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Abstract

In this paper we address three empirical questions related to credit conditions. Do they

change the dynamic interactions of economic variables by characterizing different regimes?

Do they amplify the effects of economic shocks? Do they generate asymmetries in the effects

of economic shocks depending on the size and sign of the shock? To answer these questions,

we introduce endogenous regime switching in the parameters of a large Multivariate Au-

toregressive Index (MAI) model, where all variables react to a set of observable common

factors. We develop Bayesian estimation methods and show how to compute responses to

common structural shocks. We find that credit conditions do act as a trigger variable for

regime changes. Moreover, demand and supply shocks are amplified when they hit the

economy during periods of credit stress. Finally, good shocks seem to have more positive

effects during stress time, in particular on unemployment.
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1 Introduction

There is by now substantial empirical evidence on the interaction of credit conditions and

the macroeconomy. Several recent studies focused on corporate bond spreads, which tend

to widen in stress periods, e.g., Gilchrist and Zakrajsek (2012), Faust, Gilchrist, Wright and

Zakrajsek (2013) and Lopez-Salido, Stein and Zakrajsek (2017). A common result is that an

increase in credit spreads leads to a decline in economic activity, e.g., Gilchrist, Yankov and

Zakrajsek (2009). Lopez-Salido et al. (2017) describe how mean reversion in credit spreads

due to sentiment implies that low credit spreads are followed two years later by widening

spreads and a decline of economic activity. These empirical links between credit spreads and

economic activity are supported by theoretical results, often presented in the context of DSGE

models with financial frictions (Bernanke and Gertler, 1989; Kiotaki and Moore, 1997; He and

Krishnamurthy, 2013). Krishnamurthy and Muir (2017) argue that theoretical models describe

financial crises, which lead to deep recessions, as the result of a negative sizeable financial

shock affecting a fragile financial sector that leads to amplification of the initial shock. The

implication for empirical analysis, as also suggested by Barnichon, Matthes and Ziegenbein

(2017), is that shocks may have different effects depending on their size (large vs small), sign

(positive vs negative) and the conditions on the financial sector.

Our paper contributes to the empirical literature. Specifically, we address three questions re-

lated to credit conditions. First, do they change the dynamic interactions of economic variables

by characterizing different regimes? Second, do they amplify the effects of economic shocks?

Third, do they generate asymmetries in the effects of economic shocks depending on the size

and sign of the shock?

From an econometric point of view, to answer these questions we develop a particular

Smooth Transition Vector Autoregressive (ST-VAR) model, which is simple, intuitive and com-

putationally feasible. Parameters changes in a ST-VAR can be led either by an observable

indicator (Weise, 1999), a combination of indicators (Galvao and Marcellino, 2014), or an un-

observed factor (Galvao and Owyang, 2017). ST-VAR models have been often used to study

asymmetries in the responses to monetary policy shocks (Weise, 1999), fiscal shocks (Auerback

and Gorodnichenko, 2012) and financial shocks (Galvao and Owyang, 2017). ST-VAR models

nest Threshold VAR models, where parameter time variation is abrupt, which were applied,

e.g., by Balke (2000) to consider credit as a nonlinear propagator of shocks. In comparison

with the nonlinear projection approach in Barnichon et al. (2017) that uses the sign of past
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structural shocks to describe changes in the shock transmission, ST-VAR models employ a set

of observed endogenous variables to characterize regime changes, implying that the regime may

change endogenously as response to shocks.

ST-VARmodels are normally estimated for a small set of endogenous variables (the examples

above and others in the literature consider up to 5 variables) because the characterization of the

regime-dependent dynamics worsens usual dimensionality issues in VAR models (see, e.g., the

recent survey by Hubrich and Terasvirta (2013)). However, larger VARs are typically needed

to obtain reliable estimates of responses to shocks (Bańbura, Giannone and Reichlin, 2010;

Giannone, Lenza and Primiceri, 2015; Brunnermeier, Palia, Sastry and Sims, 2017). Moreover,

the measurement of credit conditions is normally based on information from many different

credit spreads, e.g., Hatzius, Hooper, Mishkin, Schoenholtz and Watson (2010). Gilchrist et al.

(2009) and Galvao and Owyang (2017) employ factor augmented VAR models to deal with this

dimensionality issue. We, instead, employ a novel approach that has many advantages when

performing structural analysis, since it has no unobservable variables, there is only a small set

of common shocks, and it can be easily extended to allow for regime changes.

We start from the Multivariate Autoregressive Index (MAI) model of Reinsel (1983). As ar-

gued by Carriero, Kapetanios and Marcellino (2016), MAI models are a special case of reduced-

rank VAR models that are suitable for analyzing the effects of common structural shocks. The

reduced-rank restrictions imposed on the matrices of the original VAR model imply that each

variable is driven by (the lags of) a limited set of linear combinations of all variables, which can

be interpreted as observable factors (indices). In this sense, MAI models are a bridge between

VAR and factor-augmented VAR models with the advantage that the factors can be consistently

estimated even if the number of variables is finite.

We introduce smooth transition regime changes in the parameters of the conditional mean

and the conditional variance of the MAI model, with one of the observable common factors

(specific linear combinations of economic variables) employed as transition variable. Hence,

factors are not only the common drivers of all the variables, but also the triggers of parameter

regime changes.

We develop Metropolis-in-Gibbs algorithms to estimate the smooth transition MAI (ST-

MAI) model. We follow Lopes and Salazar (2005) and Galvao and Owyang (2017) to draw pa-

rameters of smooth transition function jointly in a Metropolis step. For the regime-conditional

variance-covariance matrix, we use a variation of the inverse-Wishart proposal approach in Gal-
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vao and Owyang (2017). We use the method proposed by Carriero, Kapetanios and Marcellino

(2016) to estimate factors’loadings. Because the variance-covariance matrix changes with the

regime, we use the triangularization method proposed by Carriero, Clark and Marcellino (2016)

to further reduce the computational time caused by the large number of endogenous variables.

We apply the ST-MAI model to a set of 20 economic and financial variables, including

indicators of economic activity, prices, interest rates and credit spreads. We use four factors:

real, nominal, monetary and credit. We use the Bayesian Information Criterion (BIC) to

compare ST-MAI specifications with each of these four factors as transition variable. The BIC

clearly selects the credit factor as the trigger of regime changes. In the resulting model, the

threshold for low/high stress periods is endogenously determined, as well as the timing of the

regimes (in contrast to Aikman, Lehner, Liang and Modugno (2017)). The identified periods of

low/high stress are in line with common wisdom and are correlated but do not perfectly overlap

with the NBER business cycle chronology. Hence, to answer our first question, we do find that

credit conditions change the dynamic interactions of economic variables.

Using the selected large ST-MAI model with the credit factor as transition variable, we then

compute (generalized) impulse response functions to demand, supply, monetary and credit

shocks. We find that shocks that depress economic activity (negative demand shocks and

positive supply shocks) are amplified when they hit the economy in the credit stress regime.

