970 than during the Great Inflation of the 1970s. Their estimates also

indicate that a low-volatility regime has been in place during most of the sample period after

1984. They then connect the timing of the different regimes to a measure of inflation persistence.

Bianchi (2012) uses a Bayesian approach (with Gibbs sampling algorithm) to estimate a similar

model as Davig and Doh (2014) but with an additional interest rate smoothing parameter. His

model also allows switching in both policy coefficients and shock variances. His estimates capture

better features for the recent crisis. To explore the role of agents’ beliefs he applies counterfactual

simulations and finds that: If, in the 1970s, agents had anticipated the appointment of an extremely

conservative Chairman, inflation would have been lower. The large drop in inflation and output

at the end of 2008 would have been mitigated if agents had expected the Federal Reserve to be

exceptionally active in the near future. These two papers both use MSLRE method (Farmer et al.,

2011) to solve the exogenous regime switching monetary DSGE models.

While the exogenous regime switching setup allows researchers to determine the timing and

study the macroeconomic implications of U.S. monetary policy regime shifts, it remains silent

about the origin of this policy regime change. The attempt to tackle this research question calls

for modeling monetary policy regime change as a purposeful response of central bank to the state

of economy, rather than following an exogenously evolving switching process. Only recently, Maih

(2015), Foerster et al. (2016) and Barthélemy and Marx (2017) developed perturbation methods

for solving regime switching DSGE models with time-varying transition probabilities. Instead

of imposing a functional form on TVTP, we introduce a threshold-type switching that links the

current monetary policy stance to the historical fundamental shocks by a latent autoregressive

regime factor which generates TVTPs through the aforementioned endogenous feedback mechanism.

Nevertheless, their solution algorithms are applicable to our model because our threshold-type

switching has a TVTP representation as shown in Section 4.2.

5.2 Estimation Strategy

5.2.1 Data

To construct the system of measurement equations specified below in (25), we need three series of

U.S. quarterly data. For the per capita real output growth rate (in percentage) Y GRt, we divide

the level of real gross domestic product (FRED mnenomic ”GDPC1”) by the quarterly average of

the Civilian Non-institutional Population (FRED mnenomic ”CNP16OV ”) to obtain per capita
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real output, then take its log difference and scale by 100. For the annualized net inflation rate

(in percentage) INFt, we take log difference of quarterly consumer price index (FRED mnenomic

”CPIAUCSL”) and scale by 400. For the annualized net nominal interest rate (in percentage)

INTt, we use the effective federal funds rate (FRED mnenomic ”FEDFUNDS”). All data come

from Federal Reserve Bank of St. Louis, Economic Data-FRED. The sample spans 1954:Q3 to

2007:Q4. We do not include post-crisis data because the unconventional monetary policy carried

out at the zero lower bound can not be well explained by the prototypical New Keynesian model.

5.2.2 State Space Representation

The first-order perturbation solution (24) has a conditionally linear Gaussian structure which makes

feasible the application of our newly developed Kalman filter with Markov switching16. This new

filter will be used to estimate our state space model. We combine the first-order perturbation

solution with the measurement equations specified below in (25) to form a regime-dependent state

space model. For filtering convenience, we augment the state vector by including one-period-ahead

latent endogenous regime factor wt+1. In addition, we also include the past output gap ŷt−1 as we

need it to construct our first measurement equation in (25). Therefore, our state vector Xt is given

by

Xt = (ŷt, Π̂t, R̂t, ât, ξ̂t, ût, êt, wt+1, ŷt−1)
′.

Correspondingly, we augment the shock vector εt with the shock ηt+1 to the added regime factor

wt+1. Then, it is given by

εt = (εat , ε
ξ
t , ε

u
t , ε

e
t , ηt+1)

′.

Therefore, our measurement equation is given as

yt = D(st,Θ) + Z(st,Θ)Xt + νt,

which can be more explicitly written as Y GRt

INFt

INTt


︸ ︷︷ ︸

yt

=

 ψ(Q)

π(A)

4ψ(Q) + r(A) + π(A)


︸ ︷︷ ︸

D(st,Θ)

+100

 ŷt − ŷt−1 + ât

4Π̂t

4R̂t


︸ ︷︷ ︸

Z(st,Θ)Xt

+νt, (25)

where ψ(Q) is the quarterly net growth rate of technology in percentage, r(A) the annualized net

real interest rate in percentage, and π(A) the annualized net inflation target in percentage, and with

νt ∼ N(0,Σν), where νt are measurement errors and their standard deviations are set to be 20% of

16 Detailed algorithm is provided in Appendix D.
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the sample standard deviations of real data, i.e., Σν = 0.22 × diag(var(yt)). Transition equations

consist of solution (24), the law of motion (17) for the autoregressive regime factor wt+1, and the

identity ŷt−1 = ŷt−1. It can be simply represented as

Xt = G(st,Θ)︸ ︷︷ ︸
9×9

Xt−1 +M(st,Θ)︸ ︷︷ ︸
9×5

εt, (26)

with εt ∼ N(0, I5), where

G(st,Θ) =



A1(st)︸ ︷︷ ︸
7×7

0︸︷︷︸
7×2

0︸︷︷︸
1×7

ϕ 0

1 0︸︷︷︸
1×6

0 0


, M(st,Θ) =



A2(st)︸ ︷︷ ︸
7×4

0︸︷︷︸
7×1

ρ′︸︷︷︸
1×4

√
1− ρ′ρ

0︸︷︷︸
1×5


For the above state space representation (25) and (26), likelihood function can be easily evalu-

ated using our newly-developed Kalman filter with Markov switching.

5.2.3 Quasi-Bayesian MLE

As is well known, implementation of MLE can be particularly challenging in applications involving

DSGE models. Several classes of problems can arise in minimizing the negative log-likelihood

function: discontinuities, multiple local minima, and identification.

