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1. Introduction

The last two decades of research on structural vector autoregressions (SVARs)
has largely pursued methods for relaxing two constraints: constant model param-
eters and dogmatic identifying restrictions. Research focused on relaxing the
assumption of constant-parameters has followed from the time-varying parameter
VAR with stochastic volatility (VAR-TVP-SV) of Cogley and Sargent (2005)
and Primiceri (2005) and the Markov-switching (MS-VAR) model developed in
Sims and Zha (2006) and Sims, Waggoner, and Zha (2008).1 Research focused
on relaxing the traditional types of identifying restrictions has followed from the
seminal contributions on partially identified SVARs of Canova and De Nicolo
(2002) and Uhlig (2005). To date, however, these two research agendas have
lived largely separate lives.

This paper’s primary contribution is to be the first to merge structural time-
varying-parameter dynamic systems and partial identification in an internally
consistent probabilistic framework. My TVP-SVAR admits a reduced-form for
which I provide a tractable MCMC algorithm for inference. Following estimation
of the reduced-form parameters, the researcher may then apply the existing meth-
ods from the constant-parameter SVAR framework off-the-shelf, including partial
identification methods, while preserving an internally consistent probabilistic
model. Hence, one might alternatively summarize this paper’s key contribution
as follows: it provides a TVP-SVAR amenable to the wholesale extension of the
widely-used methods developed in Rubio-Ramírez, Waggoner, and Zha (2010)
to a TVP setting.

The key challenge in constructing such a model is in specifying laws of
motion for the dynamic parameters that maintain the invariance of the likelihood
function to orthogonal rotations of the dynamic parameters. This invariance
property is the key element that justifies the widely-used two-step approach
for the estimation of constant-parameter SVARs under either exact or partial

1See Cogley and Sargent (2001) for an earlier version of the VAR-TVP model without
stochastic volatility. The desirability of model extensions in this direction, and at least a partial
description of how one might formulate such models, goes back to Doan, Litterman, and Sims
(1984) and Sims (1993).
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identification in which researchers first estimate the reduced-form parameters that
would be implied by the parameters of any candidate structural system and then
find orthogonal rotations of the reduced-form parameters that yields structural
parameters satisfying the identifying restrictions.2 This approach yields valid,
likelihood-based inference for the SVAR because of the observational equivalence
of the reduced-form and all candidate SVARs, the space of which is conveniently
indexed by orthogonal matrices. In the case of exact identifying restrictions there
is a unique value for valid structural parameters that are observationally equivalent
to given reduced-form parameters, while in the case of sign-restrictions as in
Uhlig (2005), a set of valid structural parameters are observationally equivalent
to the reduced-form parameters.

This paper’s contributions are necessary because the models developed in
Cogley and Sargent (2005) and Primiceri (2005) do not satisfy the invariance
property. Nonetheless, researchers have sought to use the partial-identification
toolkit to infer time-varying objects of interest in a fashion analogous to that
used in constant-parameter SVARs: estimating a VAR-TVP-SV, constructing
the “reduced-form” VAR system period-by-period, draw-by-draw, and applying
standard sign-restrictions methods to decompose the “reduced-form” VAR pa-
rameters, again period-by-period, draw-by-draw.3 However the results based on
arbitrary orthogonal rotations of VAR-TVP-SV’s parameters are, at best, difficult
to interpret since in the context of the probability model originally estimated,
the data can in fact tell the difference between the alternative parameter values.
One particularly salient way to grasp the lack of the invariance to orthogonal
rotations is to note that the results from the VAR-TVP-SV model can, in principle,
depend on the ordering of variables, even if one only cares the “reduced-form
parameters” implied by the structural parameters.4 While clearly conceptually

2When the restrictions are either exactly or partially identifying, then at least one such rotation
is guaranteed to exist for almost any value of the reduced-form parameters.

3Such an approach to structural inference has been employed in Canova and Gambetti (2009),
Baumeister and Peersman (2013b), Baumeister and Peersman (2013a), and Hofmann, Peersman,
and Straub (2012).

4Indeed, the potential sensitivity of results to variable ordering is known and acknowledged
in both Cogley and Sargent (2005) and Primiceri (2005). See also Section 8 of Fox and West
(2014) for a discussion of this issue. Note that both Cogley and Sargent (2005) and Primiceri
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undesirable, the potential sensitivity to variable ordering in the VAR-TVP-SV
is particularly problematic in practice because an n-variable VAR admits n!
unique orderings, and estimating even a single specification of the model is
computationally demanding.5

In contrast, the DSVAR I evelop specifies laws of motion for the time-varying
parameters whose likelihood function is invariant to orthogonal rotations of
any elements in the sequences of structural parameters. To be precise, given
estimates of the reduced-form parameters, all sequences of possible structural
parameters that differ by an orthogonal rotation are, ex post, equi-probable. The
model specifies laws of motion for stochastic time-variation in the reduced-form
system directly and is known in the Bayesian statistics literature as the dynamic
linear model with discounted-Wishart stochastic volatility (DLM-DWSV). Key
for my purposes, the DLM-DWSV model’s likelihood function is invariant to
period-by-period orthogonal rotations of a matrix square root of the time-varying
covariance matrix. One implication of this property is that the estimated system
is invariant to variable reordering, since such permutations are merely special
cases of orthogonal rotations. As a result of this property, one can, in principle,
estimate the DLM-DWSV model and then apply identifying sign restrictions for
identification in a post-processing stage.

This paper builds off of a number of papers more familiar to statisticians than
to economists. My DSVAR yields a reduced-form known to Bayesian statisticians
as a dynamic linear model (DLM) with discounted-Wishart stochastic volatility
(DLM-DWSV). Variants of the DLM with a constant covariance matrix have
been used to model financial time-series since at least Quintana and West (1987),

(2005) work with small dynamic systems of three variables and two lags, which make it feasible
to check robustness against all six possible orderings, though it remains unclear how one would
consider partial identification.

5A single specification of a VAR-TVP-SV with four variables and four lags can easily take
24 hours to estimate and another 24 hours for structural inference via the application of sign
restrictions to the first stage’s estimation output. Since an n-variable VAR admits n! unique
orderings, a researcher using only a modest 4 variable system, like that in Baumeister and
Peersman (2013b), confronts 24 possible orderings, a thorough exploration of which strains the
current limits of computational feasibility. A researcher daring enough to consider a 5 variable
system would be faced with 120 possible orderings, leaving the researcher no choice but to plead
ignorance regarding the importance of variable ordering for their results.
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while the discounted-Wishart stochastic volatility process was formalized as a
valid probability model by Uhlig (1994) and Uhlig (1997). Prado andWest (2010)
gives the most thorough treatment to date of the complete model, including a
description of the posterior smoothing algorithm for the dynamic parameters,
which is critical for my estimation algorithm.

In addition to its primary contribution, this paper makes two additional
contributions purely in the context of the SVAR’s reduced-form. First, I contribute
directly to the literature on DLMs by presenting an MCMC algorithm for fully-
Bayesian inference for all model parameters, including the discounting parameter
governing the variability of the stochastic volatility. Koop and Korobilis (2013)
consider forecasting with a model similar to the reduced-form DLM-DWSV but
without likelihood-based estimation of the model parameters. Furthermore, the
MCMC algorithm is fast enough, even in high-level programming languages
such as MATLAB, for the estimation of at least medium-sized VARs to be practical.
Second, the paper demonstrates that DLM-DWSV can handle dynamic systems
considerably larger than those previously considered in the literature estimating
the VAR-TVP-SV; the appliation on time-varying fiscal multipliers uses n = 7
variables and p = 4 lags.

The methods I develop in this paper are fully complementary to a number
of other recent contributions on SVAR identification, particularly Amir-Ahmadi
and Drautzburg (2017) and Antolín-Díaz and Rubio-Ramírez (2017).

From here the rest of the paper proceeds as follows. In Section 2, I review
the current frameworks for partial or exact identifiction in SVARs to facilitate
comparison with my TVP extension. In Section 3, I describe the reduced-form
model with time-varying parameters and stochastic volatility. In Section 4 I
describe the MCMC algorithm for estimating the reduced-form model. In Section
5 I confront the model and estimation procedure with an empirical application
based on estimating time-varying fiscal multipliers. In Section 6 I conclude.

Lastly before moving on I introduce a few notational conventions used
throughout the paper. Matrices are styled as uppercase bold, as in A. Vectors
are styled as lowercase bold, as in y. Coefficients are styled as lowercase normal
weight, as in �.
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2. A crash course in structural VARs (and the reduced-form
VARs inside of which they hide)

To fix ideas, in this section I describe the standard constant-parameter SVAR
framework. My notation and description of the framework closely follow that of
Rubio-Ramírez et al. (2010), to which I refer readers for further details.

2.1 The Structural Model

I treat the structural VAR as the primitive. I assume that the structural model
describing the evolution of n observable and endogenous economic variables
linearly relates each variable to the contemporaneous and lagged values of all
other variables and a constant term. In other words, I assume that the (n × 1)
vector of observables at time t, denoted yt, is realized according to a structural
vector autoregression written as

y′tA =
p
∑

l=1
y′t−lF(l) + c + "

′
t , "t ∼ N(0n×1, In) , for 1 ≤ t ≤ T ,(1)

where "t is an (n × 1) vector of exogenous structural shocks, “N” denotes the
Gaussian distribution, and In is the n × n identity matrix. The integer p is the
number of lags of observables pertinent to the structural representation of the
dynamic system. The matrices A and F(l) for 0 ≤ l ≤ p are each n × n and c is a
(1 × n) vector. I also assume the invertability of A.

To make the subsequent exposition more concise, let m = p ⋅ n + 1, define
the (m × n) matrix F ≡ [F′(1),… ,F′(p), c

′]′, and define the (m × 1) vector xt ≡
[y′t−1,… , y′t−p, 1]

′. One can then write the structural model in equation (1) more
compactly as

y′tA = x
′
tF + "

′
t , "t ∼ (0n×1, In) , for 1 ≤ t ≤ T .(2)

I refer to (A,F) as the structural parameters because they determine the evolution
of the endogenous economic variables in response to the exogenous disturbances
and I define S ≡ (A,F) to refer to the tuple of structural parameters. In the
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absence of further restrictions, the space of possible values for S is the subset
of ℝmn+n2 for which A is invertible, and I refer to this space as S U where the
superscript “U” indicates that this is the “unrestricted” parameter space. Letting
pS(⋅) refer to the data density for y1∶T implied by equation (2), I use the notation
U to refer to the unrestricted structural model, i.e. U = (pS(⋅),S,S U ).

The objects of interest to the economist are typically either S or a function of S,
such as impulse responses or variance decompositions with respect to particular
shocks in "t. Unfortunately, without further restrictions on the parameter space,
the data cannot identify the elements of S: for any (A,F) = S ∈ S U and any
n × n orthogonal matrix Q, the alternative parameters defined as S̃ = (AQ,FQ)
are observationally equivalent to (A,F).6 To be precise, and echoing Rothenberg
(1971), I characterize observational equivalence in terms of data densities as
follows.

Definition 1 (Observational equivalence of data densities). If p(⋅) and p̃(⋅) are
data densities for observables y1∶T , then p(⋅) and p̃(⋅) are observationally equiv-
alent if and only if p(y1∶T ) = p̃(y1∶T ) for any y1∶T .

One can, however, identify certain combinations of parameters in S. The
identifiable parameter combinations are summarized by the parameters of an
alternative representation of the model known as the reduced-form VAR, which
I describe next.

2.2 The Reduced-form Model

The structural model of the previous section implies the reduced-form model
given by

y′t = x
′
tB + u

′
t , ut ∼ (0n×1,�) , for 1 ≤ t ≤ T ,(3)

6The non-identifiability of S ∈ SU is well known in the literature so I leave the formal proof
to Appendix REF.