Similarly, shocks that widen credit spreads have amplified negative effects on prices when the

economy is in the credit stress regime. Hence, to answer our second question, we find substantial

evidence that credit conditions can amplify the effects of economic shocks.

Finally, and in contrast to Lopez-Salido et al. (2017) who found no asymmetric effects of

changes in credit spreads on GDP growth, we find that unemployment responds differently to

positive and negative shocks and to large and small shocks when the model is in the credit

stress regime. Shocks that decrease either the policy rate, prices or credit spreads have faster

and stronger effects on unemployment than shocks that increase these variables. And, if these

shocks are large, they have disproportionate larger effects on unemployment and the policy rate

if they hit the economy in a period of credit stress. Hence, to answer our third question, we also

find evidence that credit conditions can trigger asymmetric effects of economic shocks. Shocks

can have asymmetric effects in the ST-MAI model because they can change the probability of

regime changes, as the variables that underlie changes are endogenous in the model.

The remaining of the paper is organized as follows. Section 2 reviews the MAI model and
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then introduces the ST-MAI model. It also outlines the Bayesian estimation strategy, the

shock identification approach, and a method for computation of the impulse responses. Section

3 applies the ST-MAI model to address our three empirical research questions. It also presents

results from a small ST-VAR model to show the relevance of using a larger information set for

structural analysis in order to alleviate omitted variable problems. Section 4 summarizes and

concludes.

2 The Smooth Transition Multivariate Autoregressive Index

Model

This section presents the Smooth Transition Multivariate Autoregressive Index (ST-MAI) model,

to be used to study amplification and asymmetries in the effects of economic shocks depending

on credit conditions. After introducing the model, we consider (Bayesian) estimation, specifi-

cation issues, and computation of impulse responses to (common) structural shocks,

2.1 The ST-MAI model

Let us assume that an N × 1 vector of variables Yt evolves as a VAR(p):

Yt =

p∑
u=1

CuYt−u + εt, (1)

with εt ∼ i.i.d.N(0,Σ), t = 1, ..., T , and we omit deterministic terms just for notational conve-

nience. The number of the VAR(p) parameters grows proportionally to N2 when p increases,

becoming quickly larger than the sample size T . However, economic theory and empirical obser-

vation suggest that many economic variables tend to move together, being driven by a limited

number of key structural shocks, related, for example, to productivity, financial conditions or

economic policy. Formally, this suggests to impose a set of reduced rank restrictions on the Cu

matrices in (1), decomposing each of them into Cu = AuB0, where each Au is N × R, B0 is

R ×N , and u = 1, .., p. The resulting specification, labeled Multivariate Autoregressive Index

(MAI) model by Reinsel (1983) can be written as:

Yt =

p∑
u=1

AuB0Yt−u + εt, (2)
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or

Yt =

p∑
u=1

AuFt−u + εt, (3)

where

Ft = B0Yt. (4)

The R variables in Ft can be considered as observable factors (indices), driving the dynamics

of all the variables. Reinsel (1983) suggested to set B0 = (IR, B̃0) to ensure parameter identifi-

cation. As R is generally much smaller than N , the MAI(p) model is much more parsimonious

than the VAR(p), with a total of NRp instead of N2p parameters in the conditional mean. This

makes it computationally feasible to extend it to allow for time variation in the parameters even

when N is large.

Carriero, Kapetanios and Marcellino (2016) show how to estimate the parameters of the

MAI model using an MCMC algorithm, and how to select the number of factors. MAI models

are a special case of general reduced-rank VARs with the advantage that they imply a VAR

instead of a VARMA model for the observed factors, which is convenient for structural analysis.

Assume now that the parameters A1, ..., Ap change smoothly with the regime. Hence, a

smooth transition MAI model is:

Yt =

p∑
u=1

AuFt−u +

p∑
u=1

Πt(γ, c, xt−1)DuFt−u + εt, (5)

where Πt(γ, c, xt−1) is a logistic function, xt is the transition variable, c is the threshold, and

γ is the smoothing parameter.1 The model implies that if the transition variable xt−1 is large

in comparison with the threshold c, the value of the scalar Πt(γ, c, xt−1) is not far from 1, and

the coeffi cients for lag u are (Au + Du). If instead xt−1 is much lower than the threshold,

Πt(γ, c, xt−1) gets close to 0, and the coeffi cients are Au. This means that Du measures the

difference in conditional mean dynamics between regimes. When the smoothing parameter γ is

large, the transition function resembles a step function at the threshold c, and the parameter

change is abrupt.

We assume that the regimes that characterize changes in the dynamics of the endogenous

variables in Yt are driven by one of the observable factors Ft, which are also the key drivers of

1For surveys on smooth transition VARs, see Van Dijk, Terasvirta and Franses (2002) and Hubrich and
Terasvirta (2013).
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fluctuations in the variables in Yt. Hence, we have:

Πt(γ, c, xt−1) =
1

1 + exp(−(γ/σx)(xt−1 − c))
, (6)

where xt = f
(r)
t , that is, the transition variable is one of the R observable factors in Ft (with

standard deviation σx):

f
(r)
t = b

(r)
0 Yt,

and b(r)0 the rth (1×N) row of the matrix B0, r = 1, .., R. We use lagged factors to trigger regime

changes to avoid endogeneity problems and to allow for some time delay in the adjustment of

the (macroeconomic) model dynamics. We use single factors for computational simplicity and

also to determine empirically which is the key driver of regime changes.2

In our empirical application, where Yt are monthly variables generally expressed as month

on month growth rates, it is convenient to set the transition variable as a smoother year-on-year

growth rate:

xt = g
(r)
t =

1

12

11∑
j=0

b
(r)
0 Yt−j , (7)

to capture regimes with longer duration and avoid picking up outliers. A similar smoothing is

used, for example, in Auerback and Gorodnichenko (2012).

We model conditional heteroskedasticity of the N × 1 vector of reduced-form disturbances

εt as:

var(εt) = Σt (8)

Σt = (1−Πt(γ, c, xt−1))Σ1 + Πt(γ, c, xt−1)Σ2,

where Πt(γ, c, xt−1) is the logistic function as in (6). The specification implies that if the value

of Πt(γ, c, xt−1) is near zero, then the variance-covariance matrix is near Σ1, but if the value

of Πt(γ, c, xt−1) is approximately 1, then the variance-covariance matrix is at Σ2. As before,

the transition variable xt is the year-on-year growth equivalent of one of the factors, g
(r)
t . Note

that we have just one transition function, Πt(γ, c, xt−1), which implies that regime changes

occur at the same time in the conditional mean and variance, as for example in Auerback and

2A linear combination of a set of factors is a possible alternative, along the lines of Galvao and Marcellino
(2014) who use a combination of variables in a small ST-VAR context.
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Gorodnichenko (2012).

In general, when estimating large VAR models with changes in the variance-covariance

matrix, many authors (Carriero, Clark and Marcellino, 2016) allow the variances to change

over time (diagonal of Σt), while covariances (elements outside the diagonal) are fixed. Our

regime-dependent smooth transition specification is a parsimonious method to also allow for

covariance changes over regimes. This may have important consequences for computation of

responses to structural (common) shocks.