Quasi-Bayesian methods have been widely used to help induce some desired curvature in the

likelihood function surface. Assuming that we have already obtained a log-likelihood function

logL(Y1:T |Θ) where Y1:T denotes real data from time 1 to time T and Θ denotes all parameters to be

estimated, a quasi-Bayesian method augments the log-likelihood function with a prior distribution

specified over Θ, denoted by p(Θ). Then, the quasi-Bayesian ML estimator is defined as

Θ̂ = argmin
Θ∈R(Θ)

− logL(Y1:T |Θ)− log p(Θ)

Notice that the estimator corresponds to the mode of the log of the posterior distribution p(Θ|Y1:T ).
In the special case where the prior is diffuse or uninformative, the estimator Θ̂ converges to the

classical ML estimator. When the prior is proper, the quasi-Bayesian estimate of Θ may be inter-

preted as the one obtained by maximization of a penalized log-likelihood function. The penalty

log p(Θ) depends on the strength of the researcher’s prior about Θ and has the effect of pulling the

estimator towards the mode of the prior density.
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5.2.4 Bayesian Approach

In order to get more robust estimates, we employ a Markov Chain Monte Carlo (MCMC) technique

based on our newly developed filter, which is a modified Kalman filter designed to deal with the

endogenous feedback mechanism within our monetary DSGE model. The posterior samples drawn

using this Bayesian approach not only helps us to find the more robust posterior mean and mode,

but also provides the empirical joint distribution of all estimated parameters which are used for

inference. A standard random walk Metropolis-Hastings algorithm is applied to implement the

MCMC technique. We now summarize the algorithm for drawing Markov chain samples x(j) for

j = 1, . . . , N of Θ which will converge to its posterior kernel

p(Θ|Y1:T ) = L(Y1:T |Θ)p(Θ).

In Step 2.1, c denotes a tuning scalar and Σ the inverse of negative Hessian obtained from the

quasi-Bayesian MLE.

Step 1. Initialize the Markov chain with the quasi-Bayesian ML estimates: x(0) = Θ̂.

Step 2. Repeat Steps 2.1-2.3 for j = 1, 2, . . . , N.

Step 2.1. Generate y from q(x(j−1), ·) =d N(x(j−1), cΣ) and u from U(0, 1).

Step 2.2. Compute the probability of move

α(x(j−1), y) = min

[
p(y|Y1:T )q(y, x(j))
p(x(j)|Y1:T )q(x(j), y)

, 1

]

Step 2.3. If u ≤ α(x(j−1), y)

− Set x(j) = y.

Else

− Set x(j) = x(j−1).

Step 3. Return the values {x(1), x(2), . . . , x(N)}.

As N gets large, the Markov chain converges to the posterior kernel p(Θ|Y1:T ).

5.3 Empirical Analysis

5.3.1 Prior Distribution

The last three columns in Table 1 report prior distributions for all parameters. The priors for all

but those specific to our endogenous feedback mechanism are in line with previous results in the
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literature and are relatively loose. For example, the parameters α0, α1 of coefficients to inflation

and annualized net inflation target π(A) are from Bianchi (2012), risk aversion ϵ is from Lubik and

Schorfheide (2004), and quarterly growth rate of technology ψ(Q) is from Davig and Doh (2014).

Other structural parameters are also chosen to match closely those reported in the literature. For

instance, coefficient to output gap γ has the same prior distribution and mean as Bianchi (2012)

but with a smaller standard deviation from Davig and Doh (2014). Annualized net real interest

rate r(A) has the same prior distribution and standard deviation but with a mean closer to the

estimation result of Bianchi (2012). Steady-state elasticity of substitution between intermediate

goods θ is set such that its implied markup of intermediate-good price over marginal cost is close

to the estimate in Bianchi (2012). Level of price stickiness φ is set such that it together with ϵ, θ

and inflation target Π∗ would imply the slope of NKPC that is close to its estimate reported in

Davig and Doh (2014). Autocorrelation coefficients and standard deviations for shocks are set to

be relatively uninformative and loose as Beta(0.5,0.2) and Inverse Gamma(2,0.1). Finally, the most

important new parameters (ρ, ϕ, τ) in our endogenous feedback mechanism are set to be relatively

uninformative.

5.3.2 Empirical Findings

Concerning the parameters of the Taylor rule, coefficients to inflation are estimated to be 0.88 and

1.55 for less aggressive and more aggresive regimes, respectively. Other parameter estimates are in

line with the results reported in the previous literature. For instance, annualized inflation target

is estimated to be 2.06% and annualized real interest rate is 0.67%. We take a more serious look

at the estimates of the parameters defining our endogenous feedback mechanism. Autocorrelation

coefficient ϕ of regime factor is estimated to be 0.88, which means the regime factor is relatively

persistent. More importantly, endogeneity parameter ρuv is estimated to be -0.48, which is of

the largest magnitude among the four candidates driving monetary policy regime change. As we

pointed out earlier below (18), ρ2k captures the contribution of the k-th fundamental shock to the

monetary policy shifts. Therefore, we may conclude that monetary policy shifts are 23.1% driven

by past markup shocks. The contribution from preference shock, monetary policy intervention and

technology shock are 13.2%, 2.0% and 0.3%, respectively.

Figure 5 shows the extracted policy regime factor. Shaded areas indicate the periods of the less

aggressive regimes when the regime factor lies below the estimated threshold level. Monetary policy

turns out to be more aggressive during the early years of the sample, from 1954 to 1967, except

a short period on the second half of 1950s where inflation suddenly went up but soon controlled.

During that time, Fed Chairman Martin had a clear goal in mind that the Fed would raise interest

rates in response to an overheated economy.