6



where the parameter matrices (B,�) and the forecast errors ut are derived from
the structural parameters as follows,

u′t = "
′
tA

−1(4)

B = FA−1(5)

� =
(

AA′
)−1(6)

and thus B and � have dimensions (m × n) and (n × n). Importantly, the matrix
� is symmetric (and positive definite) and thus has only n(n + 1)∕2 unique
elements. Similar to the notation for the structural model, define D ≡ (B,�)
where D ∈ D = ℝnm+n(n+1)∕2, and  ≡ (pD(⋅),D,D ), where pD(⋅) is the density
for y1∶T implied by (3).

Although S are ultimately the objects of economic interest, the analysis of 
often plays a key role in the practice of inferring S. There are three reasons for this.
First, despite the fact thatD is of reduced dimensionality relative to S U , and 
are observationally equivalent models.7 Second, D are globally identified while,
as noted in the previous section, S ∈ S U are not.8 The observational equivalence
of the two models while onlyD are identified causes some researchers to describe
the parameters D as summarizing the extent of the identifying information in the
data. Under this interpretation one can see why many researchers would consider
inference about D to be a natural starting place even if the aim is ultimately
to infer S. Third, the practical aspects of statistical inference are often more
straightforward to implement for  than for  and hence, in practice, inference
in  often proceeds by first estimating D and then mapping the estimate D̂
into an estimate Ŝ. In this discussion it would be difficult to overemphasize the
importance of the observational equivalence of the two models, since it is that
property that justifies the use of the estimation algorithms that first infer D̂.

The observational equivalence of the structural parameters under orthogonal
rotations is closely related to the fact that only the reduced-form is identifiable.

7I consider two models  and  to be observationally equivalent if and only if for any
� ∈ Θ there exists a � ∈ Θ for which p(y1∶T |�) = p(y1∶T |�) (and vice versa).

8The global identifiability of D is well-known in the literature. See, for example, Rothenberg
(1971).
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The right-hand multiplication by an orthogonal matrix Q of each element in
a tuple will play a prominent role in the remainder of the paper, so I define
the notation S ∗ Q ≡ (AQ,FQ) and let n denote the set of n × n orthogonal
matrices. It turns out that S and S̃ are observationally equivalent only if there
exists a Q ∈ n such that S̃ = S ∗ Q. The “only if” part of this statement comes
from the requirement to satisfy the relationship in equation (6) and a well known
theorem guarantees that alternative full-rank square roots of an SPD matrix
differ by only an orthogonal rotation; hence, the set of observationally equivalent
structural parameters is the same as the set of structural parameters that yield
identical values for D.9 I denote the set of structural parameters observationally
equivalent to a given D as S (D). For any y1∶T and inferred D, one might then say
that there are as many possible SVARs hiding inside the reduced-form VAR as
there are unique matrices in n.

2.3 Identifying Restrictions: From Reduced-Form Estimation to

Structural Inference

If a researcher begins with inference forD and wishes to progress to inference
for S then he has two options for how to proceed. The first is to simply report the
full set S (D̂) for an estimated D̂. Choice two is to add more assumptions in the
form of additional restrictions on the space of values for S considered fair game.
Since every S ∈ S (D̂) is observationally equivalent, ruling out some elements of
this set amounts to the imposition of what onemight consider classical identifying
restrictions, in the sense that the data cannot bear on their correctness.

When choosing the second option, let R denote some restrictions that a
candidate S must satisfy and let SR denote the space all structural parameters
satisfying R. Rubio-Ramírez et al. (2010) show that, for a popular class of identi-
fying restrictions, the statement that a VAR is exactly identified by restrictions R
is equivalent to the statement that for almost every S ∈ S U , there exists a unique
matrix Q ∈ n such that S ∗ Q ∈ SR.10 Presuming one has a way to find the

9For example, see Muirhead (1982) Theorem A9.5 which guarantees the existence of a Q in
order for AA′ = ÃÃ′.

10See Theorem 5 of Rubio-Ramírez et al. (2010).
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uniqueQ, which will be a function of both S andR, inference for S in a restricted
model can proceed via the following three-step procedure:

1. produce an estimate D̂,

2. map D̂ to an arbitrary S̃ ∈ S (D̂), and11

3. construct the estimate of S as Ŝ = S̃ ∗ Q(R, S̃).

Critical for the practicality of such an approach is that Rubio-Ramírez et al.
(2010) provide an algorithm for finding the requisiteQ to accompany an arbitrary
S ∈ S (D).12 Critical for the legitimacy of this algorithm is the fact that Ŝ and S̃
have the same density under the prior of the unrestricted model, in addition to
giving the same value to the data density.

In recent years researchers have found it desirable to investigate what can be
learned when imposing even less than exactly identifying restrictions, a setting
known as partial identification. Under partial identification g−1R (⋅) maps to a set
and hence there is not a unique Q for which S ∗ Q ∈ SR. When working within
the Bayesian paradigm, the natural next step is to place a prior over the matrices in
Q. Rubio-Ramírez et al. (2010) give an efficient algorithm for generating random
draws of Q distributed according to a uniform distribution over n known as
Haar measure, samples from which can provide the basis of an accept-reject
algorithm for Bayesian inference over the structural parameters when using sign
restrictions.13

11An element of S ∈ S (D) can be easily constructed as (Ã, F̃) = g−1chol(D̂) =
(chol(�̂)−1, B̂ chol(�̂)−1), where chol(�) denotes the upper triangular Cholesky factor of an
SPD matrix.

12See Algorithm 1 of Rubio-Ramírez et al. (2010).
13See Algorithm 2 in Rubio-Ramírez et al. (2010). Note that this procedure generates random

draws consistent with only one the Haar measure distribution over n. My description of the
approach to structural inference with partially identifying restrictions represents only the most
commonly implemented approach in the literature; the validity of the resulting inference for
objects of interest in a particular application presumes that the researcher is comfortable with the
prior for the objects of interest induced by the Haar measure prior over n. See Baumeister and
Hamilton (2015) for an alternative approach to partially identified SVARs.
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2.4 Taking inventory of the SVAR’s tractability

Before introducing my time-varying parameter framework, I pause to take
inventory of the two key features of the constant parameter SVAR that make
inference for S nearly trivial when R yields partial or exact identification: 1) the
structural model is observationally equivalent to a tractable reduced-form and 2)
one can easily map an D̂ to the (set of) S consistent with R In the next section I
present my time-varying-parameter extension of  that mimics both features.

3. A Structural VAR with Time-Varying Parameters

In this section I describe my probabilistic framework for extending the struc-
tural model to allow for time-varying parameters. The purpose is to construct
a class of “candidate truths” for the structural data generating process, among
which the researcher aims to discriminate.

3.1 The Structural Model with Time-Varying Parameters

Allowing the structural matrices to change over time, the analogue to equation
(2) in the time-varying parameter setting is

y′tAt = x
′
tFt + "

′
t , "t ∼ N(0n×1, In) , for 1 ≤ t ≤ T .(7)

However, it remains to specify the laws of motion for matrices of structural
parameters. I specify the laws of motion such that the previous period’s structural
parameters are perturbed multiplicatively by a (n × n) matrix of random shocks

t and the previous period’s lag coefficients Ft−1 are also additively perturbed
by an (m × n) matrix of mean-zero shocks �t:

At = �−1∕2At−1
t(8)

Ft = Ft−1A−1t−1At +�t for �t ∼ N(0m×n,W, In)(9)

where � ∈ (n− 1∕n, 1) is a scalar and the notationN(A,B, C) refers to a matrix-
variate normal distribution with m × n mean matrix A, m × m row covariance
matrix B, and n × n column covariance matrix C .
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The parameter � has the interpretation of pulling the coefficients towards a
loss of “information” in the system’s implied reduced-form covariance matrix
for shocks to yt. The old information is “replaced” by a random matrix 
t.

The structural shocks now consist of two distinct types of disturbances. The
first type is the vector of structural shocks "t, which perturb yt through the
equilibrium dynamics represented by St, and which also appeared in the constant-
parameter SVAR. The realization of "t affects yt and yt+1 and so on through
the VAR’s dependence on lagged values, but it does not affect the structural
parameters of the system and hence does not affect objects of interests such
as impulse response functions. The second type of shock perturbs the time t
coefficients governing the equilibrium relationships among the variables, St, and
thus affect impulse responses. The random matrices (
t,�t) are of this second
type.

The random matrix
t is an orthogonal rotation from both left and right sides
of a “square root” of a multivariate beta distributed random matrix, which is to
say that it is realized according to


t = Ltℎ(�t)Rt(10)

where Lt,Rt ∈ n and

�t ∼ Bn(�(�)∕2, 1∕2)(11)

for Bn(�(�)∕2, 1∕2) denoting the n-dimensional multivariate beta distribution
with degrees of freedom �∕2 and 1∕2 as defined in Uhlig (1994).14 The function
ℎ(⋅) returns the unique lower triangular Cholesky factor of an SPD matrix, with
positive elements on the diagonal.15 Thus ℎ(⋅) maps n × n SPD matrices to a

14Traditionally the matrix beta distribution was defined only for Bn(d1∕2, d2∕2) with d1, d2 >
n − 1. Uhlig (1994) extends this definition to allow for d2 to be a positive integer less than n,
as in the definition of the innovations in (22). For further details also see Srivastava (2003). In
some contexts the distribution is referred to as a “Type I” multivariate beta distribution.

15In principle, ℎ(⋅) can be allowed to vary with t and each ℎt(⋅) could be any function that
returns a full rank factorization of its (full rank) matrix argument such that ℎt(�t)ℎt(�t)′ = �t.
However, since any two distinct factorizations of �t can differ by only an orthogonal rotation,
see Theorem A9.5. of Muirhead (1982), there is nothing lost by imposing that ℎ(⋅) returns the
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n × n matrices with n(n + 1)∕2 functionally independent elements. 16

Before deriving the key properties of the DSVAR, I fix the following notation.
I define � ≡ (�,W) to collect the model’s static parameters and denote their
space of possible values as �. I also extend the notation of the previous section
so that St ≡ (At,Ft) denotes the tuple of structural matrices at time t and S0∶T ≡
(A0∶T ,F0∶T ) denotes the sequence of tuples of structural parameters from times
t = 0 to t = T . I then extend the definition of the “∗” operator so that S̃0∶T =
S0∶T ∗ Q0∶T yields S̃t = St ∗ Qt for each t. Lastly, the structural model involves
the sequences of orthogonal matrices (L1∶T ,R1∶T ), which are not separately
identifiable from S0∶T . For this reason I will treat the choice of (L1∶T ,R1∶T )
as part of the definition of a particular model rather than as free parameters
to be estimated. For the class of models presented in this section I then write
U
0∶T (L1∶T ,R1∶T ) to refer to the DSVAR with unrestricted parameter space and

the particular choices of the orthogonal matrices (L1∶T ,R1∶T ).
The Bayesian researcher aims to characterize the posterior distribution of the

model’s unobservables conditional on the data, p(�,S0∶T |y1∶T ), which one can
factor as

p(�,S0∶T |y1∶T ) = c ⋅ p(�,S0)p(S1∶T |�,S0) p(y1∶T |�,S0,S1∶T )(12)

where c is an integrating constant that does not depend on the value of (�,S0∶T ).
A key property of the DSVAR is that a given U

0∶T (L1∶T ,R1∶T ) is observationally
equivalent to a class of alternative models with different choices of (L1∶T ,R1∶T ).
I state the result formally, in the context of Bayesian inference, as follows

Theorem 1. Let U
0∶T (L1∶T ,R1∶T ) have prior p(�,S0) for which p(�,S0) =

Cholesky factor and does not vary with time since the role of an alternative rotation can be
absorbed into the choice of Rt.

16Note that the framework can easily be extended to allow Ft to evolve according to

Ft = GFt−1
t +�t

for G a (m × m) matrix of static parameters. I focus on the case of of G dogmatically fixed
at Im because it most closely resembles the work in the VAR-TVP-SV literature and because
researchers who have estimated related models with more flexible forms for G have typically
found estimates that are close to the identity matrix. See, for example, Sims (1993).
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p(�,S0∗P) for any P ∈ n. For any Q0∶T such that Qt ∈ n, the model
U
0∶T (̃L1∶T , R̃1∶T ) defined by (̃Lt, R̃t) = (Q′

t−1Lt,RtQt) is such that, for every
point S0∶T , the point S̃0∶T = S0∶T ∗ Q0∶T satisfies

p
(

�,S0∶T |y1∶T ,U
0∶T (L1∶T ,R1∶T )

)

= p
(

�, S̃0∶T |y1∶T ,U
0∶T (̃L1∶T , R̃1∶T )

)

.