2.2 Estimation

To estimate the ST-MAI model, we extend the Gibbs sampling algorithm for MAI models

proposed in Carriero, Kapetanios and Marcellino (2016). Following Carriero, Kapetanios and

Marcellino (2016), we set:

Zt−1 = (F ′t−1, ..., F
′
t−p,Πt(·)F ′t−1, ...,Πt(·)F ′t−p)′,

where Πt(·) = Πt(γ, c, xt−1), and

A = (A1...Ap, D1...Dp)
′,

such that we can write the ST-MAI model as:

Yt = Zt−1A+ εt

var(εt) = (1−Πt(γ, c, xt−1))Σ1 + Πt(γ, c, xt−1)Σ2.

The proposed algorithm includes three Metropolis steps in a Gibbs sampling approach. The

algorithm has four blocks to obtain S conditional draws for all parameters.

The first block draws the parameters of the transition function similarly to Galvao and

Owyang (2017). Conditional on previous draws of Σ
(s−1)
1 ,Σ

(s−1)
2 , A(s−1) and B(s−1)

0 , we obtain

a joint draw γ(s), c(s) using a Metropolis step, for s = 1, ..., S. This assumes a gamma prior

distribution for γ, and a normal distribution for c. The proposal distribution for γ is Gamma

with shape parameter equal to (γ(s−1))2/∆γ and scale equal to ∆γ/(γ
(s−1)). The proposal dis-

tribution for c is a normal distribution with mean c(s−1) and variance ∆2
c . Candidate threshold
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values are truncated such that at least 15% of the observations are in each regime based on

the observed values of the transition variable f (r)
t or its yearly growth rate g(r)

t . Both tuning

parameters ∆γ and ∆c are set to achieve rejection rates of around 70%. In the empirical appli-

cation, the prior for γ is set as a Gamma distribution with mean 15 and variance 1. The prior

for c is a normal distribution with mean 0 and standard deviation 0.4.

The second block draws the parameters of the variance-covariance matrix. Conditional on

γ(s), c(s), A(s−1) and B(s−1)
0 , we obtain draws for each Σ

(s)
1 and Σ

(s)
2 using an inverse-Wishart

proposal distribution as in Galvao and Owyang (2017). The priors for the variance-covariance

matrix of the first regime is set as Σ−1
0 ∼ W (C−1

0 , pv0) where C0 = T∗Σ and Σ is a diagonal

matrix with the variance of AR(1) processes estimated for each variable in the vector Yt in

the diagonal, and pv0 = N + 2. The proposal distribution is Σ−1
1 ∼ W (C−1

1 , pv1) with pv1 =

pv0 + ∆1
∑T

t=1 I(f
(i)
t−1 ≤ c) [I(.) is an indicator function] and C1 = ∆Σ1

[∑T
t=1 e1te

′
1t

]
where

e1t = [1 − Πt(γ
(s−1), c(s−1), x

(i,s−1)
t−1 )]ε

(s−1)
t and ε(s−1)

t = (Yt − Z(s−1)
t−1 A(s−1)). In the case of the

variance-covariance of the second regime, we use the same prior as for the first regime, and

the proposal distribution is Σ−1
2 ∼ W (C−1

2 , pv2) where pv2 = pv0 + ∆2
∑T

t=1 I(f
(i)
t−1 > c)) and

C2 = ∆Σ2

[∑T
t=1 e2te

′
2t

]
where e2t = [Πt(γ

(s−1), c(s−1), x
(i,s−1)
t−1 )]ε

(s−1)
t . This Metropolis-step has

a rule for rejecting a proposed draw that evaluates the new draw against the old draw using

the likelihood, the prior, and the proposal weights. This is applied separately for each Σ
(s)
1 and

Σ
(s)
2 , that is, Σ

(s)
1 is obtained conditional on Σ

(s−1)
2 , and then Σ

(s)
2 is obtained conditional on

Σ
(s)
1 . The two tuning parameters ∆Σ1 and ∆Σ2 are set to achieve rejection rates of 70%. This

differs from the random walk metropolis approach of Auerback and Gorodnichenko (2012), who

draw each element of the variance-covariance matrix independently.

The third block draws the parameters of the matrix A. Conditional on Σ
(s)
1 , Σ

(s)
2 , γ(s), c(s)

and B(s−1)
0 , we obtain a draw for A(s) using the triangularization proposed by Carriero, Clark

and Marcellino (2016). The prior mean is zero for all values in A because the VAR is estimated

in growth rates. The prior variance is set as:

var(Aij(l)) =
λ2

1

lλ3
σ2
i if the variable i loads in the factor j (for l = 1, ...p)

var(Aij(l)) =
λ2

1λ2

lλ3
σ2
i if the variable i does not load in the factor j.

The prior variance of the difference between regimes D1...Dp is set as the prior for A1...Ap.

The fourth block draws the parameters employed in the computation of the factors. Condi-
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tional on Σ(s), A(s) and γ(s−1), c(s−1), the draw B(s)
0 is obtained using a random-walk-metropolis

step as described in Carriero, Kapetanios and Marcellino (2016). This step has a tuning para-

meter ∆b calibrated to achieve rejection rates of around 70%. This random-walk step employs

proposal distribution variances based on factors estimated by principal component over a pre-

sample period.

We also estimate a MAI specification as benchmark for the ST-MAI model and to assess

the effects of nonlinearities. Carriero, Kapetanios and Marcellino (2016) use conjugate priors

(normal-Wishart) for obtaining draws of A and Σ to estimate the MAI model. We use indepen-

dent priors in the MAI and ST-MAI specifications, as similar priors can be also employed in the

specifications with conditional heteroskedasticity. This assumption has the advantage that we

are able to compare specifications using information criteria. Specifically, because var(εt) = Σ

in the MAI model, we substitute the second block above as follows. The draw Σ(s) is from

an inverse-Wishart Σ−1 ∼ W (C−1
1 , pv1) where C−1

1 =

(
T∑
t=1

ε
(s)
t ε

(s)′
t

)−1

+
(
0.01I(N)

)−1 (I is an

identity matrix), pv1 = T + pv0 and pv0 = 120. Finally, the first block is not required.

2.3 Responses to common structural shocks

If we multiply equation (5) by B0, we get:

Ft = B0

p∑
u=1

AuFt−u +B0

p∑
u=1

Gt(γ, c, xt−1)DuFt−u + ut, (9)

with

ut = B0εt, var(ut) = Ωt = B0ΣtB
′
0.

The model in (9) is a smooth transition VAR for the observable factors Ft. Hence, while the

matrix B0 that determines the composition of the factors is stable, the factor dynamics exhibit

regime changes over time.

Our main interest is to measure asymmetries in the transmission of the structural shocks

to the factors, vt, underlying the reduced form shocks, ut. Because of the nonlinear dynamics

in the model, we need to compute generalized responses (Koop, Pesaran and Potter, 1996).

Specifically, we compute two responses conditional to each regime at the time of the shock, but

we allow for regime changes after the shock.