Towards the end of the 1960s, the policy regime factor started to fall below the threshold as can
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Table 1: Posterior Estimates and Priors of the Parameters of the Regime-Switching DSGE Model

Prior Posterior
Parameter Density π1 π2 Mean 5% 95%

α0 G 1 0.4 0.8823 0.5680 1.2126
α1 G 1.8 0.4 1.5500 1.0260 2.1531
γ G 0.25 0.05 0.3576 0.2737 0.4528
ρR B 0.5 0.2 0.7188 0.6175 0.8015
ϵ G 2 0.5 2.5854 1.8818 3.4272
θ G 8 3 8.6788 4.3752 14.2601
φ G 67 10 73.7395 57.8012 91.3200

π(A) G 2 0.2 2.0573 1.7328 2.4030

r(A) G 0.8 0.2 0.6665 0.4297 0.9366

ψ(Q) G 0.5 0.1 0.4391 0.3519 0.5290
ρa B 0.5 0.2 0.6217 0.4437 0.7737
ρξ B 0.5 0.2 0.9160 0.8790 0.9480
ρu B 0.5 0.2 0.9481 0.9173 0.9739

100σa I 2 0.1 0.3700 0.2500 0.4900
100σξ I 2 0.1 2.9900 2.2500 3.8900
100σu I 2 0.1 1.6600 0.7300 2.9300
100σe I 2 0.1 0.1400 0.1100 0.1700
ϕ B 0.5 0.3 0.8816 0.7847 0.9746
τ N 0 1 -0.0331 -1.7541 1.6790
ρav U -1 1 -0.0514 -0.3395 0.2826
ρξv U -1 1 0.3627 -0.2873 0.8357
ρuv U -1 1 -0.4804 -0.9425 0.2458
ρev U -1 1 0.1426 -0.1552 0.5591

Notes: Parameter estimates are obtained from 300,000 posterior draws after 40,000 burn-
in. π1 and π2 are the means and standard deviations for Gamma, Beta and Normal
distributions, the left side and right side for Uniform distribution, and the parameters ν
and s for Inverse Gamma distribution with density p(σ|ν, s) ∝ σ−ν−1 exp(−νs2/2σ2).
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Figure 5: Extracted Monetary Policy Regime Factor

Notes: The shaded areas indicate the less aggressive monetary policy regime.

be seen clearly in Figure 5 and monetary policy moved into the first significant and persistent less

aggressive regime. As the inflation seemed to decrease in the early 1970s, the regime factor climbed

upwards to the threshold. However, as inflations rose again to a higher level in the mid-1970s, the

regime factor fell sharply which implies that the strength of the less aggressive regime had been

dramatically reinforced. The Fed Chairman Arthur F. Burns is often thought to be responsible for

the high and variable inflation that prevailed during the 1970s. It is commonly accepted that on

several occasions he had to succumb to the requests of the White House. In fact, the estimates

show that for almost entire duration of his chairmanship, the Fed followed a less aggressive regime.

During these years, the more aggressive regime would have required a much higher federal funds

rate, which must have been politically very costly.

This long period of less aggressive monetary policy ended around the second half of 1981, shortly

after Paul Volcker took office in August 1979. Volcker was appointed with the precise goal of ending

the high inflation. The jump in the regime factor which placed it significantly above the threshold

confirms the widespread belief that he delivered on his commitment.

The estimation results on the second half of our sample periods coincide very well with the

results in Chang and Kwak (2017). Since 1981, monetary policy was more aggressive until the

end of 2007, right before the Great Recession, except for two relatively short periods around the

recessions in 1991 and 2001.

To summarize, our results strongly support the idea that the appointment of Volcker marked

a change in the Fed’s inflation stance compared to the 1970s. And, the evolution of regime factor

captures repeated fluctuations between a more aggressive and a less aggressive regime for Post-

World War II U.S. monetary policy.
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5.4 Model Comparison

This section compares the model fit between the endogenous regime switching model and its ex-

ogenous counterpart by both Bayesian and classical approaches. Under the Bayesian approach, we

choose to use Geweke (1999)’s harmonic mean estimator to estimate the marginal data density.

The marginal likelihood can be estimated by

p̂(Y ) =

[
1

M

M∑
k=1

f(Θ(k))

p(Y |Θ(k))p(Θ(k))

]−1

where Θ(k) is drawn from p(Θ|Y ) and p(Y |Θ(k)) can be evaluated from our Kalman filter with

Markov switching.

Thus, the marginal data density for the endogenous regime switching model can be readily

computed using the posterior samples obtained in Section 5.2.4. For the exogenous regime switching

model, we impose ρ = 0 and reestimate the model. Its marginal data density can be computed

accordingly. Table 2 shows that the difference in the log-marginal likelihood between the endogenous

and exogenous regime switching models is roughly 12, significantly larger than 4.74 (as in Kass and

Raftery 1995). Based on the Jeffrey criterion (1998), the endogenous regime switching model is

strongly preferred over the exogenous case.

Table 2: Log Marginal Likelihood Estimates for the Endogenous and Exogenous Models

endogenous exogenous

ln p̂(Y ) -1289.45 -1301.37

5.5 Macro Dynamics

This section will present the macroeconomic dynamics for both estimated endogenous and ex-

ogenous regime switching models. With the estimates of parameters for both models, we plot

the impulse response functions to determine how the new endogenous feedback mechanism would

significantly modify the macroeconomic dynamics comparing to the conventional exogenous case.

Further, we compute the endogenous and exogenous expectations formation effects to analyze how

these macroeconomic dynamics are induced by the changes of agents’ beliefs about future policy

regimes evolutions.

[To be added: impulse response functions]
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6 Extensions and Conclusions

In this section, we propose several interesting and potentially important extensions based on our

current work and conclude.

6.1 Extensions

Monetary-fiscal interaction In our current model, there are four structural shocks as candi-

dates of driving forces to monetary policy regime change. Based on various theoretical and empirical

findings in previous literature, it is natural and interesting to include fiscal policy into the DSGE

model and consider it as another important candidate that drives choice of monetary policy regime.