Proof. See Appendix A for the proof.

Theorem 1 says that regardless of the realization of the observables one can
always consider orthogonal rotations of the model’s dynamic parameters and
there will exist an alternative model justifying the choice of the rotated parameters.
In the context of a full posterior density over values for S0∶T , the relationship
holds at every point under the same choice of Q0∶T , and so the posterior of the
model U

0∶T (̃L1∶T , R̃1∶T ) is identical to that of U
0∶T (L1∶T ,R1∶T ) with each point

in the parameter space rotated by Q0∶T . Importantly, the specification of the
alternative model does not depend on the realization of the data, but rather the
relationship between the alternative model and parameter points is intrinsic to
the model’s definition. An obvious implication of Theorem 1 is that one cannot
differentiate among different structural models on the basis of y1∶T .

That such an invariance relationwould hold for each of the densities p(yt|St,�)
considered in isolation is not surprising since they have the same form as in the
constant parameter model. Rather, the critical and surprising element of Theorem
1 lies in the fact that an invariance result in my model also holds for the density
of the sequence of S0∶T .

One can interpret Theorem 1 as defining a class of models observationally
equivalent to a given U

0∶T (L1∶T ,R1∶T ). Namely the models with

L̃1∶T = Q′
0∶T−1 ∗ L1∶T(13)

R̃1∶T = R1∶T ∗ Q1∶T(14)

for someQ0∶T withQt ∈ n for each t. One might then say that there are as many
models observationally equivalent to U

0∶T (L1∶T ,R1∶T ) as there are sequences of
T + 1 orthogonal matrices.

13



As in the constant-parameter SVAR, the DSVAR implies a reduced-form
model that is highly tractable for estimation, which can be profitably deployed in
an algorithm for structural inference.

3.2 The Reduced-Form Model with Time-Varying Parameters

Multiplying both sides of equation (7) byA−1t gives the time-varying analogue
to equation (3) as

y′t = x
′
tBt + u

′
t , ut ∼ N(0n×1, �t) , for 1 ≤ t ≤ T .(15)

where

u′t = "
′
tA

−1
t .(16)

Bt = FtA−1t(17)

�t =
(

AtA′t
)−1(18)

and let Ht = �−1t denote the precision matrix of the shocks ut. The definitions in
equations (16)–(18) obviously resemble the relationship between the reduced-
form VAR and SVAR in the constant-parameter case, but they are not sufficient
to have fully specified a reduced-form TVP model. In order to make likelihood-
based inference about the reduced-form implied by the DSVAR, laws of motion
for the reduced-form parameters, consistent with the laws of motion for the
underlying structural model, must be derived. I provide such laws of motion in
this section.

I first derive the density for the reduced-form parameters, as defined in
equations (16)–(18), under a given structural model U

0∶T (L1∶T ,R1∶T ). Denote
g(St) = (AtA′t,FtA

−1
t ) = (Ht,Bt) the density of the sequence (H0∶T ,B0∶T )|� can

14



be factored as

p(H0∶T ,B0∶T |�) = p(g(S0)|�) ⋅
T
∏

t=1
p(g(St)|�,S0∶t−1)(19)

= p(g(S0)|�) ⋅
T
∏

t=1
p(g(St)|�,St−1) .(20)

Each of the constituent densities in equation (20) can be further factored as

p(AtA′t,FtA
−1
t |�,At−1,Ft−1)

= p(AtA′t|�,At−1,Ft−1) ⋅ p(FtA
−1
t |�,At−1,Ft−1,AtA′t)

(21)

Substituting into equations (17) and (18) with the definitions of the time t
structural parameters based on their t− 1 values and time t shocks gives the laws
of motion for the reduced-form dynamic parameters as

Ht = AtA′t =
1
�
(

At−1Ltℎ(�t)Rt
) (

R′tℎ(�t)
′L′tA

′
t−1

)

(22)

Bt = FtA−1t = Ft−1A−1t−1 +�t
(

�−1∕2At−1Ltℎ(�t)Rt
)−1 ,(23)

where the definitions of, and distributions for, the random matrices �t and �t are
the same as in the previous section.17 One can show that the densities in equation
(21) take the form

p(AtA′t|�,At−1) = pBn(�L
′
tA

−1
t−1AtA

′
tA

−1′
t−1Lt) ⋅ |�

1∕2L′tA
−1
t−1|

n+1 ,(24)

and

p(FtA−1t |�,At−1,Ft−1,AtA′t) = pMN (Ft−1A−1t−1,W, (AtA
′
t)
−1) .(25)

where the last term in equation (24) is the Jacobian.
The explicit dependence of the densities in equations (24) and (25) on the

17The expression in equation (23) is already partially simplified from Bt = FtA−1t =
(

Ft−1A−1t−1At +�t
)

A−1t .
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structural parameters in time t−1would seem to suggest the problematic property
that estimating the reduced-form parameters would require choosing a particular
structural model U

0∶T (L1∶T ,R1∶T ) and inferring S0∶T as we go. Such a property
would be problematic in so much as it would mean that the reduced-form is
no more tractable than the structural model itself and, if S0∶T are the objects of
interest, one had might as well eschew the reduced-form model all together.18

Critically, I show that this is, in fact, not the case. First, note that the density of
(H0∶T ,B0∶T ) is invariant to the structural model’s choice of (L1∶T ,R1∶T ), which I
formalize in the following result

Lemma1. The density of (H0∶T ,B0∶T ) implied by a structural modelU
0∶T (L1∶T ,R1∶T )

is such that for any point (H0∶T ,B0∶T )

p(H0∶T ,B0∶T |�,U
0∶T (L1∶T ,R1∶T )) = p(H0∶T ,B0∶T |�,U

0∶T (̃L1∶T , R̃1∶T )) .

for any (̃L1∶T , R̃1∶T ) such that L̃t, R̃t ∈ n.

Proof. See Appendix.
Note that the laws of motion are such that the density of Bt conditions on the

realization of AtA′t and hence does not depend on (L1∶T ,R1∶T ).
The key claim is then that p(AtA′t|�,At−1) is invariant to (Lt,Rt)

The upshot of Lemma 1 is that alternative structural models imply the same
densities for the sequence of reduced-form parameters. This result has two key
implications. First, it suggests that, contrary to what one might have feared, the
densities forD0∶T cannot truly depend on the particular S0∶T (else they would have
been affected by the choice of structural model). Second, if one could estimate
the reduced-form parameters directly, and we knew they were consistent with
at least one structural model, then we would know that we were faithful to the
reduced-form dynamics implied by an entire class of DSVAR models.

Building on Lemma 1, one can specify laws of motion that imply identical
densities to those in equations (24) and (25), but which make no recourse to S0∶T

18In such a setting onemight also reasonably say that the “reduced-form” is a reparameterization
rather than a true “reduced-form.”
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at all and which instead depend only on the sequence of reduced-form parameters.
I formalize this result as follows:

Theorem 2. Let 0∶T denote the model defined by the law of motion for observ-
ables y1∶T in equation (15) and by the following laws of motion for (Ht,Bt) for
all t

Ht =
1
�
ℎ(Ht−1)�tℎ(Ht−1)′ for �t ∼ Bn(�(�)∕2, 1∕2)(26)

Bt = Bt−1 + Vt for Vt ∼ N(0m×n,W,H−1
t ) ,(27)

where �(�) = �∕(1 − �).
If the prior for the structural model p0(A0,F0) is such that pg,0(g(A0,F0)) =

pg,0(g(A0Q0,F0Q0)) for any Q0 ∈ n, and if the prior for (H0,B0) is defined by
p0
(H0,B0) = pg,0(g(A0,F0)), then for any (L1∶T ,R1∶T ),

p0∶T
(H0∶T ,B0∶T |�) = pg,0∶T ({g(At,Ft)}

T
t=1|�,L1∶T ,R1∶T )

Proof. See Appendix A.8.

Theorem 2 has three key implications, the first of which I formalize in the
following corollary.

Lemma 2. For any U
0∶T (L1∶T ,R1∶T ),

p(g(S)|�,St−1,Lt,Rt) ∝ p(St|�,St−1,Lt,Rt)(28)

Lemma 3.

pt
(Dt|�,Dt−1) ∝ pt(St|�,St−1)(29)

Corollary 1. 0∶T is a reduced-form of U
0∶T (L1∶T ,R1∶T ) for any L1∶T and R1∶T .

Proof. Each Bt and Ft have m × n unique unobservables. However, each Ht

has only n(n + 1)∕2 unique unobservables while each At has n2. Inspection
of equations (15), (26), and (27) shows no residual dependence of Dt on the
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particular values of St. The corollary then follows from Theorem 2 and the
definition of a reduced-form of a structural model.

The second key implication of Theorem 2 is that, if one can estimate Dt, then
one can begin the task of structural inference by estimating 0∶T without taking
a stand on a particular U

0∶T (L1∶T ,R1∶T ).
Taken on its own, the model 0∶T is known in the statistics literature as

a dynamic linear model with discounted-Wishart stochastic volatility (DLM-
DWSV).

The n(d1∕2, d2∕2)-distributed shocks have E[�t] = d1∕(d1 + d2) In. I will
later assume that d1 = �∕(1 − �) and d2 = 1, in which case E[�t] = � In. Given
the linearity of expecations, one can see that the process for Ht then inherits
random walk behavior.19 The shocks to the VAR’s linear coefficients Vt follow
a matrix-normal distribution whose covariance matrix depends partially on the
time t value of H−1

t .
An attractive feature of the DLM-DWSV is that it nests the constant-parameter

reduced-form VAR as a limiting case. As � → 1, the second moments of �t
collapse around the expectation and �t → In for all t, so that Ht = Ht−1 =⋯ =
H0 thus eliminating the model’s stochastic volatility component. Setting G = Im
and taking W → 0m×m implies that Bt = Bt−1 = ⋯ = B0, thus eliminating
the model’s TVP component. Hence, when we turn to the details of Bayesian
estimation of the model the amount of shrinkage of the priors on � and W
towards 1 and 0m×m respectively have the interpretation of controlling the size of
the deviation from a constant-parameter VAR.

3.3 From DLM-DWSV Estimation back to Structural Inference

Given inference for (D0∶T ,�), inference for (S0∶T ,�) can then proceed in
much the same way as in constant-parameter models. Choices of (L1∶T ,R1∶T )
map D0∶T into S0∶T and thus amount to choosing among the observationally
equivalent DSVARs hiding inside of the estimated DLM-DWSV.

19Note that E[Ht|Ht−1] =
1
�ℎ(Ht−1)(�In)ℎ(Ht−1) = Ht−1.
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As a first step, an arbitrary S̃0∶T can be constructed from an estimate D̂0∶T as

Ãt = ℎ(Ĥt)(30)

F̃t = B̂t ℎ(Ĥt) .(31)

If one then aims to restrict attention to S0∶T for which each St ∈ ℛt, then one
can use the elements of S̃0∶T as inputs into the period-by-period application of
either Algorithm 1 of Rubio-Ramírez et al. (2010) for the case whereℛt yields
exact identification, or Algorithm 2 of Rubio-Ramírez et al. (2010) for the case
whereℛt yields partial identification.

4. Bayesian Estimation

In this section I describe my highly tractable MCMC algorithm for the fully-
Bayesian estimation of all reduced-form model parameters. After having esti-
mated �,D0∶T |y1∶T ,, inference for structural parameters can then proceed as
outlined in Section 3.3.