The impact effect of structural shocks to the observable factors, the common shocks, are
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computed as in Carriero, Kapetanios and Marcellino (2016). We compute responses under the

assumption that we are either in regime 1 or regime 2 at the time of the shock. It is important

to emphasize, however, that later regime changes are allowed as a consequence of the shocks.

Indeed, in section 3.3, we measure the probability of regime changes to evaluate asymmetries

arising from the size and the sign of shocks.

Assume first that we want to compute responses when the economy is initially in regime 1.

We first apply a Cholesky decomposition of the variance-covariance matrix of the factor shocks

ut to identify the R structural shocks:

Ω1 = B0Σ1B
′
0 = P1P

′
1,

where P1 is a lower triangular matrix. Then, the impact of the rth common structural shock at

regime 1 is computed as

v
(r)
1 = Σ1B

′
0P
−1′
1(r),

where P−1′
1(r) means we use a specific column referring to common shock r of the matrix P

−1′

(r = 1, ..., R).3

Similarly, if we are initially in regime 2, the impact of the shock is:

v
(r)
2 = Σ2B

′
0P
−1′
2(r) where Ω2 = P2P

′
2.

The responses of the vector Yt to shock v(r) at horizon h conditional on the history at t are:

GRh,r,t = E[Yt+h|It, v(r);A,B0,Σt+h|It, γ, c]− E[Yt+h|It;A,B0,Σt+h|It, γ, c] (10)

where It = (Y ′t , .., Y
′
t−p+1)′ and A = (A1...Ap, D1...Dp)

′. In other words, the GRh,r is the

difference between Ŷt+h|v(r) , which estimates the value of Y at t + h after the shock v(r) hits

the system, and Ŷt+h, which estimates values for the same variable assuming that only usual

shocks hit the system. In both cases, the average paths Ŷt+1|v(r) , ..., Ŷt+h|v(r) and Ŷt+1, ..., Ŷt+h

are computed using K simulated paths for Y values obtained with usual shocks from ε
(k)
t+h ∼

N(0,Σ
(k)
t+h) where k = 1, ...,K.4

The variance-covariance matrix of the usual shocks depends on the smooth transition func-

3Other identification methods are of course possible but, as we will see, the Cholesky approach can be well
justified in our empirical application and it produces interesting and sensible results.

4 In the empirical application, we set K to 100.

10



tion, which is a function of xt+h−1, which in turn is a linear combination of Yt+h−1. This implies

that Σt+h is affected by the shock v(r) and may change as h = 1, ...,H. Hence, for each path k,

Y values are simulated using:

ε
(k)
t+h ∼ N(0,Σ

(k)
t+h|t)

Σ
(k)
t+h|t = (1−Πt+h(γ, c, x

(k)
t+h−1))Σ1 + Πt(γ, c, x

(k)
t+h−1)Σ2.

An implication of equation (10) is that we have one response function over horizons h =

1, ...,H to the shock v(r) at each point in time (It for t = p + 1, ..., T ). For clarity, we present

responses that are averaged over a set of histories defined by the estimated regimes. This

implies that we compute responses conditional on the regime at the impact. Define I(reg1) as

the histories It such that Πt(γ, c, xt−1) < 0.5 for t = p+1, ..., T , and I(reg2) as the history values

such that Πt(γ, c, xt−1) ≥ 0.5.5 Then the generalized responses conditional on regime 1 are:

GRreg1h,r = 1/T1

T1∑
t=1

GR
(reg1)
h,r,t (11)

GR
(reg1)
h,r,t = E[Yt+h|I(reg1)

t , v
(r)
1 ;A,B0,Σt+h|I(reg1)

t , γ, c]

−E[Yt+h|I(reg1)
t ;A,B0,Σt+h|I(reg1)

t , γ, c]

where T1 is the number of observations in the regime 1 history, that is, the number of times

that Πt(γ, c, xt−1) < 0.5 holds.6 Similarly for regime 2:

GRreg2h,r = 1/T2

T2∑
t=1

GR
(reg2)
h,r,t (12)

GR
(reg2)
h,r,t = E[Yt+h|I(reg2)

t , v
(r)
2 ;A,B0,Σt+h|I(reg2)

t , γ, c]

−E[Yt+h|I(reg2)
t ;A,B0,Σt+h|I(reg2)

t , γ, c].

5We could also employ different thresholds to split the sample across regimes. For example, we could define
the first regime as Gt(γ, c, xt−1) < 0.3, and the second regime as Gt(γ, c, xt−1) > 0.7. This would remove
intermediary observations to sharpen regime identification. In our empirical application, estimates of γ are
large, implying almost no observations in these intermediary values, and that small changes on how we define
regime-dependent histories do not affect our results.

6We accumulate the responses over horizons after the computation in (11) because all variables in Yt are in
growth rates.
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2.3.1 Algorithm to compute responses

The computation of the responses above is for a given set of parameters values (A(j), B
(j)
0 ,Σ(j), γ(j), c(j)).

We use J equally-spaced draws from the posterior distribution of the parameters to compute

GR
reg1,(j)
h,r,t and GRreg2,(j)h,r,t with the aim of incorporating parameter uncertainty (j = 1, ..., J).

Then our estimated response to the common shock r at regime 1 is the mean of GRreg1,(j)h,r,t for

j = 1, ..., J , and confidence bands are computed using percentiles (16%, 68%) based on the same

set of values GRreg1,(j)h,r,t . The complete algorithm for the computation of these regime-dependent

responses at time of the shock is:

1. Draw a set of parameters — A(j) = (A
(j)
1 , .., A

(j)
p , D

(j)
1 , .., D

(j)
p ), B

(j)
0 ,Σ

(j)
1 ,Σ

(j)
2 γ(j), c(j)—

from saved posterior distribution draws.

2. Using the transition function Πt(γ
(j), c(j), x

(j)
t−1), define the set of regime 1 and regime 2

histories (I(reg1)
t and I(reg2)

t ).

3. Using the A(j), B
(j)
0 ,Σ(j), γ(j), c(j) and the set of histories from regime 1, compute a set

of K paths with and without the impact of v(r)
1 for each history t = 1, ..., T1. These

paths are Y (k)

t+1|v(r)1

, ...,Y (k)

t+h|v(r)1

and Y (k)
t+1, ...,Y

(k)
t+h for k = 1, ...,K, where K is the number

of replications to approximate the conditional means. Based on the average over the K

paths, we obtain Ŷ
t+1|v(r)1

,...,Ŷ
t+h|v(r)1

and Ŷt+1,...,Ŷt+h for each set of histories. These

paths are obtained by simulating the system using draws from ε
(k)
t+h ∼ N(0,Σ

(k)
t+h|t). This

implies that we simulate paths also for Σ
(k)

t+1|v(r)1

,...,Σ(k)

t+h|v(r)1

and Σ
(k)
t+1,...,Σ

(k)
t+h. The regime

1 responses are computed by taking the differences between the average paths (with and

without the shock) for each history, and then obtaining regime 1 response as the average

response over all regime 1 histories.

