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Abstract
The instability of macroeconomic variables is usually ruled out by rational ex-

pectations. We propose a generalization of the rational expectations framework

to estimate possible temporary unstable paths. Our approach yields drifting pa-

rameters and stochastic volatility. The methodology allows the data to choose

between different possible alternatives: determinacy, indeterminacy and instabil-

ity. We apply our methodology to US inflation dynamics in the ’70s through the

lens of a simple New Keynesian model. When unstable RE paths are allowed,

the data unambiguously select them to explain the stagflation period in the ‘70s.

Thus, our methodology suggests that US inflation dynamics in the ’70s is better

described by unstable rational equilibrium paths.
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"I should like to suggest that expectations, since they are informed predictions of

future events, are essentially the same as the predictions of the relevant economic theory.

[...] we call such expectations rational." (Muth, 1961, p. 316)

1 Introduction

The rational expectations assumption generally implies multiple equilibria, that is, an

infinite number of rational expectations (RE henceforth) trajectories. Depending on

the properties of the dynamic system at hand, these trajectories could be explosive or

stable. After Muth’s (1961) seminal contribution, then, the literature faced the problem

of how to select an equilibrium out of many possible ones.1 The stability criterion was

accepted as a general consistency requirement to impose on a model of infinite horizons

RE agents. Ruling out the possibility of unstable paths determined saddle path dynamic

systems as the new standard in macroeconomics. Among the infinite RE equilibria in

saddle path dynamics only one is stable: so that the stability criterion was enough to

pin down a unique acceptable RE path. Blanchard and Kahn (1980) formalized this

idea and conceptualized the solution algorithm on which dynamic macroeconomics is

based.

Under the stability criterion, however, RE solutions have a hard time in explaining

unstable behaviour in the data, such as hyperinflations or boom and bust episodes in

asset markets. One possibility would be, instead, to associate the unstable behaviour

in the data to an unstable trajectory in the model. Generally, expectations of future

policy changes cannot rule out a temporary explosive path.2 In more formal terms, RE

expectations always admit what Gourieroux et al. (1982) call asymptotically equivalent

stationary paths: that is, it is always possible to find non-stationary processes that are

RE solutions and whose any time-path coincides with the corresponding time-path of

the stationary solution after some date.3 Therefore it is not clear from a theoretical

perspective that one can rule out a priori the possibility of temporary explosive trajec-

tories (see Cochrane, 2011 and below). We thus simply start from the acknowledgment

that in the empirical analysis, it might be appropriate not to rule out this possibility

and thus to consider the set of all possible RE equilibria.

1Sargent and Wallace (1973), Brock (1974), Phelps and Taylor (1977), Taylor (1977), Blanchard

(1979), Blanchard and Kahn (1980) and Flood and Garber (1980) are some examples of this compelling

debate in the literature, following Muth’s contribution. See also the discussion in Burmeister et al.

(1983).
2That would be the case, for example, in a Markov Switching context, where seemingly explosive

paths could occur in a given regime.
3This idea is somewhat related with the rational bubble literature.
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Hence, we propose a novel framework able to incorporate and to empirically test

the possibility of explosive paths. First, we present a theoretical framework in which

we clarify the role of multiple solutions in models with RE. To avoid confusion, it is

important to stress from the outset which kind of multiplicity we are focusing on in this

paper. In general, most readers would naturally think of multiplicity in this context

as arising from the fact that any solution whose expectation error has zero conditional

mean could be considered a RE solution. In other words, RE solutions are defined up to

an arbitrary martingale process, because, for any given solution, it is always possible to

construct another solution by adding a sunspot shock with zero conditional mean. Our

framework, however, focuses on another source of multiplicity based on a generalization

of the original RE assumption in Muth (1961). The original formulation of Muth (1961)

stated that a rational expectations solution should be a function of present, past, and

expected future values of the structural exogenous shock. Employing the method of

undetermined coeffi cients, as in Muth (1961), we show that the set of admissible solutions