4.1 Bayesian Inference for Reduced-form Parameters

Given a sample of data y1∶T , the goal is to characterize the posterior distribu-
tion of the model’s unobservables:

p(�,D0∶T |y1∶T ) =
p(�,D0∶T )p(y1∶T |�,D0∶T )

p(y1∶T )
(32)

One cannot fully characterize the posterior analytically so I propose to make
inference about (�,D0∶T ) by generating a random sample from the posterior via
a Markov chain Monte Carlo (MCMC) algorithm. MCMC algorithms iterate
over a Markov Chain constructed to have the posterior distribution as its invari-
ant distribution. While draws from the MCMC algorithm are not iid, sampling
iteratively will yield draws representative of the model’s posterior asymptotically
in the length of the chain. In particular, my MCMC algorithm is of type known
as a Gibbs Sampler, which means that the algorithm entails iteratively sampling
from the conditional posteriors of different “blocks” of a partition of the model’s
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unobservables.
I now sketch the key elements of the Gibbs sampler, leaving the details and

exact formulas for Appendix C.20 MyGibbs sampler for the DLM-DWSV consists
of two main blocks of parameters based on the partition of the unobservables
intoW and (�,D0∶T ), which involves sampling from the following sequence of
conditional distributions,

1. Block 1. p(W|y1∶T , �,D0∶T )

2. Block 2. p(�,D0∶T |y1∶T ,W)

(a) p(�|y1∶T ,W)

(b) p(D0∶T |y1∶T , �,W)

The draw from Block 1 is straigtforward, while the draw from Block 2 is more
nuanced. Under an Inverse Wishart prior for W, the conditional posterior in
Block 1 is also an Inverse Wishart distribution. In Block 2 I sample from the
joint posterior of �,D0∶T |y1∶T ,W by means of factoring the joint distribution
into the distribution of �|y1∶T ,W in Step 2(a), which is marginal of D0∶T , and
the distribution of D0∶T |y1∶T ,W, � in Step 2(b), which conditions on the value
of �.

The feasability of my sampling strategy for Block 2 hinges on two particularly
elegant properties of the DLM-DWSV. First, there exist exact expressions for
evaluating the likelihood for the static parameters marginal of the entire sequence
D0∶T , including the stochastic volatility components, in a fashion analogous to
likelihood-based inference with the Kalman filter. The draw of �|y1∶T ,W in Step
2(a) can then be implemented with a so-called “Metropolis-within-Gibbs” step
since one can evaluate the likelihood. I use a standard random-walk Metropolis-
Hastings algorithm. Second, there exist exact expressions for recursively sampling
backwards a sequence of latent states from their conditional posterior (sometimes
known as a smoother), which is what occurs in Step 2(b).

20Appendix D contains further considerations pertinent to the computationally efficient imple-
mentation of the algorithms.
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4.2 Priors

This section describes the general structure of some useful classes of priors
with the specific choices of prior hyperparameters provided in the context of the
application. The model primitives requiring prior distributions are �,W, and D0.

Prior for �. It’s obvious from the “discounting” interpretation of �’s role in the
model that one must at least restrict its support to [0, 1], however there are other
considerations one must keep in mind as well. Furthermore, from Table A-1 one
can see that there will be Wishart distributions characterizing our uncertainty
over the n × n matrixHt with degrees of freedom given by �ℎt−1 and �ℎt−1 + 1.
When starting the ℎt values at their steady state of 1∕(1 − �), the smaller of these
two degrees of freedom parameters is �∕(1 − �). To maintain valid probability
distributions at each step we then need � to be such that �∕(1 − �) > n − 1,
which implies that we need restrict the postive density of p(�) to � > (n − 1)∕n.
In applications I use a 4-parameter Beta distribution, which allows one to set the
min and max values, in addition to the usual shape and scale parameters.

Prior forW. In the VAR-TVP-SV model of Primiceri (2005) the distribution
of the model’s linear coefficients is

bt ∼ (bt−1, Q) .(33)

Beginning with Primiceri (2005), it has become standard in the VAR-TVP-SV
literature to base the prior for Q on a pre-sample of observations. The prior in
Primiceri (2005) takes the form

Q ∼ (k2Q ⋅ Tpre ⋅ V (B̂OLS), Tpre)(34)

where Tpre is the number of pre-sample observations, kQ is a hyperparameter
chosen by the researcher, and V (b̂OLS) is the matrix of standard errors for the b̂pre
OLS estimates.21 In Primiceri (2005), kQ = 0.01 and Tpre = 40 and V (B̂OLS) =
�pre ⊗ (X′

preXpre)−1.

21Clark and Ravazzolo (2015) follow this procedure as well.
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In the DLM-DWSV, bt has distribution

bt ∼ (bt−1,�t ⊗W)(35)

and hence the matrix (�t ⊗W) functions similarly to Q from the TVP-VAR-SV.
I choose a prior forW in the spirit of the p(Q) given in (34). Estimating a VAR
over a presample under a diffuse prior yields the posterior for bpre of

bpre|�pre ∼ (b̂pre, �pre ⊗ (X′
preXpre)−1) .(36)

I then scale the prior according to the number of presample observations and a
hyperparameter �21 .

W ∼ (�21 ⋅ Tpre ⋅ (X
′
preXpre)−1, Tpre) .(37)

Prior for dynamic latent states. The prior for the initial values of the dynamic
latent states (H0,B0) maintains the form of the distributional families used in the
recursive filter summarized in TableA-1, that is (H0, B0) ∼(M0,C0, ℎ0,D0).
In the context of the recursions described in Table A-1, one can think of this
distribution as a posterior from t = 0, for which there was no observation from
which to update the latent states. The prior for (H1,B1) is then induced by the
move from Step 0 to Step 1 as described in Table A-1. Treating D0 in this fashion
allows its elements to be integrated out of the likelihood just like the rest of the
sequence D1∶T .

The remaining primitives to be specified by the researcher are then (M0,
C0, ℎ0, D0). My benchmark choices for these values are informed by the DLM-
DWSV’s property that certain limiting cases of� collapse the model to a standard
VARwith a conjugate prior(M0, C0, ℎ0, D0) for time invariantD. As � → 1,
Ht → Ht−1 for all t and hence the full sequence of Ht values collapses to H0.
From the recursions in Table A-1 one can see that � → 1 also causes the degrees
of freedom in the Wishart distribution accumulate from ℎ0 in one-for-one with
the acquisition of new observations, as in standard VAR estimation. These two
observations suggests a prior for (ℎ0, D0) that moves closer to that of a standard
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VAR as � → 1. While smaller values of � imply greater variability over the
sequence of �t in which case one might want the prior for H0 to be more diffuse.

5. Application: Time-Varying Fiscal Multipliers Under Three
Identification Schemes

I apply my DSVAR to the question of whether or not the fiscal multiplier
varies over time, possibly with the state of the economy. The question of time-
variation in the fiscal multiplier has engendered a significant resurgence in the
wake of the Great Recession as the severity of the crisis left policy makers looking
for beneficial interventions, particularly in light of the monetary authority having
exhausted its standard tools. It has been argued on the basis of various theoretical
models that the fiscal multiplier increases with the amount of “slack” in the
economy or the nominal interest rate is constrained by the zero lower bound.
Ramey and Zubairy (2017) and Auerbach and Gorodnichenko (2012) represent
prominent attempts to address the question empirically from time-series data.

6. Conclusion

TO BE COMPLETED.
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A. Proofs of Theorems

A.1 Useful Results

I first prove two useful results that are well-known in the literature on constant-
parameter SVARs, but which will also prove useful in the TVP case.

Lemma 4. If S and S̃ are values of the structural parameters for U such that
S̃ = S ∗ Q for Q ∈ n, then p(yt|S, yt−p∶t−1) = p(yt|S̃, yt−p∶t−1).

Proof. First rewrite equation (2) as

y′t = x
′
tFA

−1 + "′tA
−1 ,(A.38)

where yt thus has density

p(yt|S, yt−p∶t−1) = (2�)−1∕2|(AA′)−1|−1∕2

⋅ exp
{

−(1∕2) ⋅ (y′t − x
′
tFA

−1)(AA′)(y′t − x
′
tFA

−1)′
}

.
(A.39)

The lemma follows from evaluating equation (A.39) at the parameter point S̃ and
noting that

ÃÃ′ = AQQ′A′ = AA′(A.40)

F̃Ã−1 = FQQ−1A−1 = FA′(A.41)

where the second equalities in equations (A.40) and (A.41) follow from the
orthogonality of Q.

Corollary 2. In the environment of Lemma 4, p(y1∶T |S) = p(y1∶T |S̃).
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Proof.

p(y1∶T |S) =
T
∏

t=1
p(yt|S, y0∶t−1)(A.42)

=
T
∏

t=1
p(yt|S, yt−p∶t−1)(A.43)

=
T
∏

t=1
p(yt|S̃, yt−p∶t−1)(A.44)

= p(y1∶T |S̃) .(A.45)

where the equality in (A.44) follows from Lemma 4.

A.2 Densities of time-varying structural parameters

This section derives the density of St under the laws of motion for At and Ft
in equations (8) and (9). One can factor each conditional density as

p(St|�,St−1) = p(At,Ft|�,At−1,Ft−1)(A.46)

= p(At|�,At−1,Ft−1) ⋅ p(Ft|�,At−1,Ft−1,At)(A.47)

= p(At|�,At−1) ⋅ p(Ft|�,At−1,Ft−1,At)(A.48)

where (A.56) follows from the definition of the law of motion for At in equation
(8), which does not depend on Ft−1.

Claim 1. Under the model U
0∶T (L1∶T ,R1∶T ),

p(At|�,At−1,Lt,Rt)

= pBn
(

√

�L′tA
−1
t−1AtA

′
tA

−1′
t−1Lt

√

�||
|

�(�)∕2, 1∕2)
)

⋅
n
∏

i=1

[

√

�L′tA
−1
t−1AtR

′
t

]n−i

ii
⋅ �n∕2 det(A−1t−1)

n ,

(A.49)

where pBn(⋅|�(�)∕2, 1∕2) denotes the pdf of the singular multivariate beta distri-
bution with degrees of freedom �(�)∕2 and 1∕2 for �(�) = �∕(1 − �).
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Proof. I provide the proof in Appendix F.

Claim 2. Under the model U
0∶T (L1∶T ,R1∶T ),

p(Ft|�,At−1,Ft−1,At,Lt,Rt) = pN (Ft|Ft,W, In)(A.50)

for Ft = Ft−1A−1t−1At, where pN (⋅|A,B, C) denotes the pdf of the matrix-variate
normal distribution with mean matrix A, row-covariance matrix B, and column-
covariance matrix C .

Proof. Under the law of motion in equation (9), Ft = Ft + �t, the result is
immediate from the definition of �t and well-known properties of the matrix-
variate normal distribution.

A.3 Proof of Theorem 1

The key element of the proof Theorem 1 is the following result regarding the
joint density of the data and the dynamic unobservables, which I state and prove
before proving Theorem 1.

Lemma 5. If S0∶T , S̃0∶T , (L1∶T ,R1∶T ), and (̃L1∶T , R̃1∶T ) are as defined in Theorem
1, then

p
(

y1∶T ,S1∶T |�,S0,U
0∶T (L1∶T ,R1∶T )

)

= p
(

y1∶T , S̃1∶T |�, S̃0,U
0∶T (̃L1∶T , R̃1∶T )

)

.

Proof of Lemma 5. I prove the lemma in three parts.

Part I: Preliminaries.
First, factor the joint density p(y1∶T ,S1∶T |�,S0) as the product of a marginal

and a conditional

p(y1∶T ,S1∶T |�,S0) = p(y1∶T |S1∶T ,�,S0) ⋅ p(S1∶T |�,S0)(A.51)

= p(y1∶T |S1∶T ) ⋅ p(S1∶T |�,S0) ,(A.52)
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where the second equality simply follows from the definition of the data density
in (7). By Corollary 2, p(y1∶T |S1∶T ) = p(y1∶T |S̃1∶T ). Hence, it remains only to
show that p(S1∶T |S0,�) = p(S̃1∶T |S̃0,�).