6.2 Conclusions

We introduce a novel endogenous regime switching approach to a prototype monetary DSGE model.

The endogeneity brings about a new feedback mechanism from past monetary policy interventions

to central bank’s current regime selection. To better illustrate how this mechanism works, we

derive an analytical solution to a regime switching Fisherian model with the endogenous feedback

mechanism. Numerical experiments show that this feedback mechanism would significantly affect

the macroeconomic dynamics and expectations formation effects. In the empirical part, estimation

shows that Post-World War II U.S. monetary policy regime change is 23.1% driven by past markup

shocks, which has played a predominant role among the four fundamental shocks. The extracted

latent regime factor indicate that monetary policy is identified by repeated fluctuations between

a more aggressive and a less aggressive regime, with the latter prevailing in the 1970s and during

the recent crisis. Lastly, the Bayes factor strongly favors the endogenous switching version of the

model over the exogenous case.
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Appendices

A Derivation of Analytical Solution to Fisherian Model

A.1 Analytical Derivation

The equilibrium conditions (1)∼(6) form a system of expectational nonlinear difference equations.

Solving this system is tantamount to solving a fixed point problem. Suppose that agents come

across a decision rule to evaluate πt+1 given all past and current information. Mathematically, it

means that πt+1 will be integrated out with respect to its conditional distribution conditioning on

current information set. Then, agents can solve πt+1. If the resulting solution shares the same

form with the initial guess (i.e., initial decision rule), then it is regarded the true solution to the

original system. Otherwise, agents will use the resulting solution as an updated guess and follow

the same procedure until convergence to a fixed point. This solution approach is often called guess

and verify (or undetermined coefficients).

We start with the following guess of true solution with undetermined coefficients17

πt+1 = a1(st+1, pst+1,0(ϵ
e
t+1))rt+1 + a2(st+1)ϵ

e
t+1, (27)

where st+1 is regime at period t+1, pst+1,0(ϵ
e
t+1) the TVTP from regime st+1 to regime 0 at period

t + 2. The TVTP from regime st+1 to regime 1 at t + 2, pst+1,1(ϵ
e
t+1), can be simply computed

as 1 − pst+1,0(ϵ
e
t+1). In this guess, monetary policy shock ϵet+1 appears not only in the second

term which has a direct effect on πt+1, but also changes agents’ beliefs, in the first term, on the

distribution of next period regime through the endogenous feedback mechanism.

Plugging (27) into (8), the second term of (27) vanishes because random variables st+1 and ϵ
e
t+1

are independent. Also notice that rt+1 is independent of st+1 and ϵet+1. Therefore, we obtain

Etπt+1 = E(a1(st+1, pst+1,0(ϵ
e
t+1))rt+1|Ft) + 0

= E(a1(st+1, pst+1,0(ϵ
e
t+1))|Ft)E(rt+1|Ft)

= [E(a1(st+1 = 0, p00(ϵ
e
t+1))|Ft) · pst,0(ϵet )

+ E(a1(st+1 = 1, p10(ϵ
e
t+1))|Ft) · pst,1(ϵet )] · ρrrt

= [E(a1(st+1 = 0, p00(ϵ
e
t+1))) · pst,0(ϵet )

+ E(a1(st+1 = 1, p10(ϵ
e
t+1))) · pst,1(ϵet )] · ρrrt. (28)

17 This is a correct guess we obtained after a few failed trials. We believe the true solution should permit the
additivity between rt+1 and ϵet+1 because as a limiting case, it must reduces to the known result of equation (12) in
literature. Also, it reflects that regime switching is the only nonlinear feature in the model. Conditional on regime,
the model would be fully linear. It is worth noting that solution is unique under the given structure of initial guess.
Other forms of solutions might or might not exist.
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The last equality holds by the independence of Ft and ϵ
e
t+1. Plugging (28) and (2) into (1), then

combining (3) yields

it = [E(a1(st+1 = 0, p00(ϵ
e
t+1))) · pst,0(ϵet ) + E(a1(st+1 = 1, p10(ϵ

e
t+1))) · pst,1(ϵet ) + 1] · ρrrt

= α(st)πt + σeϵ
e
t .

Taking one period forward, we can solve πt+1 as

πt+1 =
ρr

α(st+1)
[E(a1(st+2 = 0, p00(ϵ

e
t+2))) · pst+1,0(ϵ

e
t+1)

+ E(a1(st+2 = 1, p10(ϵ
e
t+2))) · pst+1,1(ϵ

e
t+1) + 1]rt+1 −

σe
α(st+1)

ϵet+1. (29)

Comparing (29) with (27), we match the unknown coefficients

a1(st+1, pst+1,0(ϵ
e
t+1)) =

ρr
α(st+1)

[E(a1(st+2 = 0, p00(ϵ
e
t+2))) · pst+1,0(ϵ

e
t+1)

+ E(a1(st+2 = 1, p10(ϵ
e
t+2))) · pst+1,1(ϵ

e
t+1) + 1], (30)

and

a2(st+1) = − σe
α(st+1)

. (31)

To determine a1, we first denote the two expectational terms in the right-hand-side of (30) by

C0 = E(a1(st+2 = 0, p00(ϵ
e
t+2))), and C1 = E(a1(st+2 = 1, p10(ϵ

e
t+2))), (32)

which are two undetermined constants since ϵet+2 is iid and hence the unconditional expectation

of any function of ϵet+2 would not depend on time index. Then, we consider st+1 = 0 and take

expectation with respect to ϵet+1 in both sides of (30). Notice that the left-hand-side of (30)

becomes C0 because of the reason just mentioned. Therefore, we obtain from (30) and (32) that