4. Using theA(j), B
(j)
0 ,Σ(j), γ(j), c(j) and the set of histories from regime 2, compute the paths

as described in step 3 but using the shock v(r)
2 for each history t = 1, ..., T2. Compute

then the regime 2 responses by taking the differences between the average paths (with

and without the shock) for each history, and then computing the average response over

all regime 1 histories.

5. Repeat 1-4 for j = 1, ..., J .

6. Use GRreg1,(j)h,r and GRreg2,(j)h,r for j = 1, .., J to compute the median response and 68%

confidence intervals conditional on each regime and for h = 1, ...,H.
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2.3.2 Sign and Size Asymmetries

In addition to amplification effects depending on the regime at the time of shock, ST-MAI

models are also able to deliver significant different responses to positive and negative shocks.

First, to simplify the notation, write:

GRh,r,t(v
(r)) = E[Yt+h|It, v(r);A,B0,Σt+h|It, γ, c]− E[Yt+h|It;A,B0,Σt+h|It, γ, c].

Hence, asymmetries from the sign of the shock are computed as:

ASY +−
h,r,t = GRh,r,t(v

(r))−GRh,r,t(−v(r)).

The larger are the differences between responses to positive and negative shocks, the larger is

ASYh,r,t (in absolute value). We modify the algorithm described in section 2.3.1 to compute

ASY
+−(reg1)
h,r,t in step 3 and ASY +−(reg2)

h,r,t in step 4. This implies we aim to compute:

ASY
+−(reg1)
h,r = 1/T1

T1∑
t=1

[
GR

(reg1)
h,r,t (v

(r)
1 )−GR(reg1)

h,r,t (−v(r)
1 )
]

ASY
+−(reg2)
h,r = 1/T2

T2∑
t=1

[
GR

(reg2)
h,r,t (v

(r)
2 )−GR(reg2)

h,r,t (−v(r)
2 )
]

As in the case of the responses, we compute 68% confidence bands for each asymmetry mea-

sure at horizons h = 1, ...,H. These bands are employed to assess whether positive and neg-

ative shocks have statistically different effects by evaluating whether either ASY +−(reg1)
h,r or

ASY
+−(reg2)
h,r are nonzero.

We also consider asymmetries from the size of the shock. The shocks implied by the impact

vector v(r)
1 and v(r)

2 are equivalent to one-standard deviation shocks, so we call these shock as

"small". We consider two-standard deviation equivalent impacts 2v
(r)
1 and 2v

(r)
2 as large shocks.

We measure asymmetries for the size of shock conditional on each one of the regimes at the

impact as:

ASY
ls(reg1)
h,r = 1/T1

T1∑
t=1

[
GR

(reg1)
h,r,t (2v

(r)
1 )− 2 ∗GR(reg1)

h,r,t (v
(r)
1 )
]

ASY
ls(reg2)
h,r = 1/T2

T2∑
t=1

[
GR

(reg2)
h,r,t (2v

(r)
2 )− 2 ∗GR(reg2)

h,r,t (v
(r)
2 )
]
.
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If large shocks have different effects from small shocks in, say, regime 2, we expect that

ASY
ls(reg2)
h,r will be nonzero for a set of horizons and shocks. As before, we use different draws

from the posterior distribution of the parameters to compute 68% confidence bands for these

asymmetry measures as the main values are obtained using the median as described in section

2.3.1.

2.4 Choosing the number of factors and the transition variable

A key component for the specification of the ST-MAI model is the choice of the number of

factors, and of the factor to be used as transition variable.

To decide the number of factors for (constant parameter) MAI models, Carriero, Kapetanios

and Marcellino (2016) suggest to use the marginal data density (MDD). However, the MDD of

ST-MAI models is not available analytically, and limited experimentation with computational

approaches was not satisfactory. However, the number of factors in a MAI model can be indica-

tive of that in the corresponding ST-MAI model. As an alternative, the choice can be driven

by economic considerations, or alternative specifications can be compared according to other

criteria, such as penalized in-sample fit or forecasting capacity. In our empirical application,

we set the number of factors to four to aid the identification of four common structural shocks

even though the MDD approach when applied to the MAI model as in Carriero, Kapetanios

and Marcellino (2016) prefers a specification with three factors.

After setting the number of factors, we need a procedure to select a transition variable

from the set of factors (or other relevant variables). As mentioned, we are not able to use the

marginal data density. Hence, we propose to use the Bayesian information criterion (BIC).

Assuming that θ is the vector of all the model parameters, such that ln f(y|θ) is the log-
likelihood value at a given set of parameters θ, where y = {Yt}t=Tt=p+1, the BIC is then

BIC = −2Eθ[ln f(y|θ)] + ln(T − p)[2NRp+N −R], (13)

where Eθ[ln f(y|θ)] is estimated by averaging the likelihood over the kept MCMC draws, and
the penalty term is set for the ST-MAI specification. Because the penalty term will not vary

with the choice of transition variable over alternatives g(1)
t , ..., g

(R)
t , the use of BIC to choose

the transition variable is equivalent to maximize the average likelihood.
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3 Credit Conditions and the Effects of Economic Shocks

We now want to exploit the econometric set-up we have built to address a set of empirical

questions. First, do credit conditions trigger regime changes in the dynamic relationships

among economic variables? Second, do they amplify the effects of economic shocks? Third, do

they generate sign/size asymmetries in the effects of economic shocks?

We use a data set of 20 monthly (endogenous) variables for the USA, which includes the

economic activity, monetary and price variables in the "medium" dataset of Bańbura et al.

(2010) plus additional indicators of credit conditions, as described in Table 1. As our sample

includes the zero lower bound period, we use the end-of-period effective fed fund rates for most

months, except for the period where the zero lower bound is binding, where we use the Wu

and Xia (2015) shadow rate as published in the Atlanta Fed website. We also use the one-year

Treasury bill to help to capture the effects of unconventional monetary policy. We use six

variables to measure credit conditions. The first one is the excess bond premium computed

using corporate bond yields by Gilchrist and Zakrajsek (2012). This measure was employed

by Lopez-Salido et al. (2017) to measure confidence in the credit market. The remaining five

spread measures have been considered by Hatzius et al. (2010) and are also part of financial

stress indices periodically released by regional Feds (Chicago, St. Louis and Cleveland). The

set of spreads include the 3-month commercial paper spread over the 3-month Treasury bill,

which was employed as transition variable by Balke (2000). It also includes the term spread

measured by the difference between 10 year and 3-month Treasury rates.

The sample period is from 1974M1 up to 2016M8, but the period up to 1982M2 is employed

as pre-sample to obtain mean and variances for the proposal distributions for the random walk

metropolis step employed in the estimation of the factor loadings B0. Variables are transformed

as indicated in Table 1 and the MAI is estimated to their normalized values.

We set the number of factors to four. Basically, we add a credit factor to the real, nominal

and monetary factors of Carriero, Kapetanios and Marcellino (2016). The monetary policy

variables are not part of the credit factor so that we are able to disentangle monetary policy

shocks from credit market shocks. Brunnermeier et al. (2017) argue in favour of this differen-

tiation to understand the impact of credit on economic activity. Figure 1 shows the estimated

factors using the MAI model. We label the factors as economic activity, inflation, monetary

policy and credit following the variables that load on these factors in Table 1.