By the Markovian assumption implicit in the definition of the laws of motion
for At and Ft in equations (8) and (9), one can write the density for the sequence
S1∶T as

p(S1∶T |�) =
T
∏

t=1
p(St|St−1,�)(A.53)

and factor each conditional density in equation (A.53) as

p(St|St−1,�) = p(At,Ft|At−1,Ft−1,�)(A.54)

= p(At|At−1,Ft−1,�) ⋅ p(Ft|At−1,Ft−1,�,At)(A.55)

= p(At|At−1,�) ⋅ p(Ft|At−1,Ft−1,�,At)(A.56)

where (A.56) follows from the definition of the law of motion for At in equation
(8), which does not depend on Ft−1. One can thus rewrite equation (A.53) as

p(S1∶T |S0,�) =
[

T
∏

t=1
p(At|At−1,�)

]

⋅

[

T
∏

t=1
p(Ft|At−1,Ft−1,�,At)

]

.(A.57)

To prove the theorem it will then suffice to show that the following two equalities
hold

p(At|At−1,�,Lt,Rt) = p(Ãt|Ãt−1,�, L̃t, R̃t)(A.58)

p(Ft|At−1,Ft−1,�,At) = p(F̃t|Ãt−1, F̃t−1,�, Ãt) ,(A.59)

for

(Ãt, F̃t, Ãt−1, F̃t−1) = (AtQt,FtQt,At−1Qt−1,Ft−1Qt−1) ,(A.60)
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and

(L̃t, R̃t) = (Q−1
t−1Lt,RtQt)(A.61)

for any Qt,Qt−1,Lt,Rt ∈ n. Hence, I proceed by showing that the equalities
in (A.58) and (A.59) do indeed hold. Note that the argument that the relevant
equalities hold is somewhat more nuanced than it might first appear because there
are two “moving parts” in each expression on the right-hand side of equations
(A.58) and (A.59). For example, conditioning on the value Ãt−1 in (A.58) instead
of At−1 changes the density of At, and hence the new density must be derived
and then evaluated at the parameter point Ãt.

Part II: Proof that equation (A.58) holds.
Consider a new random variable Ât with law of motion given by

Ât = �−1∕2Ãt−1
̃t(A.62)

= �−1∕2Ãt−1L̃tℎ(�t)R̃t(A.63)

for (̃Lt, R̃t) as defined in equation (A.61).
The following relationships will be used repeatedly,

L̃′tÃ
−1
t−1 = (L

′
tQ

′
t−1)(Qt−1A−1t−1) = L

′
tA

−1
t−1(A.64)

ÂtR̃′t = ÂtQ
′
tR

′
t(A.65)

when evaluated at Ât = AtQt, equation (A.65) becomes

AtQtQ′
tR

′
t = AtR

′
t .(A.66)

I now substitute into the density for At term-by-term. Beginning with pΓ(⋅),

p�
(

ℎ−1(g−1(Ât|Ãt−1,�))
)

= pBn(
√

�L̃′tÃ
−1
t−1ÂtR̃

′
tR̃tÂ

′
tÃ

−1′
t−1L̃t

√

�) .(A.67)

Using the relationships in equations (A.64) and (A.65) and evaluating at the point
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Ât = AtQt gives

p�
(

ℎ−1(g−1(Ât|Ãt−1,�))
)

= pBn(
√

�L′tA
−1
t−1AtR

′
tRtA

′
tA

−1′
t−1Lt

√

�) .(A.68)

which matches the expression in equation (F.182).
Next turning to the Jacobian terms,

|J (ℎ−1)| =
n
∏

i=1
[ℎ(�t)]n−iii(A.69)

=
n
∏

i=1

[

√

�L̃′tÃ
−1
t−1ÂtR̃

′
t

]n−i

ii
(A.70)

=
n
∏

i=1

[

√

�L′tA
−1
t−1AtR

′
t

]n−i

ii
,(A.71)

which matches the expression in equation (F.183) and where the last equality
comes from simple substitutions and the expressions in (A.64).

Next considering |Jg−1|,

|Jg−1| = det(R̃′t)
n

⏟⏟⏟
=1

⋅ det(
√

�L̃′tÃ
−1
t−1)

n(A.72)

= �n∕2 det(L′tA
−1
t−1)

n(A.73)

which matches the expression in equation (F.186). Thus the proof of Part II is
complete.

Part III: Proof that equation (A.59) holds.
The density is given by

p(Ft|At−1,Ft−1,�,At) = (2�)−nm∕2|In|m∕2|W|

n∕2

⋅ exp{−1
2
tr[I−1n (Ft −MF,t)′W−1(Ft −MF,t)]}

(A.74)
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Now consider the new random variable F̂t where

F̂t = F̃t−1Ã−1t−1Ãt +�t(A.75)

Substituting into equation (A.75) with the definitions of Ãt−1, F̃t−1, Ãt gives

F̂t = Ft−1
(

Qt−1Q−1
t−1

)

A−1t−1AtQt +�t(A.76)

= Ft−1A−1t−1AtQt +�t(A.77)

=MF,tQt +�t(A.78)

and hence

F̂t|Ãt−1, F̃t−1,�, Ãt ∼ (MF,tQt, W, In)(A.79)

The density of F̂t and the density of Ft differ by only the arguments of the
exponential-trace term of the matrix-variate normal density. The trace term from
the density of F̂t under the distribution in (A.79) is

tr
[

I−1n (F̂t −MF,tQt)′W−1(F̂t −MF,tQt)
]

.(A.80)

Evaluating (A.80) at the point F̂t = F̃t = FtQt gives

tr
[

I−1n (FtQt −MF,tQt)′W−1(FtQt −MF,tQt)
]

(A.81)

= tr
[

I−1n Q
′
t(Ft −MF,t)′W−1(Ft −MF,t)Qt

]

(A.82)

= tr
[

QtI−1n Q
′
t(Ft −MF,t)′W−1(Ft −MF,t)

]

(A.83)

= tr
[

I−1n (Ft −MF,t)′W−1(Ft −MF,t)
]

(A.84)

where (A.83) and (A.84) follow from the cyclical property of the trace operator
and the orthogonality of Qt. The expression in (A.84) matches the trace term in
(A.74), which completes the proof.

With Lemma 5 in hand, the desired result follows almost immediately.
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Proof of Theorem 1. Using the factorization of the posterior in equation (12),

p(�,S0∶T |y1∶T ) = c ⋅ p(�,S0) p(S1∶T |�,S0) p(y1∶T |�,S0,S1∶T )
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p(y1∶T ,S1∶T |�,S0)

,

the result follows from Lemma 5 ensuring the equality of p(y1∶T ,S1∶T |�,S0) =
p(y1∶T , S̃1∶T |�, S̃0), and the premise that p(�,S0) = p(�, S̃0).

A.4 Densities of g(St)

In this section I derive the density of the random variables defined by g(At,Ft).

Claim 3.

pg,t(AtA
′
t|�,Lt,Rt,At−1) = pBn(�L

′
tA

−1
t−1AtA

′
tA

−1′
t−1Lt) ⋅ �

n(n+1)∕2
| det(At−1)|−(n+1) .

Proof. See Appendix F.

Claim 4. For any Lt,Rt ∈ n,

pg,t(FtA
−1
t |Ft−1,At−1,Lt,Rt,At) = pN (Ft−1A−1t−1,W, (AtA

′
t)
−1) .

Proof. Repeating the law of motion from the main text when conditioning on
At,

FtA−1t =
(

Ft−1A−1t−1At +�t
)

A−1t for �t ∼ N(0,W, In)(A.85)

= Ft−1A−1t−1 +�tA−1t(A.86)

The result then follows from well-known properties of a linear transformation of
a matrix-normal random variable, which, in this case, is �t.

A.5 Densities under 0∶T

Claim 5. With the law of motion

Ht =
1
�
ℎ(Ht−1)�tℎ(Ht−1)′ �t ∼ Bn (�(�)∕2, 1∕2)(A.87)
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and �(�) = �∕(1 − �), the density p(Ht|�,Ht−1) is given by equation (A.107).

Proof. I derive the density for Ht as a change of variables from �t where, Ht =
g(Ht−1,�t|�) is defined in the statement of the Claim. Rearranging the equation
gives

g−1(Ht,Ht−1|�) = �ℎ(Ht−1)−1Htℎ(Ht−1)−1
′ = �t(A.88)

Hence the density takes the form

p(Ht|�,Ht−1) = pBn
(

�ℎ(Ht−1)−1Htℎ(Ht−1)−1
′
|

|

|

�(�)∕2, 1∕2
)

⋅ |Jg−1|(A.89)

where

|Jg−1| = | det(�1∕2ℎ(Ht−1)−1)|n+1 =
(

�n∕2| det(ℎ(Ht−1)−1))|
)n+1(A.90)

= �n(n+1)∕2| det(ℎ(Ht−1))|−(n+1) .(A.91)

Claim 6.

pt
(Bt|�,Bt−1,Ht) = pN (Bt−1,W,H−1

t ) .(A.92)

Proof. The claim follows from well-known properties of linear transformations
of matrix normal random variables. In this case the random variable being
transformed is Vt.

A.6 Equivalence of densities under g(St) and 0∶T

Corollary 3. Under the definitions of Bt ≡ FtA−1t and Ht ≡ AtA′t for each t, for
any Lt,Rt ∈ n

pt
(Bt|�,Bt−1,Ht) = pg,t(FtA

−1
t |Ft−1,At−1,Lt,Rt,At) .(A.93)
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Proof.

pg,t(FtA
−1
t |Ft−1,At−1,Lt,Rt,At) = pN (Ft−1A−1t−1,W, (AtA

′
t)
−1)(A.94)

= pN (Bt−1,W,H−1
t )(A.95)

= pt
(Bt|�,Bt−1,Ht)(A.96)

where the first equality holds for any Lt,Rt from Claim, 4, the second equality
comes from simply substituting from the definitions in the statement of the
corollary, and the last equality comes from Claim 6.

Lemma 6. For any (Lt,Rt),

pt
(Ht,Bt|�,Ht−1,Bt−1) = p(g(At,Ft)|�,At−1,Ft−1,Lt,Rt) .(A.97)

Proof. Factoring the joint densities as

pt
(Ht,Bt|�,Ht−1,Bt−1)

= pt
(Ht|�,Ht−1,Bt−1) ⋅ pt

(Bt|�,Ht−1,Bt−1,Ht)
(A.98)

and

p(g(At,Ft)|�,At−1,Ft−1,Lt,Rt)

= p(AtA′t|�,At−1,Ft−1,Lt,Rt) ⋅ p(FtA
−1
t |�,At−1,Ft−1,Lt,Rt,At)

(A.99)

The result follows from Lemma 8 and Corollary 3.

A.7 Additional results on densities of the reduced-form precision

matrix

Claim 7. For L, L̃ ∈ n,

pBn(�L
′
tA

−1
t−1AtA

′
tA

−1′
t−1Lt) = pBn(�L̃

′
tA

−1
t−1AtA

′
tA

−1′
t−1L̃t) .

Proof. The result is immediate from Corollary 4.1 in Srivastava (2003).
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Corollary 4. Under the conditions of Claim 3, if L̃t, R̃t,Qt−1 ∈ n, then

p(AtA′t|�,Lt,Rt,At−1) = p(AtA
′
t|�, L̃t, R̃t,At−1Qt−1) .

Proof. Writing out the density explicitly gives

p(AtA′t|�, L̃t, R̃t,At−1Qt−1)(A.100)

= pBn(�L̃
′
t(At−1Qt−1)−1AtA′t(At−1Qt−1)−1

′L̃t)(A.101)

⋅ �n(n+1)∕2| det(At−1Qt−1)|−(n+1) .

= pBn(�L̃
′
tQ

′
t−1A

−1
t−1AtA

′
tA

−1′
t−1Qt−1L̃t)(A.102)

⋅ �n(n+1)∕2(| det(At−1)| | det(Qt−1)|
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=1

)−(n+1) .

Defining L̄t = Qt−1L̃t gives

p(AtA′t|�, L̃t, R̃t,At−1Qt−1)(A.103)

= pBn(�L̄
′
tA

−1
t−1AtA

′
tA

−1′
t−1L̄t)(A.104)

⋅ �n(n+1)∕2| det(At−1)|−(n+1) .

The result then follows from Claim 7 by noting that, since the orthogonal group
is closed under matrix multiplication, L̄t ∈ n.