is defined up to a free parameter that thus reveals a fundamental multiplicity of the RE

solution, just defined as a function of the fundamental structural shock. The case of

multiple solutions is the natural case in the original RE approach, even without any

additive sunspot shock. Our framework parameterizes all the possible solutions and

provides a way to compute them, by following the original insight of Blanchard (1979),

who showed that all these solutions are a combination, defined by the value of this

free parameter, of the forward-looking solution and the backward-looking one. While

the eigenvalues describe the nature of the dynamic system (i.e. number of stable or

unstable trajectories), the value of this parameter selects a particular solution among

the infinitely many. We show that this parameter has an appealing interpretation: it

shows how the infinite solutions differ in the way agents form their RE, or more precisely,

in the way agents weight past data to calculate their RE. Given the stability properties

of the dynamic system at hand provided by the eigenvalues, depending on the value of

this parameter, the solution could be stable or unstable. We don’t therefore rule out a

priori the possibility that the system could be on an unstable path. Then, we assume

that the parameter follows a stochastic process, driven by a non-fundamental (sunspot)

shock. In our interpretation, the economy randomly switches among different solutions

as expectations are then formed by randomizing across the infinite RE solutions. The

chosen solution, however, is a Muth’s (1961) solution, that is, it is always a ‘fundamental’

RE solution that just depends on the structural shocks: hence we refer to our sunspots

as rational sunspots.

One the one hand, the idea is somewhat similar to the standard sunspot literature.

While the standard sunspot shock randomizes over stable RE equilibrium paths under
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indeterminacy (i.e., an infinite number of stable trajectories), our sunspot randomizes

over all the possible RE equilibrium paths expressed as a function of the structural

shock, whatever the dynamics of the system that the eigenvalues dictate. On the other

hand, we will show that our approach could also be seen as a different way to introduce

sunspot shocks: while the literature so far has dealt with additive sunspots (Benhabib

and Farmer, 1999; Lubik and Schorfheide, 2004), our sunspots are multiplicative. In

our approach, sunspot shocks can be effective only when a fundamental error hits the

economy, because sunspot disturbances interact with the fundamental ones. Given that

our sunspots are multiplicative, our approach naturally implies that the solution ex-

hibits drifting parameters and stochastic volatility. Moreover, our framework does not

suffer from the identification problems underlined by Beyer and Farmer (2007) and by

Cochrane (2011), because the likelihood function is a multivariate Normal in the case

of determinacy and no sunspots, and not Normal otherwise.

Second, we develop an econometric strategy suited for our framework. Given that our

sunspots are multiplicative and imply stochastic volatility, the likelihood is not Normal

and we cannot use Gaussian methods. We thus proceed by estimating the model’s

parameters and the latent states using the Particle Learning approach of Carvalho,

Johannes, Lopes and Polson (2010). This method relies on the assumption that the

posterior distribution of the parameters depends on a set of suffi cient statistics that

are recursively updated. When we cannot use this assumption, we approximate the

posterior distribution of the parameters using mixtures of Normals, as in Liu and West

(2001). Finally, we use the sequential Bayes factor presented in West (1986) to compare

the different models. The econometric strategy allows for the cases of determinacy,

indeterminacy or explosiveness, without imposing them a priori. We then propose a

methodology to let the data choose the preferred equilibria among all the possible ones,

and thus to test the empirical validity of temporary unstable paths. By the same token,

our approach could be seen as checking the validity of the stability criterion as usually

imposed on the RE solutions.

In this paper, we apply our approach to explain the US inflation dynamics in the

post-war sample. The Great Inflation of the ’70s, and the subsequent Volcker disin-

flation, is among the most studied episodes of US monetary history. In an extremely

influential article, Clarida et al. (2000) estimate an interest rate equation for the US and

provide evidence that monetary policy was inadequately responding to inflation in the

pre-Volcker period. They suggest that this monetary policy conduct could explain the

different inflation behaviour between the Great Inflation period of the ’70s and the so-

called Great Moderation period of the late 80s and 90s. A simple New Keynesian model

would predict that if monetary policy does not suffi ciently react to inflation (i.e. the
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Taylor principle is not satisfied) then there exists an infinite number of stable RE equi-

libria paths. Such indeterminacy of equilibria trajectories could explain the aggregate

instability of the 70s through shifts in self-fulfilling agents’beliefs due to sunspot shocks.