To provide a better understanding of these factors, we evaluate correlations between the
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estimated factors and alternative economic indexes. Table 2 shows correlations between the an-

nualized factors and a set of economic and financial indexes. These include the Philadelphia Fed

Coincident Economic Activity index and the Chicago Fed Financial Condition Index (including

the version adjusted to remove endogenous macroeconomic effects). For the computations in

Table 2, we use the factors computed at the posterior mean using the MAI model.7

The results in Table 2 clearly suggest that the activity factor behaves as a coincident indi-

cator. Indeed the correlation with the Philadelphia Coincident index is of 86% at the monthly

frequency. The credit factor is clearly measuring financial conditions. The factor has a 78%

correlation with the Chicago Fed FCI. The monetary policy factor is correlated with the activ-

ity, credit and inflation factors, with all the proper signs. We should also note that the inflation

factor (which loads on four price variables) has a positive correlation (about 50%) with the

Chicago Fed FCI and our credit conditions factor.

3.1 Credit conditions as transition variable

The first empirical research question to be addressed is whether credit conditions are able to

characterize nonlinearities within a ST-MAI model. Table 3 presents the average likelihood and

the BIC for the four different ST-MAI model specifications. They vary by the choice of factor

to act as transition variable.8

The results in Table 3 indicate that the credit factor is the transition variable that provides

the best fit for the 20 variables in the model. The second best variable to characterize regime

changes is the activity factor, which is able to deliver regime changes that are highly correlated

with NBER business cycle phases.

Figure 2 shows the values of the transition function using the credit factor as transition

variable [Πt(γ, c, g
(4)
t−1)] at the posterior mean. The dotted lines are 68% confidence bands for

the transition function, and the blue line is the credit factor at the posterior mean. The Figure

also includes NBER recession dates. It is clear that what we have estimated as the upper regime

has anticipated both the 90-91 and the 2001 recessions. The upper regime dates also coincide

with the NBER 2008-2009 recession. Following the use of credit conditions as part of financial

condition indices and their use for identification of financial stress periods, we call the upper

7The model is estimated as described in section 2.1 with 20,000 draws where the first 4,000 are discarded for
the computation of the posterior mean.

8The statistics are computed using 16,000 kept draws for each specification based on the listed hyperparame-
ters’values. The hyperparameters of proposal distributions are set to achieve about 30% acceptance rates, while
the overall prior tightness is set to maximize the average likelihood over a small grid values.
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regime as the “high credit stress”regime and the lower regime as the “low credit stress”regime.

3.2 Credit conditions as shock amplifiers

Our previous results support the use of credit conditions to characterize changes in the dynamic

relationships among the 20 variables listed in Table 1. Now we assess whether credit conditions

can also cause the amplification of shocks. Specifically, we evaluate the responses to structural

shocks of six key indicators selected from the 20 variables in Table 1.9 We have two measures

of economic activity: industrial production and unemployment; two measures of credit spreads:

the Gilchrist and Zakrajsek (2012) excess bond premium (EBP) and the commercial paper

spread; the PCE deflator as an example of price variable; and the fed funds rate (that is equal

to the shadow rate during the ZLB period) as a monetary policy measure.

As the ST-MAI model has four factors, we can identify four common shocks. We use the

Cholesky-based method described in section 2.3. Following Carriero, Kapetanios and Marcellino

(2016), we label the first two shocks as demand and supply shocks. Indeed, in response to the

first shock, industrial production, prices and the fed fund rates move together, as in the case of

a demand shock. In contrast, in response to the second shock, prices and industrial production

move in opposite directions. The third shock is a monetary policy shock, and indeed industrial

production and prices decline in response to this shock. The fourth shock is a credit conditions

shock. The identification ordering follows Gilchrist et al. (2009), who order last the credit factor

in their factor augmented VAR. This implies that the credit factor can react contemporaneously

to demand, supply and monetary shocks, but it has no contemporaneous effects on them.

We checked whether the effects of credit shocks are robust to changing the ordering between

monetary and credit factors. We find that our median estimated values of the effects of credit

shocks at impact change very little when we change the ordering.

Figures 3 to 6 show (cumulative) responses of industrial production, unemployment, the

PCE deflator, the EBP, the Fed rate and the Commercial paper (CP) spread to each one of

the four shocks using the ST-MAI model with credit factor as transition variable. Responses

are computed for horizons from 1 up to 48 (four years) by using 200 parameters draws from

the stored posterior distribution of the parameters as described in section 2.3. Dashed lines are

68% confidence bands. Responses in red assume that the shock hits in the high credit stress

regime (regime 2), while responses in blue assume the shock hits in the low credit stress regime

9Responses for all other variables are available upon request.
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(regime 1). Impact responses (h = 1) may change over regimes because the variance-covariance

matrix of the ST-MAI model is regime dependent.

Figure 3 shows responses for a negative demand shock (an exogenous decline of the activity

factor). One can observe strong amplification effects in the high stress regime in the responses

of economic activity variables and prices to demand shocks. Similar sized demand shocks have

their effects amplified twofold after two years if they hit in the regime of bad credit conditions.

The effect of the demand shock on unemployment is an increase of about 1 percentage point after

two years in times of low credit stress, but in times of high stress, this effect is 2 percentage

points. An amplification of similar magnitude is also detected in the excess bond premium

responses.

Similar amplification effects are also found in the responses of economic activity variables

to supply shocks (Figure 4), except for the PCE deflator. Amplification effects are smaller for

monetary and credit shocks (Figures 5 and 6), though still present. The response of the PCE

deflator to credit is clearly amplified in the high stress regime (Figure 6). Similar results are

found by Galvao and Owyang (2017): financial stress shocks have strong negative effects on

prices during the high stress regime.

Interestingly, results in the response to monetary policy shocks (Figure 5) suggest that the

excess bond premium increases following monetary policy tightening in the high stress regime.

However, a shock of similar size has a negative effective effect on excess bond premium in the

low stress regime.

These empirical results confirm the usefulness of ST-MAI models in uncovering amplification

effects in the responses to structural shocks. This is achieved by allowing the parameters of the

conditional mean and conditional variance to change over regimes driven by an observed set of

credit spread variables. The results, obtained with a large model and with a set of credit spread

measures, confirm the evidence of nonlinearity in Balke (2000), based on a small threshold VAR

model with the commercial paper spread as transition variable.