Corollary 5. Under the conditions of Claim 3, for any Qt−1 ∈ n

p(AtA′t|�,Lt,Rt,At−1Qt−1) = p(AtA′t|�,At−1) .

where

p(AtA′t|�,At−1) = pBn(�A
−1
t−1AtA

′
tA

−1′
t−1) ⋅ �

n(n+1)∕2
| det(At−1)|−(n+1) .

Proof. The density of p(AtA′t|�,At−1) in equation (A.105) is equivalent to the
density p(AtA′t|�, L̃t, R̃t,At−1) with L̃t = R̃t = In. Hence the result follows from
Corollary 4.
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Corollary 6. For L̃t, R̃t,∈ n,

p(AtA′t|�,Lt,Rt,At−1) = p(AtA
′
t|�, L̃t, R̃t, ℎ(At−1A

′
t−1)) .

Proof. Note that

At−1A′t−1 = ℎ(At−1A
′
t−1)ℎ(At−1A

′
t−1)

′(A.105)

and hence there exists a P ∈ n such that ℎ(At−1A′t−1) = At−1P. The result
follows from Corollary 4 by letting Qt−1 = P and substituting for ℎ(At−1A′t−1)
with At−1Qt−1.

Corollary 7. If Ht is defined as Ht ≡ AtA′t for each t, then

p(Ht|�,Lt,Rt,At−1) = p(Ht|�, L̃t, R̃t, ℎ(Ht−1)) .

Proof. The result is immediate from Corollary 6 by simply making the substitu-
tions defined in the statement of the Corollary.

Lemma 7.

p(Ht|�,Ht−1) = p(Ht|�, L̃t, R̃t, ℎ(Ht−1))(A.106)

where

p(Ht|�,Ht−1) = pBn(�ℎ(Ht−1)−1Htℎ(Ht−1)−1
′)

⋅ �n(n+1)∕2| det(ℎ(Ht−1))|−(n+1) .
(A.107)

Lemma 8. Given a parameter point At−1 and defining Ht ≡ AtA′t for each t, for
any Lt,Rt,Qt−1 ∈ n

p(Ht|�,Ht−1) = p(AtA′t|�,Lt,Rt,At−1Qt−1) .(A.108)

Proof. TODO

In words, the lemma says that the density of Ht is invariant to the choice of
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Lt,Rt ∈ n and depends on At−1 only through Ht−1 = At−1A′t−1 and is hence
invariant to orthogonal rotations of At−1 from the right-hand side.

Corollary 8.

p(H1∶T |�,H0) = p({AtA′t}
T
t=1|�,L1∶T ,R1∶T ,A0)(A.109)

Proof. One can factor the joint densities as

p(H1∶T |�,H0) =
T
∏

t=1
p(Ht|�,Ht−1)(A.110)

and

p({AtA′t}
T
t=1|�,L1∶T ,R1∶T ,A0) =

T
∏

t=1
p(AtA′t|�,Lt,Rt,At−1) .(A.111)

The result is then immediate from the fact that for each t,

p(Ht|�,Ht−1) = p(AtA′t|�,Lt,Rt,At−1) ,(A.112)

which is ensured by Lemma 8.

A.8 Proof of Theorem 2

Proof of Theorem 2. From the Markovian structure of the laws of motion in
equations (26) and (27), one can factor the density of (H0∶T ,B0∶T ) under0∶T as

p0∶T
(H0∶T ,B0∶T |�) = p0

(H0,B0|�)
T
∏

t=1
pt
(Ht,Bt|�,Ht−1,Bt−1)(A.113)

and, similarly, from the laws of motion in equations REF and REF the sequence
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of random variables {g(At,Ft)}Tt=0 under 
U
0∶T (L1∶T ,R1∶T ),

pg,0∶T ({g(At,Ft)}
T
t=1|�,L1∶T ,R1∶T )

= pg,0(g(A0,F0)|�)
T
∏

t=1
pg,t(g(At,Ft)|�,At−1,Ft−1,Lt,Rt) .(A.114)

The result then follows from the fact that, for each t, by Lemma 6, the density in
equation (A.113) equals the density of its time t counterpart in equation (A.114)
for any (Lt,Rt).

A.9 Proof of Lemma 1

Lemma 9. p(H1∶T |U
0∶T (L1∶T ,R1∶T ),H0) = p(H1∶T |U

0∶T (̃L1∶T , R̃1∶T ),H0)

Proof.

p(H1∶T |U
0∶T (L1∶T ,R1∶T )) = p({AtA

′
t}
T
t=1|

U
0∶T (L1∶T ,R1∶T ))(A.115)

=
T
∏

t=1
p(AtA′t|

U
0∶T (L1∶T ,R1∶T ),A0∶t−1)(A.116)

=
T
∏

t=1
p(AtA′t|Lt,Rt,At−1)(A.117)

TODO now apply the corollary!

Proof of Lemma 1. For ease of reference I restate the densities given in the main
text:

p(AtA′t|�,At−1,Lt,Rt) = pBn(�L
′
tA

−1
t−1AtA

′
tA

−1′
t−1Lt) ⋅ |�

1∕2L′tA
−1
t−1|

n+1(A.118)

p(FtA−1t |�,At−1,Ft−1,AtA′t,Lt,Rt) = pMN (Ft−1A−1t−1,W, (AtA
′
t)
−1) .(A.119)

The argument again requires recognition of the subtlety that changing TODO
would, in principle change the density through both the effect of L̃t on the shock
generating At from At−1, but also through the effect of L̃t−1 on the realization of
At−1.
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Note that an alternative choice of L̃t−1 yields Note that it will suffice to show
that

p(AtA′t|�,At−1,Lt,Rt) = p(AtA
′
t|�,At−1, L̃t, R̃t)(A.120)

A.10 Proof of Lemma ??

Proof of Lemma ??. First, factor the joint density as

p(Ht,Bt|�,At−1,Ft−1,Lt,Rt)

= p(Ht|�,At−1,Ft−1,Lt,Rt) p(Bt|�,At−1,Ft−1,Lt,Rt,Ht)

(A.121)

I prove the property for the two terms of the factorization separately. Simplifying
equation (22) gives

Ht =
1
�
At−1Ltℎ(�t) RtR′t

⏟⏟⏟
=In

ℎ(�t)′L′tA
′
t−1(A.122)

= 1
�
At−1Lt ℎ(�t)ℎ(�t)′

⏟⏞⏞⏞⏟⏞⏞⏞⏟
�t

L′tA
′
t−1(A.123)

= 1
�
At−1(Lt�tL′t)A

′
t−1 .(A.124)

Now consider alternative orthogonal matrices (̃Lt, R̃t) substituted into the equa-
tion (A.122) in place of (Lt,Rt). Identical simplifying steps would ensue and
thus the implied law of motion for Ht is simply Ht = (1∕�)At−1(̃Lt�t̃L′t)A

′
t−1.

Note that �t is the only source of randomness in the evolution of Ht. Hence, if it
holds that p(Lt�tL′t) = p(̃Lt�t̃L

′
t), then the result would be proven. By Srivastava

(2003)’s Corollary 4.1, it is in fact the case that p(Lt�tL′t) = p(�t) = p(̃Lt�t̃L
′
t)

for any Lt, L̃t ∈ n. Now consider Ãt−1 = At−1Qt−1. Substituting into the last
expression gives Ht = (1∕�)At−1Qt−1(̃Lt�t̃L′t)Q

′
t−1A

′
t−1. The product of Qt−1L̃t

yields an orthogonal matrix, so applying the same result as before proves that
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the density of Ht is unchanged.
Next turning to the conditional density ofBt. DefiningVt = �t(�−1∕2At−1Ltℎ(�t))

well-known properties of the matrix-variate normal distribution,

Bt ∼MN
(

Ft−1A−1t−1,W, (1∕�)
(

[At−1Ltℎ(�t)Rt][At−1Ltℎ(�t)Rt]′
)−1

)

(A.125)

A.11 Proof of Theorem 2

Proof of Theorem 2. The proof proceeds in two parts. I first show that the
density p(Ht|At−1,�,Lt,Rt) under the law of the motion defined in equation (22)
is identical to the density p(Ht|Ht−1,�) under the law of motion

Ht =
1
�
ℎ(Ht−1)�tℎ(Ht−1)′ for �t ∼ Bn(�(�)∕2, 1∕2)(A.126)

Indeed, the result is immediate from Lemma ?? by choosing L̃t = A−1t−1ℎ(Ht−1).
That this definition of L̃t yields an orthogonal matrix is apparent from the fact
that At−1 and ℎ(Ht−1) are each “square roots” of Ht−1 and hence differ from each
other by multiplication by an orthogonal matrix.22

One can make a similar statement about the law of motion for Bt as fol-
lows, The density p(Bt|At−1,�,Lt,Rt,At) under the law of the motion defined in
equation (23) is identical to the density p(Bt|Bt−1,�,Ht) under the law of motion

Bt = Bt−1 + Vt for Vt ∼MN(0m×n,W,H−1
t ) .(A.127)

Substituting into the expression in (??) with the definition of Bt−1 = Ft−1A−1t−1
and noting that A−1′t A

−1
t = (AtA′t)

−1 = H−1
t immediately gives the representation

in (27).
22For example, see Muirhead (1982)’s Theorem Theorem A9.5.
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B. Observational Equivalence of Structural and
Reduced-Forms

Lemma 10.

p0∶T
(y1∶T |�) = p0∶T (y1∶T |�)(B.128)

Proof. First note that for either ∈ {0∶T ,U
0∶T (L1∶T ,R1∶T )}

p(y1∶T |�) =
T
∏

t=1
p(yt|�, y1∶t−1)(B.129)

where each

p(yt|�, y1∶t−1) = ∫Mt∈ℳ
p(yt|�, y1∶t−1,Mt)p(Mt|�, y1∶t−1) dMt(B.130)

= ∫Mt∈ℳ
p(yt|yt−p∶t−1,Mt)p(Mt|�, y1∶t−1) dMt(B.131)

and

p(Mt|�, y1∶t−1) = ∫Mt−1

p(Mt|�, y1∶t−1,Mt−1)p(Mt−1|�, y1∶t−1) dMt−1(B.132)

= ∫Mt−1

p(Mt|�,Mt−1)p(Mt−1|�, y1∶t−1) dMt−1(B.133)

The line of argument I follow is to show that each p0∶T
(yt|�, y1∶t−1) =

p0∶T (yt|�, y1∶t−1).
One can write each of these densities as a single expression for a given model

as

p(yt|�, y1∶t−1)

= ∫Mt∈ℳ
p(yt|yt−p∶t−1,Mt)(B.134)

⋅
(

∫Mt−1

p(Mt|�,Mt−1)p(Mt−1|�, y1∶t−1) dMt−1

)

dMt(B.135)
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Consider an alternative parameterization, which one might call a change of
variables, defined by M̃t = gt(Mt). Under certain regularity conditions

∫Mt−1∈ℳt−1

p(Mt|�,Mt−1)p(Mt−1|�, y1∶t−1) dMt−1

(B.136)

= ∫Mt−1∈ℳt−1

p(Mt|�, g(Mt−1))p(g(Mt−1)|�, y1∶t−1)| det(dg(M))| dMt−1

(B.137)

= ∫M̃t−1∈g(ℳt−1)
p(Mt|�, M̃t−1)p(M̃t−1|�, y1∶t−1)dM̃t−1

(B.138)

Beginning with t = 0, consider

p0∶T (yt|�, y1∶t−1)

= ∫St∈St
p(yt|yt−p∶t−1,St)(B.139)

⋅
(

∫St−1∈St−1
p(St|�,St−1)p(St−1|�, y1∶t−1) dSt−1

)

dSt(B.140)

Where p(St|�,St−1) is derived in Now consider the change of variables where
Dt = gt(St)

If each gt(⋅) is injective, differentiable, with continuous partial derivatives
then for each t

∫St
p(yt|�, y1∶t−1,St)p(St|�, y1∶t−1) dSt

= ∫g(St)
p(yt|�, y1∶t−1, g(St))p(g(St)|�, y1∶t−1) | det(Dg(St))|dSt(B.141)

= ∫Dt
p(yt|�, y1∶t−1,Dt)p(Dt|�, y1∶t−1) dDt(B.142)

defining gt(St) = Dt, then p(Dt|�, y1∶t−1) = p(g(St)|�, y1∶t−1) | det(Dg(St))|.
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hence the equivalence of each term in

stuff(B.143)

then the result follows. Where

p(St|�, y1∶t−1) = ∫St−1
p(St|�,St−1)p(St−1|�, y1∶t−1) dSt−1 .(B.144)

and hence

p(g(St)|�, y1∶t−1) = ∫St−1
p(g(St)|�,St−1)p(St−1|�, y1∶t−1) dSt−1 .