In a seminal contribution about the econometrics of indeterminate RE equilibria, Lubik

and Schorfheide (2004) estimate a standard three-equations New-Keynesian model un-

der both determinacy and indeterminacy. Their results provide support to the original

Clarida et al. (2000) result in a multivariate context. Subsequently, other papers in the

literature confirmed this narrative that identifies loose monetary policy as the cause of

the Great Inflation period (e.g. Boivin and Giannoni, 2006; Benati and Surico, 2009;

Mavroeidis, 2010; Castelnuovo et al., 2014; Castelnuovo and Fanelli, 2015).4

The New Keynesian literature, therefore, appeals to indeterminacy, induced by a

dovish monetary policy, to explain the apparently explosive behaviour of inflation dur-

ing the Great Inflation period, and to a hawkish one to explain the great Moderation.

However, this has the rather paradoxical implication of appealing to a stable system to

generate instability, as well as to an unstable system to ensure stability. From a theoret-

ical perspective, a saddle path describes an unstable dynamic system, because there are

infinite unstable trajectories while only one, that thus has measure zero, is stable. On

the contrary, indeterminacy (i.e., a sink) has an infinite number of stable trajectories,

so it is a stable dynamic system. Indeterminacy, however, opens up the possibility of

rationalizing an explosive behaviour by randomizing among all these possible trajecto-

ries thanks to a sunspot shock. Nonetheless, a central bank that does not respect the

Taylor principle is sure that the economy is on stable dynamics, while on the contrary

satisfying the Taylor principle is potentially highly risky, because the probability of be-

ing on the unique stable path (among infinitely many unstable ones) is virtually zero.

Macroeconomists assume agents are able to select this unique stable solution.

It seems to us it would be more natural to associate the unstable behaviour of

inflation in the data to an unstable trajectory in the model. Cochrane (2011) argues

that theory cannot rule out explosive inflation behaviour: "economics does not rule

out explosive inflation, so inflation remains indeterminate" (abstract).5 To select the

4Alternative possible explanations for the Great Inflation period put forward in the literature are

stochastic volatility of the shocks (e.g., Justiniano and Primiceri, 2008; Villaverde et al., 2010) or escape

dynamics (e.g., Sargent, 1999; Cho, et al., 2002; Sargent et al., 2006, Carboni and Ellison, 2009).
5"In new-Keynesian models, higher inflation leads the Fed to set interest rates in a way that produces

even higher future inflation. For only one value of inflation today will inflation fail to explode or,

more generally, eventually leave a local region. Ruling out nonlocal equilibria, new-Keynesian modelers

conclude that inflation today must jump to the unique value that leads to a locally bounded equilibrium

path. But there is no reason to rule out nominal explosions or “nonlocal”nominal paths. Transversality

conditions can rule out real explosions but not nominal explosions. Since the multiple nonlocal equilibria
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unique stable equilibrium, one needs to believe the assumption in the model that policy

would stick to such a hawkish policy forever also on an explosive path, even though

there are possible alternative policies that would allow the government to stop inflation

or deflation.6 In a sense, our strategy could be seen as taking Cochrane (2011) to the

data, letting the data speak about their preferred solutions.7

We thus apply our framework to ask the following question: is there any evidence

that inflation is described by unstable RE equilibria, at least temporarily in the 70s?