C0 = E(a1(st+1 = 0, p00(ϵ
e
t+1))) =

ρr
α0

[C0Ep00(ϵet+1) + C1Ep01(ϵet+1) + 1], (33)

where α0 = α(st+1 = 0). Similarly, considering st+1 = 1 in (30) would yield

C1 = E(a1(st+1 = 1, p10(ϵ
e
t+1))) =

ρr
α1

[C0Ep10(ϵet+1) + C1Ep11(ϵet+1) + 1], (34)

where α1 = α(st+1 = 1).
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Now, we can write C1 as a function of C0 by (34):

C1 =

ρr
α1

Ep10(ϵet+1)

1− ρr
α1

Ep11(ϵet+1)
C0 +

ρr
α1

1− ρr
α1

Ep11(ϵet+1)

=
ρrEp10(ϵet+1)

α1 − ρr + ρrEp10(ϵet+1)
C0 +

ρr
α1 − ρr + ρrEp10(ϵet+1)

, (35)

where in the denominator we replaced Ep11(ϵet+1) with 1− Ep10(ϵet+1). Plugging (35) into (33), we

solve

C0 =
α1 + ρr(Ep10(ϵet+1)− Ep00(ϵet+1))

α0

(
α1

ρr
− 1 + Ep10(ϵet+1)

)
− α1Ep00(ϵet+1)− ρr(Ep10(ϵet+1)− Ep00(ϵet+1))

=
α1 + ρr(Ep10(ϵet+1)− Ep00(ϵet+1))

(α1 − ρr)

(
α0

ρr
− Ep00(ϵet+1)

)
+ (α0 − ρr)Ep10(ϵet+1)

> 0, (36)

where Ep00(ϵet+1) and Ep10(ϵet+1) can be obtained by taking expectation of TVTP with respect to

ϵet+1. Details will be provided in Section A.2. C1 is then given by (35) and (36). Finally, substituting

C0 and C1 into (30), we may determine the random coefficient a1.

We may now derive our solution for πt+1 by plugging the expressions (30), (31) of the random

coefficients a1, a2 into our initial guess given in (27) as follows:

πt+1 =
ρr

α(st+1)

[
C0pst+1,0(ϵ

e
t+1) + C1pst+1,1(ϵ

e
t+1) + 1

]
rt+1 −

σe
α(st+1)

ϵet+1

=
ρr

α(st+1)

[
(α1 − ρr)pst+1,0(ϵ

e
t+1) + ρrEp10(ϵet+1)

α1 − ρr + ρrEp10(ϵet+1)
C0 +

α1 − ρrpst+1,0(ϵ
e
t+1) + ρrEp10(ϵet+1)

α1 − ρr + ρrEp10(ϵet+1)

]
· rt+1 −

σe
α(st+1)

ϵet+1

=
ρr

α(st+1)

(α1 − α0)pst+1,0(ϵ
e
t+1) + α1

(
α0

ρr
− Ep00(ϵet+1)

)
+ α0Ep10(ϵet+1)

(α1 − ρr)

(
α0

ρr
− Ep00(ϵet+1)

)
+ (α0 − ρr)Ep10(ϵet+1)︸ ︷︷ ︸

a1(st+1,pst+1,0(ϵ
e
t+1))

rt+1−
σe

α(st+1)︸ ︷︷ ︸
a2(st+1)

ϵet+1,

(37)

where the random coefficient a1 depends on both st+1 and ϵet+1, while a2 only on st+1. Ep00(ϵet+1)

and Ep10(ϵet+1) are two constants which need be evaluated.
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A.2 Numerical Evaluation

To compute coefficient a1 in (37), we need to evaluate pst+1,0(ϵ
e
t+1),Ep00(ϵet+1) and Ep10(ϵet+1). This

can be done as follows.

Suppose |ρ| < 1 and |ϕ| < 1, we compute the transition probability for regime st following

theorem 3.1 in Chang et al. (2017). The bivariate normality of ϵet and vt+1 implies

vt+1|ϵet =d N(ρϵet , 1− ρ2).

Define

zt+1 =
vt+1 − ρϵet√

1− ρ2
=
wt+1 − ϕwt√

1− ρ2
− ρ

ϵet√
1− ρ2

,

where ϵet = (it − α(st)πt)/σe. It follows that

p(zt+1|wt, ϵ
e
t ) = p(zt+1|wt, it, πt) =d N(0, 1).

To simplify notation, we use ϵet instead of the set of endogenous variables in what follows. Then,

P{wt+1 < τ |wt, ϵ
e
t} = P

{
zt+1 <

τ − ϕwt√
1− ρ2

− ρ
ϵet√
1− ρ2

∣∣∣∣wt, ϵ
e
t

}
= Φρ (τ − ϕwt − ρϵet ) ,

where we use Φρ(x) = Φ(x/
√

1− ρ2) to simplify notation. Now, note that the AR(1) process

wt has the unconditional density wt =d N
(
0, 1/(1− ϕ2)

)
, which implies wt

√
1− ϕ2 =d N(0, 1).

Consequently, we have

P{st+1 = 0|st = 0, ϵet} =P{wt+1 < τ |wt < τ, ϵet}

=P{wt+1 < τ |wt

√
1− ϕ2 < τ

√
1− ϕ2, ϵet}

=
P{wt+1 < τ,wt

√
1− ϕ2 < τ

√
1− ϕ2 | ϵet}

P(wt

√
1− ϕ2 < τ

√
1− ϕ2)

=

∫ τ
√

1−ϕ2

−∞
Φρ

(
τ − ϕx√

1− ϕ2
− ρϵet

)
φ(x)dx

Φ(τ
√

1− ϕ2)
,

Therefore, we can obtain

p00(ϵ
e
t+1) = P(st+2 = 0|st+1 = 0, ϵet+1) =

∫ τ
√

1−ϕ2

−∞
Φρ

(
τ − ϕx√

1− ϕ2
− ρϵet+1

)
φ(x)dx

Φ(τ
√

1− ϕ2)
. (38)
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Figure 6: Time-Varying Transition Probabilites from Regime 0 to Regime 0

Analogously

p10(ϵ
e
t+1) = P(st+2 = 0|st+1 = 1, ϵet+1) =

∫ ∞

τ
√

1−ϕ2

Φρ

(
τ − ϕx√

1− ϕ2
− ρϵet+1

)
φ(x)dx

1− Φ(τ
√

1− ϕ2)
. (39)

Then, it follows from (38) and (39) that

p01(ϵ
e
t+1) = P(st+2 = 1|st+1 = 0, ϵet+1) = 1− p00(ϵ

e
t+1),

p11(ϵ
e
t+1) = P(st+2 = 1|st+1 = 1, ϵet+1) = 1− p10(ϵ

e
t+1).