(B.145)

= ∫g(St−1)
p(g(St)|�, g(St−1))p(g(St−1)|�, y1∶t−1) | det(Dg(St−1))|dSt−1 .

(B.146)

Theorem 3. Let 0∶T and U
0∶T (L1∶T ,R1∶T ) be as defined in the main text and

let Dt = g(St), g−1(Dt) = St. If

1. p0∶T (�) = p0∶T
(�) = p(�)

2. p(S0|�) is such that

p(g(S0)|�)) = p(D0|�) = pNW (D0|B0|0,C0|0, d0|0,	−1
0|0)

then for any y1∶T

p0∶T
(y1∶T ) = p0∶T (y1∶T ) .(B.147)
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Proof. The proof is nearly immediate from Lemma 10.

p0∶T
(y1∶T ) = ∫�∈�

p0∶T
(y1∶T |�)p0∶T

(�)d�(B.148)

= ∫�∈�
p0∶T (y1∶T |�)p0∶T (�)d�(B.149)

= p0∶T (y1∶T )(B.150)

Where the second equality follows from the premise of the theorem and the
equivalence of each data-density term from Lemma 10.

C. Gibbs Sampler for Reduced-Form Parameters

This appendix gives the details of the steps of the Gibbs Sampler.

Initialization. I initialize the MCMC algorithm by simulating many random
draws from the prior for the static parameters � and evaluating their marginal
posterior kernel. I then choose the value for � with the highest value for the
marginal posterior kernel, call it�∗. I then simulate a sequence ofD0∶T backwards
conditional on �∗.

C.1 Block 1: W|y1∶T , �, D0∶T

Given a draw of the history of latent states D0∶T , the matrix of shocks Vt to
the linear coefficients in (23) become observable via

Vt = Bt − Bt−1 .(C.151)

Assuming the prior is such that p(W|�) ∼ IW (Ψ0, �0), the conditional posterior
ofW is

p(W|Y , �,D0∶T ) ∼ IW (Ψ0∶T , �0∶T )(C.152)
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where

Ψ0∶T = Ψ0 + Ψ1∶T(C.153)

�0∶T = �0 + �1∶T(C.154)

and

Ψ1∶T =
T
∑

t=1
VtHtV′t(C.155)

�1∶T =
T
∑

t=1
n = T n .(C.156)

Appendix E gives a derivation of these expressions.

C.2 Block 2: �,D0∶T |y1∶T ,W

Sampling from Block 2 entails sampling from the joint distribution of �,D0∶T |
y1∶T ,W. I accomplish this by first sampling from the marginal distribution
of �|y1∶T ,W and subsequently drawing from the conditional distribution of
D0∶T |y1∶T ,W, �.

C.2.1 Step 2a: �|y1∶T ,W
The form of this step is often referred to as a Metropolis-within-Gibbs step.

Given �(i−1), one “proposes” a value for �(i), call the proposal �∗, as a random
sample from a density q(�∗|�(i−1)). One “accepts” �∗ and sets �(i) = �∗ with
probability

�
(

�∗|y1∶T ,W
)

= min

{

p
(

�∗,W(i)
|y1∶T

)

q(�(i−1)|�∗)

p
(

�(i−1),W(i)
|y1∶T

)

q(�∗|�(i−1))
, 1

}

.(C.157)

If �∗ is rejected, one sets �(i) = �(i−1). I use q(�∗|�(i−1)) = pN (�(i−1), ��), which
is symmetric and hence the ratio of q(⋅) densities in (C.157) cancels. Let

k
(

W, �|y1∶T
)

= p(W, �)p(y1∶T |�,W) ,(C.158)
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where k(W, �|y1∶T ) differs from p(W, �|y1∶T ) by only a normalizing constant
that would cancel in (C.157). Hence, we can calculate � as

�
(

�∗|y1∶T ,W
)

= min

{

k
(

W(i), �∗|y1∶T
)

k
(

W(i), �(i−1)|y1∶T
) , 1

}

,(C.159)

so long as we can calculate k(W, �|y1∶T ) pointwise. One can indeed evaluate
p(y1∶T |�,W) pointwise by using the recursive filtering algorithm described in
Prado and West (2010). For completeness, and because of its lesser familiarity in
economics, I summarize the steps of the recursive filter and its use for likelihood
evaluation in Table A-1.

Write the joint density of yt and Dt as

p(yt,Dt|�, y1∶t−1) = p(yt|�, y1∶t−1,Dt) p(Dt|�, y1∶t−1) .(C.160)

Let Φ = (M,C, d,D) denote the sufficient statistics for the  distribution.
We can evaluate the likelihood using the following recursions.

Step 0: Posterior for dynamic parameters from t− 1. Suppose the posterior
for St−1|�, Y0∶t−1 is of the form (Φt−1|t−1), where the elements of Φt−1|t−1

are specified in Step 0 of Table A-1.

Step 1: Prior for dynamic parameters entering t. The functional forms for
the state transition equations and their innovations yield a prior for St|�, Y0∶t−1
of the form (Φt|t−1), where the elements of Φt|t−1 are specified in Step 1 of
Table A-1, see Chapter 10 of Prado and West (2010).

Step 1.5: Evaluate the forecast density.

Step 2: Posterior for dynamic parameters. Update beliefs about (St) accord-
ing to Bayes rule,

p(St|�, Y0∶t) =
p(yt|�, Y0∶t−1, St)p(St|�, Y0∶t−1)

p(yt|�, Y0∶t−1)
,(C.161)
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where the posterior for (Ht, Bt) is summarized by the sufficient statistics Φt|t that
can be computed according to the expressions in Step 2 of Table A-1.

Step 3: Return to Step 1 for t + 1. In the words of Uhlig (1994), “the game
can begin anew.”

Following Step 2, one can evaluate the likelihood

p(yt|�,Y1∶t−1) = ∫St
p(yt|�, Y1∶t−1, St) p(St|�, Y1∶t−1)dSt ,(C.162)

using the familiar closed-form expression for the marginal likelihood of a VAR,
where the VAR here happens to have a single observation, yt.

MDD EQUATION HERE(C.163)

Iterating on these steps until t = T is reached, one can evaluate the likelihood
for the full sequence of observations as the product of conditional likelihoods

p(Y1∶T |�) =
T
∏

t=1
p(yt|�, Yt−1)(C.164)

where each p(yt|�, Y0∶t−1) is evaluated via (C.163).

C.2.2 Step 2b: D0∶T |y1∶T , �,W
The final step in the MCMC algorithm is a sweep through the recursive

backwards “smoothing” algorithm of Prado and West (2010) forD0∶T .23 For com-
pleteness I summarize the smoother in Table A-2. The draw proceeds backwards
from the end the forward filtering algorithm used to evaluate the likelihood in
Step 2a.

D. Computational considerations for the MCMC Algorithm

A few aspects of an efficient implementation of the MCMC algorithm are
worth calling attention to. First, The smoothing algorithm used in Step 2b makes

23See section 10.4.5 of Prado and West (2010).
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use of some objects computed during a run of the forward filtering algorithm.
In particular, the terminal values of (ℎT , D−1

T ,MT , CT ) summarize the posterior
distribution of (HT , BT ) from which the backwards smoother is initialized, and
the entire sequences of a1∶T , R1∶T , C1∶T , and M1∶T are used in the smoother
as well. Since the filtering step would have been run to evaluate the likelihood
function during the MH algorithm in Step 2a, the values of the state variables
can be stored and then reused in step 2b.

Second, the posterior smoothing algorithm in Step 2b requires sampling
repeatedly from a potentially high-dimensional multivariate normal distribution,
whose covariance matrix is given by Vt|t+1 = H−1

t+1⊗C∗
t . The kronecker structure

of the covariance means that the distribution takes the special form known as
matrix normal distribution, which allows for dramatically faster sampling than
naively computing Vt|t+1 and drawing from the multivariate normal with Vt|t+1 as
its covariance. Namely a random draw of bt can be obtained via a random draw
of a matrix Xm×n populated with iid univariate normal random draws and then
setting

bt = �t|t+1 + vec
(

U(C∗
t )
′XU(H−1

t+1)
)

(D.165)

where U(.) denotes the upper-triangular Cholesky decomposition. This method
of sampling generates a speed gain of more than an order of magnitude in MATLAB
in the context of the six variable application.

E. Derivation of Block 1 in the MCMC Algorithm

One can derive the expressions for Block 1 of theMCMC algorithm as follows.
Conditional on � and the dynamic latent variables Dt−1∶t, the “likelihood” forW
is

p(Vt|W,Dt−1∶t, �, y1∶T ) = pMN (0m×n,W,H−1
t )(E.166)

= (2�)−mn∕2|H−1
t |

−m∕2
|W|

−n∕2 exp
{

−1
2
tr
[

HtV′tW
−1Vt

]

}

(E.167)
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Letting cW,t = (2�)−mn∕2|H−1
t |

−m∕2, and using the trace operator’s invariance to
cyclic permutations, one can write

p(Vt|W,Dt−1∶t, �, y1∶T ) = p(Vt|W,Dt−1∶t)(E.168)

= cW,t |W|

−n∕2 exp
{

−1
2
tr
[

VtHtV′tW
−1]

}

(E.169)

and, letting Ψt = VtHtV′t, even more compactly as

p(Vt|W,Dt−1∶t, �, y1∶T ) = cW,t |W|

−n∕2 exp
{

−1
2
tr
[

ΨtW−1]
}

.(E.170)

The likelihood forW given the full sequence V1∶T is

p(V1∶T |W,D0∶T ) =
T
∏

t=1
cW,t p(Vt|W,Dt−1∶t) .(E.171)

Defining cW =
∏T

t=1 cW,t gives

p(V1∶T |W,D0∶T )

= cW |W|

−T n∕2 exp

{

−1
2

T
∑

t=1
tr
[

ΨtW−1]
}

(E.172)

= cW |W|

−T n∕2 exp

{

−1
2
tr

[

T
∑

t=1
ΨtW−1

]}

(E.173)

= cW |W|

−T n∕2 exp

{

−1
2
tr

[(

T
∑

t=1
Ψt

)

W−1

]}

(E.174)

Letting Ψ1∶T =
∑T

t=1Ψt one can write

p(V1∶T |W,D0∶T ) = cW |W|

−T n∕2 exp
{

−1
2
tr
[

Ψ1∶TW−1]
}

.(E.175)

If the prior forW is IW (Ψ0, �0) with density

p(W) = cIW |W|

−(�0+m+1)∕2 exp
{

−1
2
tr
[

Ψ0W−1]
}

,(E.176)
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then the conditional posterior takes the form

p(W|D0∶T ) = cIW cW |W|

−((�0+T n)+m+1)∕2

× exp
{

−1
2
tr
[(

Ψ0 + Ψ1∶T
)

W−1]
}

.
(E.177)

F. Proofs of Claims

Proof of Claim 1. I derive the density of At|At−1,�,Lt,Rt as a change of vari-
ables from �t.