3.3 Credit conditions and asymmetric shock effects

Our last empirical research question is to check whether either positive and negative shocks

or large and small shocks have different effects. Before showing the results for the asymmetry

measures described in section 2.3 (ASY +−(reg1)
h,r , ASY +−(reg2)

h,r ,ASY ls(reg1)
h,r , ASY ls(reg2)

h,r ), we use

differences in the probability of regime changes after the shock as a first glance on the issue
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of different responses depending on the size and the sign of the shock. Table 4 presents the

probability of staying in the same regime as the one at impact over a 12-month period after

the shock. Recall that in the ST-MAI model the variables that trigger regime changes are

endogenous so that, even if a shock hits the economy during the low stress regime, there is a

probability that after one year the economy switches to the high stress regime. Table 4 explores

the effect of different sizes and signs of the shock on this probability, based always on the

same set of histories at the time of shock. We consider our four identified structural shocks for

cases they are either positive or negative and are small (equivalent to one-standard deviation)

and large. The results in Table 4 clearly show that the size and the sign of the shocks have

virtually no effect on the likelihood to switch to the high stress regime when at the time of the

shock the model is in the low credit stress regime. Because the low stress regime covers 80% of

the period, this suggests that normally positive and negative shocks and small and large shocks

have very similar effects. However, during the high stress regime, good shocks (positive demand

shock, negative supply shock, loosing of monetary policy stance and decrease in credit spreads)

increase the likelihood of moving out of the high credit stress regime. Because the transition

variable measures credit conditions, a large shock improving credit conditions (-2v2) delivers a

probability of switching to the low stress regime of 42%, while this probability is of only 18%

if we change the sign of the shock. These results suggest that the duration of the high credit

stress regime depends on the shocks hitting the economy once we are in the high stress regime.

It is reassuring that loosing the monetary policy improves the probability of regime switching

to 36% after one year.

Next, we compute the asymmetry measures described in section 2.3 for all the 20 variables

in the VAR and for each of the four common shocks. We use 68% confidence bands to assess

whether there are statistically significant asymmetries. For responses computed to shocks in the

low credit stress regime at impact, we find no evidence of significant asymmetry. Figure 7 shows

estimates of ASY ls(reg2)
h,r for the unemployment, the fed fund rate and the commercial paper

spread as responses to each of our four common shocks and for h = 1, ..., 24. We choose these

variables because they are the ones that normally exhibit asymmetries during the high credit

stress regime. Figure 7 indicates that positive and negative demand shocks have symmetric

effects, but supply, monetary policy and credit shocks have asymmetric effects, that is, large

shocks have disproportionate stronger effects than small shocks. A large shock to credit spreads

increases significantly more unemployment even though the fed funds rate downward movement
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is disproportionately larger. This might be explained by the stronger effects on commercial

paper spread, which measures short run corporate market riskiness. These results suggest that

the size of the shock matters if the economy is in a credit stress regime. They support the

theoretical implications discussed in Krishnamurthy and Muir (2017) but also add evidence

that it is not only financial shocks that generate asymmetric effects, but also inflationary and

monetary policy shocks.

Figure 8 shows estimates of ASY +−(reg2)
h,r for unemployment and commercial paper spread.

There are sign asymmetries for large (two-standard deviation) shocks. Figure 8A shows es-

timates as responses to supply shocks, and the following figures present values for monetary

policy and credit shocks. Figure 8C shows industrial production instead of unemployment so

we can compare our results with Barnichon et al. (2017). All asymmetry values are negative.

As positive shocks lead to positive responses in the variables presented (unemployment and

commercial paper spread), then significant negative values of ASY +−(reg2)
h,r imply that negative

shocks —a decrease in prices, loosing of monetary policy stance, narrowing of credit spreads

—have a larger effect on these variables than positive ones. The largest negative effects are

detected for the responses to supply shocks. In Figure 8D we present, as an example, unem-

ployment and commercial paper spread responses to positive (blue) and negative (red) shocks in

the high stress regime. It is clear that these responses are not symmetric and that a shock that

deflates prices reduces unemployment by 3 percentage points after two years, while a positive

shock of the same size increases unemployment by a bit more than 1 percentage point after two

years.

The detected asymmetries in the response of unemployment to shocks imply that unem-

ployment can strongly decrease after two years if good shocks hit the economy at the time

of credit stress. This nonlinear propagation effect of credit conditions on unemployment is,

as far as we are aware, novel in the empirical literature. This shows again the usefulness of

a large time-varying VAR model when assessing the links between credit conditions and the

macroeconomy.

Barnichon et al. (2017) empirical results suggest that shocks that improve credit supply

(negative shocks in our case) have muted effects on industrial production while shocks that

contract credit supply have strong negative effects on industrial production. Their effects were

computed using a nonlinear projection approach, assuming that responses differ depending on

the sign of the past shocks. Our results suggest that an unexpected improvement in credit
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conditions may have a stronger effect in increasing growth than a deterioration would have if

at the time of the shock we are in the high credit stress regime. These dissimilar results can

be reconciled if we consider the responses in Figure 5 of Barnichon et al. (2017) as regime-

dependent responses for a high stress regime (credit supply contraction) and for a low stress

regime (credit supply expansion). This is a reasonable assumption if we consider that positive

credit supply shocks are more likely during the low stress regime and negative credit supply

shocks are more likely in the high stress regime. Their responses are then similar to the ST-

MAI responses to credit tightening shocks in Figure 6. The flexibility of the impulse response

analysis based on the ST-MAI model allows us to better understand what it is really driving

changes in the transmission of credit shocks, and how US data support the implications of

theoretical models as summarized by Krishnamurthy and Muir (2017).

3.4 Small Smooth Transition VAR model

We claim in the introduction of this paper that by including more variables in a VAR, we enlarge

the information set employed to compute impulse responses and that this might be beneficial for

structural analysis, as it alleviates omitted variable bias and permits a more granular analysis

of the effects of the shocks. In this subsection we estimate a smooth transition VAR with five

variables to check if we are able to replicate our main empirical results with this smaller model.

The five variables described in Table 1 that we included in this small VAR are: industrial

production, unemployment, CPI, fed fund rate (+ shadow rate) and the EBP credit spread

measure. The model is as in Barnichon et al. (2017), except that we include unemployment.

We estimate the ST-VAR using MCMC blocks 1 to 3 of the estimation procedure described in

section 2.2. As before, we use the data transformations in Table 1 and p = 13. We use the

EBP as transition variable.

Figure 9 shows the estimated regime changes. The correlation with the regime changes

estimated in Figure 3 is of only 58%. There is a longer upper regime between 2000 and 2003

and the upper regime lags the NBER recession in 2008. We compute the BIC for this model

using the average likelihood and compare it with the BIC for the ST-MAI model for the fit of

the five variables included in the small ST-VAR model. The BIC supports the ST-MAI model

even if it estimates fewer parameters than the ST-VAR (when R = 4).

We use a Cholesky decomposition to identify the shocks, using the variable ordering above.

Figure 10 presents (cumulative) responses with 68% bands for the upper and the lower regime
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at the time of shock. We compute responses for IP (activity) shocks, CPI (inflation) shocks,

Fed rate (monetary policy, MP) shocks and EBP (credit) shocks. This exercise is designed to

be comparable with Figures 3 to 6. In general, the responses to inflation and credit shocks are

similar to the responses computed with the large ST-MAI model, while responses of activity

and MP shocks are very different (the response to MP shocks does not change with credit

conditions!). We conclude that, even though in this application one does not necessarily need

a large model to measure the effects of credit shocks, the large MAI model helps to capture the

effects of other important shocks by enlarging the information set employed in the computation

of the responses, and it also permits to assess the effects of the shocks on a larger number of

variables.