Figure 6 displays how TVTP is determined by parameters (ϕ, τ, ρ). If ρ = 0, (ϕ, τ) has one-

to-one correspondence to the parameters in exogenous switching model, i.e., constant transition

probabilities (p̄00, p̄11). So, they determine the magnitude of transition probabilities, while the

endogeneity parameter ρ governs the fluctuation of transition probabilities.

Next, as in Chang et al. (2017), we may rewrite (38) and (39) as bivariate normal distribution

functions18

p00(ϵ
e
t+1) =

∫ τ
√

1−ϕ2

−∞

∫ τ−ρϵet+1√
1−ρ2

−∞
f1(x, y)dydx

Φ(τ
√

1− ϕ2)
,

18 Detailed derivations can be provided upon request.
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with

f1(x, y) = N

0,

 1
ϕ√

1− ρ2
√
1− ϕ2

ϕ√
1− ρ2

√
1− ϕ2

1 +
ϕ2

(1− ρ2)(1− ϕ2)


 ,

and,

p10(ϵ
e
t+1) =

∫ −τ
√

1−ϕ2

−∞

∫ τ−ρϵet+1√
1−ρ2

−∞
f2(x, y)dydx

1− Φ(τ
√

1− ϕ2)
,

with

f2(x, y) = N

0,

 1 − ϕ√
1− ρ2

√
1− ϕ2

− ϕ√
1− ρ2

√
1− ϕ2

1 +
ϕ2

(1− ρ2)(1− ϕ2)


 .

Similarly, we may rewrite Ep00(ϵet+1) and Ep10(ϵet+1) as trivariate normal distribution functions

Ep00(ϵet+1) =

∫ ∞

−∞

∫ τ
√

1−ϕ2

−∞
Φρ

(
τ − ϕx√

1− ϕ2
− ρϵet+1

)
φ(x)φ(ϵet+1)dxdϵ

e
t+1

Φ(τ
√

1− ϕ2)

=

∫ τ
√

1−ϕ2

−∞

∫ τ/
√

1−ρ2

−∞

∫ ∞

−∞
f3(x, y, ϵ)dϵdydx

Φ(τ
√

1− ϕ2)
,

with

f3(x, y, ϵ) = N

0,


1

ϕ√
1− ρ2

√
1− ϕ2

0

ϕ√
1− ρ2

√
1− ϕ2

1

(1− ρ2)(1− ϕ2)

ρ√
1− ρ2

0
ρ√

1− ρ2
1



 ,

and,

Ep10(ϵet+1) =

∫ ∞

−∞

∫ ∞

τ
√

1−ϕ2

Φρ

(
τ − ϕx√

1− ϕ2
− ρϵet+1

)
φ(x)φ(ϵet+1)dxdϵ

e
t+1

1− Φ(τ
√

1− ϕ2)

=

∫ −τ
√

1−ϕ2

−∞

∫ τ/
√

1−ρ2

−∞

∫ ∞

−∞
f4(x, y, ϵ)dϵdydx

1− Φ(τ
√

1− ϕ2)
,
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with

f4(x, y, ϵ) = N

0,


1 − ϕ√

1− ρ2
√

1− ϕ2
0

− ϕ√
1− ρ2

√
1− ϕ2

1

(1− ρ2)(1− ϕ2)

ρ√
1− ρ2

0
ρ√

1− ρ2
1



 .

Finally, using mvncdf function in Matlab, we are able to evaluate (37).

B Computations of Expectations Formation Effects

We define direct and expectations formation effects as in Leeper and Zha (2003). The K-period

forecast using solution (10), given information at T , is

πT+K =a1(sT+K , psT+K ,0(ϵ
e
T+K))ρKr rT + a1(sT+K , psT+K ,0(ϵ

e
T+K))

K−1∑
u=0

ρurσrϵ
r
T+K−u

+ a2(sT+K)ϵeT+K .

Direct effects and expectations formation effects from a policy intervention are computed from

forecasts from fixed-regime and endogenous regime switching models, respectively, conditional on

a given intervention. Suppose the economy is under regime 0 at period T . Both of these forecasts

are reported relative to a baseline forecast denoted by

Baseline effects = E(πT+K |FT , st = 0, t = T + 1, . . . , T +K)

= E[a1(sT+K = 0, p00(ϵ
e
T+K))]ρKr rT .

Let IT be a hypothetical intervention at time T , specified as a K-period sequence of exogenous

policy actions, IT = {ϵ̃eT+1, . . . , ϵ̃
e
T+K}. Although the policy advisor chooses IT , private agents

treat it as random. Denote a forecast of {πT+K} conditional on IT by E(πT+K |IT ,FT , st = 0, t =

T + 1, · · · , T +K). Direct effects of IT relative to baseline are

Direct effects = E(πT+K |IT ,FT , st = 0, t = T + 1, · · · , T +K)− Baseline effects

= a1(sT+K = 0, p00(ϵ̃
e
T+K))ρKr rT + a2(sT+K = 0)ϵ̃eT+K

− E[a1(sT+K = 0, p00(ϵ
e
T+K))]ρKr rT . (40)

In an exogenous regime switching model, when the regime index is fixed, the model becomes

linear. Hence, direct effect captures the linear effect from policy intervention. In our endogenous

regime switching model, however, that is not true in general. Even if regime index is fixed for
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future periods T + 1 to T + K, agents’ belief in the strength of that prevailing regime can still

be affected by the monetary policy intervention. It is clearly shown in the first term of (40) that

monetary policy intervention ϵ̃eT+K causes changes in direct effects through TVTP p00(ϵ̃
e
T+K). This

additional channel makes the direct effect include some nonlinear feature.