At = g(ℎ(�t)|At−1,�) = �−1∕2At−1Ltℎ(�t)Rt(F.178)

ℎ(�t) = g−1(At|At−1,�) =
√

�L′tA
−1
t−1AtR

′
t(F.179)

and

�t = ℎ−1(g−1(At|At−1,�))(F.180)

where ℎ−1(
) = 

′. Hence the density of At has the form

p(At|At−1,�) = p�
(

ℎ−1(g−1(At|At−1,�))
)

⋅ |J (ℎ−1)| ⋅ |J (g−1)| .(F.181)

Filling in the exact expressions for the terms in equation (F.181), the first term is
the density of multivariate beta distribution, which I denote

p�
(

ℎ−1(g−1(At|At−1,�))
)

= pBn(
√

�L′tA
−1
t−1At R

′
tRt

⏟⏟⏟
In

A′tA
−1′
t−1Lt

√

�) .(F.182)

The term |J (ℎ−1)| is the Jacobian associated with the Cholesky factor of the
random matrix �t, which is known to take the form

|J (ℎ−1)| =
n
∏

i=1
[ℎ(�t)]n−iii =

n
∏

i=1

[

√

�L′tA
−1
t−1AtR

′
t

]n−i

ii
.(F.183)

(Alternatively, one might derive the elements of the density coming from the first
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two terms in equation (F.181) immediately from Srivastava (2003)’s Corollary
3.1, which would give identical expressions).

The term |J (g−1)| is the Jacobian associated with the linear transformation
from ℎ(�t) to At and is thus given by

|J (g−1)| = det
(

R′t ⊗ (
√

�L′tA
−1
t−1)

)

(F.184)

= det(R′t)
n ⋅ det(

√

�L′tA
−1
t−1)

n(F.185)

= �n∕2 det(Rt)n
⏟⏟⏟

=1

det(Lt)n
⏟⏟⏟

=1

det(A−1t−1)
n(F.186)

= �n∕2 det(A−1t−1)
n(F.187)

Proof of Claim 3. Recall the definition

AtA′t = gH(�t,St−1) =
1
�
(

At−1Ltℎ(�t)Rt
) (

R′tℎ(�t)
′L′tA

′
t−1

)

(F.188)

Rearranging this definition, one can write

�L′tA
−1
t−1AtA

′
tA

−1′
t−1Lt = ℎ(�t) RtR

′
t

⏟⏟⏟
=In

ℎ(�t)′ = ℎ(�t)ℎ(�t)′ = �t(F.189)

hence the inverse transformation is given by

g−1H (AtA
′
t,St−1) = (�

1∕2L′tA
−1
t−1)(AtA

′
t)(�

1∕2L′tA
−1
t−1)

′ = �t(F.190)

From the definition of �t the density of AtA′t then has the form

p(AtA′t|�,At−1) = pBn(�L
′
tA

−1
t−1AtA

′
tA

−1′
t−1Lt) ⋅ |Jg

−1
Ht
| .(F.191)
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From the symmetry of AtA′t, see Table 6.1 row (i) in Magnus and Neudecker
(1980),

|J (AtA′t,�t|St−1)| = |Jg−1Ht | = |�1∕2L′tA
−1
t−1|

n+1(F.192)

=
(

�n∕2 | det(L′t)|
⏟⏞⏟⏞⏟

=1

| det(A−1t−1)|
)n+1(F.193)

= �n(n+1)∕2| det(A−1t−1)|
n+1(F.194)

= �n(n+1)∕2| det(At−1)|−(n+1) .(F.195)
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TABLE A-1
RECURSIVE FILTER FOR LIKELIHOOD EVALUATION MARGINAL OF DYNAMIC

PARAMETERS

Distribution Distributional Parameters and
of Interest Family Supporting Computations
Step 1 – Prior for Dt given y1∶t−1

(dt−1|t−1,	t−1|t−1,
Bt−1|t−1,Ct−1|t−1) given
from iteration t − 1

(Ht|y1∶t−1,�) W
(

dt|t−1,	−1t|t−1
)

dt|t−1 = �dt−1|t−1
	t|t−1 = �	t−1|t−1

(Bt|y1∶t−1,�,Ht) N
(

Bt|t−1,Ct|t−1,H−1t
)

Bt|t−1 = GBt−1|t−1
Ct|t−1 = GCt−1|t−1G′ +W

Step 1.5 – Forecast density of yt
(yt|y1∶t−1,�) T�t

(

yt|t−1,�yt
)

�t = dt|t−1 − n + 1
yt|t−1 = B

′
t|t−1xt

qt = x′tCt|t−1xt + 1
�yt = (qt∕�t)	t−1|t−1

Step 2 – Posterior for Dt after observing y1∶t
(Ht|y1∶t,�) W

(

dt|t,	−1t|t
)

dt|t = dt|t−1 + 1
et = yt − yt|t−1
	t|t = 	t|t−1 +

1
qt
ete′t

(Bt|y1∶t,�,Ht) N
(

Bt|t,Ct|t,H−1t
)

Kt = Ct|t−1xt∕qt
Bt|t = Bt|t−1 +Kte′t
Ct|t = Ct|t−1 −KtK′tqt

Notes: The table summarizes results given in Prado and West (2010).
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TABLE A-2
BACKWARDS SIMULATION SMOOTHER FOR DYNAMIC PARAMETERS

Distribution to Distributional Parameters and
be sampled Family Supporting Computations

(

dt|t,	t|t,Bt|t,Ct|t,Bt+1|t,Ct+1|t
)

given from forwards filter

(Ht|Yt,�,Ht+1) Ht = �Ht+1 + �t d∗t|t+1 = (1 − �)dt|t
�t ∼ W (d∗t|t+1,	

−1
t|t )

(Bt|Yt,�,Ht+1,Bt+1) N(Bt|t+1,Ct|t+1,H−1t+1) K̃t = Ct|tG′C−1t+1|t
Bt|t+1 = Bt|t + K̃t(Bt+1 − Bt+1|t)
Ct|t+1 = Ct|t − K̃tCt+1|tK̃′t

53



References

AMIR-AHMADI, P. AND T. DRAUTZBURG (2017): “Identification Through Heterogeneity,”
Federal Reserve Bank of Philadelphia, working paper, 17-11.

ANTOLÍN-DÍAZ, J. AND J. F. RUBIO-RAMÍREZ (2017): “Narrative Sign Restrictions,”Mimeo,
Emory University.

AUERBACH, A. AND Y. GORODNICHENKO (2012): “Fiscal Multipliers in Recession and Expan-
sion,” in Fiscal Policy after the Financial Crisis, ed. by A. Alesina and F. Giavazzi, National
Bureau of Economic Research, University of Chicago Press, 63–98.

BAUMEISTER, C. AND J. D. HAMILTON (2015): “Sign Restrictions, Structural Vector Autore-
gressions, and Useful Prior Information,” Econometrica, 83, 1963–1999.

BAUMEISTER, C. AND G. PEERSMAN (2013a): “The role of time-varying price elasticities in
accounting for volatility changes in the crude oil market,” Journal of Applied Econometrics,
28, 1087–1109.

——— (2013b): “Time-Varying Effects of Oil Supply Shocks on the US Economy,” American
Economic Journal: Macroeconomics, 5, 1–28.

CANOVA, F. AND G. DE NICOLO (2002): “Monetary disturbances matter for business fluctuations
in the G-7,” Journal of Monetary Economics, 49, 1131–1159.

CANOVA, F. AND L. GAMBETTI (2009): “Structural changes in the US economy: Is there a role
for monetary policy?” Journal of Economic Dynamics and Control, 33, 477–490.

CLARK, T. E. AND F. RAVAZZOLO (2015): “Macroeconomic Forecasting Performance under
Alternative Specifications of Time-Varying Volatility,” Journal of Applied Econometrics, 30,
551–575.

COGLEY, T. AND T. J. SARGENT (2001): “Evolving Post-World War II U.S. Inflation Dynamics,”
NBER Macroeconomics Annual, 16, 331–373.

——— (2005): “Drifts and volatilities: monetary policies and outcomes in the post WWII US,”
Review of Economic Dynamics, 8, 262 – 302.

DOAN, T., R. LITTERMAN, AND C. SIMS (1984): “Forecasting and conditional projection using
realistic prior distributions,” Econometric reviews, 3, 1–100.

FOX, E. B. AND M. WEST (2014): “Autoregressive models for variance matrices: Stationary
inverse Wishart processes,” ArXiv:1107.5239.

HOFMANN, B., G. PEERSMAN, AND R. STRAUB (2012): “Time variation in U.S. wage dynamics,”
Journal of Monetary Economics, 59, 769–783.

KOOP, G. AND D. KOROBILIS (2013): “Large time-varying parameter VARs,” Journal of
Econometrics, 177, 185–198.

MAGNUS, J. R. AND H. NEUDECKER (1980): “The Elimination Matrix: Some Lemmas and
Applications,” SIAM Journal on Algebraic Discrete Methods, 1, 422–449.

MUIRHEAD, R. J. (1982): Aspects of Multivariate Statistical Theory, John Wiley & Sons, Inc.
PRADO, R. AND M.WEST (2010): Time Series: Modeling, Computation, and Inference, Chapman
& Hall/CRC.

PRIMICERI, G. E. (2005): “TimeVarying Structural Vector Autoregressions andMonetary Policy,”
The Review of Economic Studies, 72, 821–852.

QUINTANA, J. M. AND M. WEST (1987): “An analysis of international exchange rates using
multivariate DLM’s,” The Statistician, 275–281.

RAMEY, V. AND S. ZUBAIRY (2017): “Government Spending Multipliers in Good Times and in
Bad: Evidence from U.S. Historical Data,” Journal of Political Economy, Forthcoming.

ROTHENBERG, T. J. (1971): “Identification in Parametric Models,” Econometrica, 39, 577–591.

54



RUBIO-RAMÍREZ, J. F., D. F. WAGGONER, AND T. ZHA (2010): “Structural Vector Autore-
gressions: Theory of Identification and Algorithms for Inference,” The Review of Economic
Studies, 77, 665–696.

SIMS, C. A. (1993): “A Nine-Variable Probabilistic Macroeconomic Forecasting Model,” in
Business Cycles, Indicators and Forecasting, University of Chicago Press, 179–212.

SIMS, C. A., D. F. WAGGONER, AND T. ZHA (2008): “Methods for inference in large multiple-
equation Markov-switching models,” Journal of Econometrics, 146, 255 – 274.

SIMS, C. A. AND T. ZHA (2006): “Were There Regime Switches in U.S. Monetary Policy?” The
American Economic Review, 96, 54–81.

SRIVASTAVA, M. (2003): “Singular Wishart and multivariate beta distributions,” Ann. Statist.,
31, 1537–1560.

UHLIG, H. (1994): “On Singular Wishart and Singular Multivariate Beta Distributions,” The
Annals of Statistics, 22, 395–405.

——— (1997): “Bayesian Vector Autoregressions with Stochastic Volatility,” Econometrica, 65,
pp. 59–73.

——— (2005): “What are the effects of monetary policy on output? Results from an agnostic
identification procedure,” Journal of Monetary Economics, 52, 381 – 419.

55


	Introduction
	A crash course in structural VARs (and the reduced-form VARs inside of which they hide)
	The Structural Model
	The Reduced-form Model
	Identifying Restrictions: From Reduced-Form Estimation to Structural Inference
	Taking inventory of the SVAR's tractability

	A Structural VAR with Time-Varying Parameters
	The Structural Model with Time-Varying Parameters
	The Reduced-Form Model with Time-Varying Parameters
	From DLM-DWSV Estimation back to Structural Inference

	Bayesian Estimation
	Bayesian Inference for Reduced-form Parameters
	Priors

	Application: Time-Varying Fiscal Multipliers Under Three Identification Schemes
	Conclusion
	Proofs of Theorems
	Useful Results
	Densities of time-varying structural parameters
	Proof of Theorem 1
	Densities of g(St)
	Densities under D0:T
	Equivalence of densities under g(St) and D0:T
	Additional results on densities of the reduced-form precision matrix
	Proof of Theorem 2
	Proof of Lemma 1
	Proof of Lemma ??
	Proof of Theorem 2

	Observational Equivalence of Structural and Reduced-Forms
	Gibbs Sampler for Reduced-Form Parameters
	Block 1: W | y1:T, , D0:T
	Block 2: , D0:T | y1:T, W
	Step 2a: |y1:T,W
	Step 2b: D0:T|y1:T,,W


	Computational considerations for the MCMC Algorithm
	Derivation of Block 1 in the MCMC Algorithm
	Proofs of Claims