4 Conclusions

This paper sheds additional light on the relationship between credit conditions and the macro-

economy. We show that credit stress, as measured by widening spreads, can alter the dynamic

relationships among economic variables. Moreover, during credit stress periods, the effects of

economic shocks can be amplified, and there can be sign and size asymmetries, so that positive

and negative shocks of the same size can have different effects (in absolute value) and small and

large shocks of the same sign can also have asymmetric effects.

These empirical features emerge from a novel econometric model, a large smooth transition

multivariate autoregressive index (ST-MAI) model. In the ST-MAI model all variables are

driven by a small number of observable factors, and their lags. In our case, we have economic

activity, prices, monetary and credit factors. The credit factor is also the preferred transi-

tion variable, the trigger of parameter changes, with a reasonable timing for the endogenously

identified credit stress periods.

We develop a (Bayesian) estimation procedure for the ST-MAI model, and show how it can

be used to compute (generalized) impulse response functions and measures of asymmetry.

We believe that, besides our specific application, the ST-MAI model can be an useful tool

for empirical macroeconomics, as it permits to model large set of variables, taking into account

parameter changes across regimes. It is similar to a factor augmented vector autoregressive

(FAVAR) model, but the observable factors simplify estimation, shock identification, and inter-

pretation of the results.
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Our empirical results suggest that the duration of financial fragility episodes depends cru-

cially on the type, size and sign of the shocks hitting the economy. Episodes can be shorter

if large good shocks hit the economy. Fortunately, policy makers are able to control one of

these good shocks —the monetary policy shock —and we are able to show that by loosing the

monetary policy stance, policy makers increase the probability of moving out from a financial

stress episode after one year.
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Table 1: List of endogenous variables in the (ST) MAI specifications.  

 Factor Trans. 

Employees nonfarm activity Log-diff 

Avg hourly earnings activity Log-diff 

Personal income activity Log-diff 

Consumption activity Log-diff 

Industrial Production activity Log-diff 

Capacity utilization activity Log-diff 

Unemp. Rate activity Log-diff 

Housing Starts activity Log-diff 

CPI inflation Log-diff 

PPI inflation Log-diff 

PCE deflator inflation Log-diff 

PPI ex food and energy inflation Log-diff 

FedFunds + shadow rate Mon. Pol. diff 

1year_rate Mon. Pol. diff 

EBP Credit levels 

BAA spread Credit levels 

Mortgage Spread Credit levels 

TED Spread Credit levels 

CommPaper Spread Credit levels 

Term Spread (10y-3mo) Credit levels 

Note: sample period 1974M1-2016M8. Data between 1974M1 and 1982M2 is 

employed as pre-sample.  
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Figure 1: Factors estimated by MAI in annual differences.  

 

Note: Monetary policy factor in the right axis.  
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Table 2: Correlations among and with MAI estimated factors  

 F_infl F_mp F_cred PhilFed  
Activity 

Chicago Fed 
 Fin Cond. 

Adj. Chicago Fed 
 Fin Cond. 

F_activity 0.06 0.61 -0.47 0.86 -0.39 -0.02 

F_inflation 1 -0.13 0.48 -0.11 0.54 0.12 

F_mp -0.13 1 -0.49 0.63 -0.34 -0.07 

F_credit 0.48 -0.49 1 -0.51 0.78 0.53 

 

 

 

 

 

 

 

 

Table 3: Measures of fit for different ST-MAI specifications  

 Average Likelihood BIC 

F_activity as trans. var.  

(1=1;=25/110;c=0.01) 

-7820.760 28271.735 

F_inflation as trans. var. 

(1=1;=120/20;c=0.01) 

-8004.157 28638.529 

F_mp as trans. var.  

(1=1;=20/120;c=0.01)   

-7859.639 28349.943 

F_credit as trans. var.  

(1=1;=120/20;c=0.01) 

-7749.376 28128.967 

Note: All specifications with 4 factors set as in Table 1. Hyperparameters are 

chosen to maximise the average likelihood and/or set acceptance rates to 

about 30%.  
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Figure 2: Regime changes in ST-MAI model with F_credit as Regime-Switching Variable. 

Figure 2A: Transition function over time 

 

Figure 2B: Scatter plot of transition function for values of F_credit at posterior mean parameters 
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Figure 3: ST-MAI model responses to demand shock 

 

Note: Dotted lines are 68% confidence bands.  
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Figure 4: ST-MAI model responses to supply shock 

 

Note: Dotted lines are 68% confidence bands.  
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Figure 5: ST-MAI model responses to monetary policy shock 

 

Note: Dotted lines are 68% confidence bands.  
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Figure 6: ST-MAI model responses to credit shocks 

 

Note: Dotted lines are 68% confidence bands.  
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Table 4: Probability of staying at the regime at the impact of the shock over a 12-month period after the shock  

Regime at time of the shock: Low Stress Regime High Stress Regime 

 Positive shocks 

Type of shock:  Small (v1) Large (2v1) Small (v2) Large (2v2) 

Demand (activity) shock  0.96 0.96 0.70 0.69 
Supply (price) shock 0.95 0.95 0.74 0.77 
Monetary policy shock 0.95 0.95 0.74 0.77 
Credit (spread) shock 0.94 0.93 0.77 0.82 

 Negative shocks 

 Small (-v1) Large (-2v1) Small (-v2) Large (-2v2) 

Demand (activity) shock 0.96 0.96 0.72 0.72 
Supply (price) shock 0.96 0.97 0.67 0.64 
Monetary policy shock 0.96 0.96 0.67 0.64 
Credit (spread) shock 0.97 0.98 0.64 0.58 

  

Note: These are the proportion from the total number of horizons (12) that we do not 

observe regime changes as response for each specified shock. These are computed 

with parameters at the posterior mean and using 200 usual shock draws (K=200 in 

section 2.3) to compute the conditional expectation after the shock.  
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Figure 7: Differences between responses to large (2*v) and small (v) shocks in the high stress regime.  

7A: Demand (activity) shocks. 

 

7B: Supply (price) shocks 

 

7C:  Monetary Policy shocks 

 

7D: Credit Spread shocks 
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Figure 8: Differences between responses to positive (2*v) and negative (-2*v) shocks in the high stress regime 

Figure 8A: Supply (prices) shocks  

  

Figure 8B: Monetary Policy shocks 

  

Figure 8C: Credit Spread shocks 
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Figure 8D: Responses to a small supply shock in the high stress regime 
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Figure 9: Regime changes in ST-VAR model of 5 variables with EBP as Regime-Switching Variable. 
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Figure 10: Responses of the ST-VAR model with 5 variables 

Figure 10A: Responses to IP growth shocks 
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Figure 10B: Responses to CPI inflation shocks 
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Figure 10C: Responses to Fed fund rate (MP) shocks 
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Figure 10D: Responses to EBP (credit spread) shocks 
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