Without fixing the future regime indices, now, an intervention may trigger changes in agents’

beliefs about future’s prevailing policy regime. The changes in agents’ expectations of future

policy evolution alter their optimal behavior and hence induce the expectations formation effects.

Total effects of the monetary policy intervention combine direct effects with expectations formation

effects. Total effects relative to the baseline projection are

Total effects =E(πT+K |IT ,FT )− Baseline effects

=[a1(sT+K = 0, p00(ϵ̃
e
T+K))ρKr rT + a2(sT+K = 0)ϵ̃eT+K ] · P(sT+K = 0|sT = 0, IT , ϵ̃

e
T )

+[a1(sT+K = 1, p10(ϵ̃
e
T+K))ρKr rT + a2(sT+K = 1)ϵ̃eT+K ] · P(sT+K = 1|sT = 0, IT , ϵ̃

e
T )

−E[a1(sT+K = 0, p00(ϵ
e
T+K))]ρKr rT . (41)

Total effects are simply equal to direct effects in the extreme case that agents always believe

future regimes will remain the same, i.e., P(sT+K = 0|sT = 0, IT , ϵ̃
e
T ) = 1. It is obvious that (41)

reduces to (40) in such case. Finally, with direct effects and total effects computed relative to the

same baseline, we isolate expectations formation effects, defined as the difference between (40) and

(41):

Expectations formation effect = Total effects - Direct effects

It is understood that policy interventions may trigger changes in agents’ beliefs about future

policy regime evolution. However, Leeper and Zha (2003) provide no channel for such changes to

happen, but assume that once agents ad-hocly realize that policy regime may change, they would

put constant weight on each regime. This is a direct implication and drawback of using exogenous

Markov chain for regime switching. In our paper, we endogenize the expectations formation effects

by introducing the endogenous feedback mechanism from current monetary policy intervention to

next period’s policy regime change. Upon observing the current policy regime and policy interven-

tion, agents will use these information to alter their beliefs about next period’s policy regime and

put time-varying weight on each regime index. This continuous adjustment, rather than the sharp

discrete change, of agents’ beliefs in future regime evolution generates much richer macroeconomic

dynamics of monetary policy intervention as shown in our paper.
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C Full Characterization of Endogenous Monetary DSGE

The first-order conditions, market clearing condition, monetary policy, states of regimes and law of

motions of shocks form the following expectational nonlinear difference equations:

θ

θ − 1
=θut

(
Ct

At

)ϵ

− φ(θut − θ + 1)
Πt

Π∗

[
Πt

Π∗ − 1

]
+βφ(θut − θ + 1)Et

[
Yt+1/At+1

Yt/At

(
Ct+1/At+1

Ct/At

)−ϵ Πt+1

Π∗

(
Πt+1

Π∗ − 1

)] (42)

Yt = Ct +
φ

2

[
Πt

Π∗ − 1

]2
Yt (43)

Rt

R∗ =

(
Rt−1

R∗

)ρR
[(

Πt

Π∗

)α(st)( Yt
Y ∗
t

)γ
]1−ρR

et (44)

Et

[
βRt

Πt+1

(
Ct/At

Ct+1/At+1

)ϵ( At

At+1

)(
ξt+1

ξt

)]
= 1 (45)

st+1 = 1{wt+1 ≥ τ} (46)

wt+1 = ϕwt + vt+1, (47)

where the aggregate productivity At+1, technology fluctuation at+1, price markup shock ut+1,

monetary policy shock et+1 and latent factor innovation vt+1 have the following laws of motion

lnAt+1 = lnψ + lnAt + ln at+1 (48)

ln at+1 = ρa ln at + σaε
a
t+1 (49)

ln ξt+1 = ρξ ln ξt + σξε
ξ
t+1 (50)

lnut+1 = (1− ρu) lnu+ ρu lnut + σuε
u
t+1 (51)

ln et+1 = σeε
e
t+1 (52)

εat

εξt
εut

εet

vt+1

 ∼ N

0,


1 0 0 0 ρav

0 1 0 0 ρξv

0 0 1 0 ρuv

0 0 0 1 ρev

ρav ρξv ρuv ρev 1



 (53)

with the normalization ρ′ρ < 1. Equation (42) is the non-linear New Keynesian Phillips curve

reflecting the optimal price setting of intermediate firms, equation (43) reports market clearing

conditions, equation (44) is the monetary policy rule and equation (45) is the Euler equation of

households.
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D Algorithm for State Space Model with Markov Switching

Consider the regime-dependent state space model consisting of (25) and (26), which we present

here again for easy reference as

yt = D(st,Θ) + Z(st,Θ)Xt + νt, νt ∼ N(0,Σν) (54)

Xt = G(st,Θ)Xt−1 +M(st,Θ)εt, εt ∼ N(0, Inε), (55)

where Θ stacks all DSGE parameters, threshold τ , persistency ϕ and correlations ρ, st = 1{wt ≥ τ}
is the regime index, and wt is the AR latent factor introduced in (15). In our model, D(st,Θ) and

Z(st,Θ) are given by = D(Θ) and Z, respectively. We introduce the endogenous feedback by

assuming (
εt

vt+1

)
∼ N

((
0

0

)
,

(
Inε ρ′

ρ 1

))

where εt is the fundamental shock vector.

We augment the state vector Xt by wt+1, i.e., ςt = [X ′
t, wt+1]

′, and the shock vector εt by ηt+1,

i.e., ξt = [ε′t, ηt+1]
′. Moreover, we rewrite the law of motion for the regime factor wt in (15) as

wt+1 = ϕwt + ρ′εt +
√

1− ρ′ρηt+1, ηt+1 ∼ N(0, 1)

and add it to the state transition system (55). For notational convenience, define the conditional

mean and variances

ςkt|t−1 = E(ςt|st = k, Y1:t−1), P k
t|t−1 = V ar(ςt|st = k, Y1:t−1)

ςkt|t = E(ςt|st = k, Y1:t), P k
t|t = V ar(ςt|st = k, Y1:t)

and the probabilities

pkt|t−1 = P(st = k|Y1:t−1), pkt|t = P(st = k|Y1:t),

for k = 0, 1.

The filtering algorithm is summarized below.

1. Initialization. For k = 0, 1, initialize (ςk0|0, P
k
0|0) using the invariant distribution and specify
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pk0|0. Then,

ς0|0 = p00|0ς
0
0|0 + p10|0ς

1
0|0,

P0|0 =
1∑

k=0

pk0|0

{
P k
0|0 + (ς0|0 − ςk0|0)(ς0|0 − ςk0|0)

′
}
.

2. Recursion. For each t = 1, . . . , T , we go through the following steps.

A. Forecasting. Approximate wt|Y1:t−1 by normal distribution

p(wt|Y1:t−1) = N(µt−1|t−1, σ
2
t−1|t−1)

where (µt−1|t−1, σ
2
t−1|t−1) can be extracted from the last elements of (ςt−1|t−1, Pt−1|t−1). We can

then forecast regime probabilities as

p1t|t−1 = P(wt ≥ τ |Y1:t−1) = 1− Φ

(
τ − µt−1|t−1

σt−1|t−1

)
and p0t|t−1 = 1− p1t|t−1. Next, for k = 0, 1, apply the forecasting step of the Kalman filter to obtain

ςkt|t−1 = G(st = k)ςt−1|t−1 (56)

P k
t|t−1 = G(st = k)Pt−1|t−1G(st = k)′ +M(st = k)ΣξM(st = k)′

for the unobservables, where (ςt−1|t−1, Pt−1|t−1) are obtained from the previous updating step or

initialization. The extracted predictive states of any order, including the autoregressive latent

factor, can now be obtained from

ςt|t−1 = E[ςt|Y1:t−1] = p0t|t−1ς
0
t|t−1 + p1t|t−1ς

1
t|t−1.

by marginalization.

B. Likelihood evaluation. Apply the Kalman filter forecasting step for observables to obtain

ykt|t−1 = D(st = k) + Z(st = k)ςkt|t−1

F k
t|t−1 = Z(st = k)P k

t|t−1Z(st = k)′ +Σν .
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Then the period-t likelihood contribution can be computed as

p(yt|Y1:t−1,Θ) =
∑
st

p(yt|st, Y1:t−1)P (st|Y1:t−1)

= pN (yt|y0t|t−1, F
0
t|t−1)p

0
t|t−1 + pN (yt|y1t|t−1, F

1
t|t−1)p

1
t|t−1,

where p(yt|st = k, Y1:t−1) = pN (yt|ykt|t−1, F
k
t|t−1) is a multivariate normal distribution with mean

ykt|t−1 and covariance matrix F k
t|t−1.

C. Updating. To update, use Bayes formula to deduce

P (st|Y1:t) = P (st|yt, Y1:t−1) =
p(yt|st, Y1:t−1)P (st|Y1:t−1)

p(yt|Y1:t−1)
,

which yields

p0t|t =
pN (yt|y0t|t−1, F

0
t|t−1)p

0
t|t−1

p(yt|Y1:t−1)

and p1t|t = 1− p0t|t.

Then apply the updating step of the Kalman filter to obtain19

ςkt|t = ςkt|t−1 + P k
t|t−1Z(st = k)′(F k

t|t−1)
−1(yt − ykt|t−1) (57)

P k
t|t = P k

t|t−1 − P k
t|t−1Z(st = k)′(F k

t|t−1)
−1Z(st = k)P k

t|t−1,

from which we can easily compute the extracted filtered states of any order, including the autore-

gressive latent regime factor as

ςt|t = p0t|tς
0
t|t + p1t|tς

1
t|t (58)

Pt|t = E
[
(ςt − ςt|t)(ςt − ςt|t)

′|Y1:t
]

=

1∑
k=0

pkt|t

{
P k
t|t + (ςt|t − ςkt|t)(ςt|t − ςkt|t)

′
}

19 Here, it is worthwhile to clarify that our algorithm involves an approximation. Equation (57) would be exact
only if, conditional on st = k, Y1:t−1, the distribution of ςt is Normal. However, it is a mixture of Normals as shown
in equation (56) and (58). Essentially, the mixture of Normals is approximated by a Normal distribution to permit
the calculation of Kalman gain in (57). One can still motivate (57) as the linear projection of ςt on yt and ςt−1|t−1

(taking st as given). Thus the algorithm is certainly calculating a sensible inference about ςt. Notice, however, that
(57) is not calculating the linear projection of ςt on yt, yt−1, . . . since ςt−1|t−1 is a nonlinear function of yt−1, yt−2, . . . .
We will examine the performance of approximation by comparing results to those from a bootstrap particle filter.
The preliminary results are striking: the approximation employed in our filter performs an excellent job, with a
considerable advantage in computation time.
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by marginalization.

3. Quasi-Bayesian MLE. The log-likelihood function can be written as

logL(Y1:T |Θ) = log p(y1) +

T∑
t=2

log p(yt|Y1:t−1),

from which the quasi-Bayesian ML estimator Θ̂ of Θ is computed as

Θ̂ = argmax
Θ∈R(Θ)

logL(Y1:T |Θ) + log p(Θ).
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