The seminal paper of Lubik and Schorfheide (2004, LS henceforth) is the natural

benchmark against which to compare our results, so we will use both their econometric

model and their data. If we impose the stability criterion on the estimation, that is, al-

lowing just for determinacy or indeterminacy while ruling out instability, our economet-

ric strategy recovers results that are practically identical to the one in LS. We interpret

this finding as corroborating our estimation methodology. Our main result, however,

is to provide evidence that the high inflation during the 1970s is better explained by

unstable dynamics: the data seem to favour an unstable RE equilibrium rather than a

stable one to explain the Great Inflation period.

From a policy perspective, our framework suggests a different interpretation of the

Great Inflation. The latter was due to drifting expectations, independently from the

stand of monetary policy. Although our estimates point to a passive monetary policy

behaviour in the 70s, our framework implies that this is not the cause in itself of unstable

inflation dynamics.

The paper proceeds as follows. Section 2 explains our approach by the means of a

simple model. Section 3 presents the New Keynesian model we will use in the estimation.

Section 4 explains our econometric strategy. Section 5 shows and comments on the

empirical results, and Section 6 concludes.

are valid, the new-Keynesian model does not determine inflation. " Cochrane (2011, p. 566)
6"First, they require expectations that the government will follow the Taylor rule to explosive hy-

perinflations and deflations, beyond anything ever observed, and despite the presence of equilibrium-

preserving stabilization policies such as the switch to a commodity standard, money growth, or non-

Ricardian regime. Second, they require belief in a deep-seated monetary nonneutrality suffi cient to send

real rates to negative infinity or real money demand to infinity, though even the beginning of such events

has never been observed. At a minimum, expectations of such events sound again like a weak foundation

for what should be a simple question, the basic determination of the price level." Cochrane (2011, p.

590)
7"Testing for determinacy is not as simple as testing the parameters of the Fed reaction function.

Alas, no one has tried a test for determinacy in a more complex model" (Cochrane, 2011, p. 593).
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2 The Rational Sunspots Approach

We want to verify if rational expectations unstable paths can better explain the inflation

dynamics. While unstable paths are usually ruled out by imposing the stability criterion

as way of selecting equilibria, the possibility of a temporary walk on unstable paths is

not necessarily in contrast with rational expectations. In what follows we explain our

approach with a simple example and leave the more general matrix formulation of the

problem to the Appendix.

2.1 A simple example

Consider the following model inspired by Cochrane (2011), including the Fisher equation

(1) and the Taylor rule (2):

it = r + Etπt+1 (1)

it = r + φπt + εt εt ∼ N(0, σ2ε) (2)

it is the nominal interest rate at time t, r is the real interest rate (assumed constant for

simplicity), πt is inflation and εt is a white noise exogenous shock. Finally, Etπt+1 =

E (πt+1|It) is the expected value of inflation at t+ 1, conditional on the information set

available at time t.8 The two equations above imply the following model:9

πt =
1

φ
Etπt+1 + et, (3)

where et = − 1
φ
εt, so that et is a i.i.d shock ∼ N(0, σ2e). Equation (3) naturally has

an infinite number of solutions, because one can find an infinite number of couples

(πt, Etπt+1) that satisfy it. To see it, simply rewrite (3) as: Etπt+1 = φπt − φet, and
then the solutions are characterized by:

πt+1 = φπt − φet + ηt+1 (4)

where Etηt+1 = 0. Any process ηt+1 such that the expectation error ηt+1 = πt+1−Etπt+1
has zero mean defines a different solution to (3). The constraint that the expected error

in expectation should be zero (i.e., the error in expectation should not be correlated

8Coherently with the rational expectations hypothesis (in the strong form), we assume that the set It
contains all the relevant information: all the present and past values of the endogenous and exogenous

variables, and the structure of the model with its parameters.
9This equation coincides also with equation (7) used in LS as a simple example to explain their

approach.
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with anything in the available information set) simply implies that the solution is char-

acterized up to an arbitrary martingale process.10

The original formulation of Muth (1961) stated that a rational expectations solution

should be a linear function of present, past, and expected future values of the structural

exogenous shock. Muth (1961) (see also Blanchard, 1979) then employed the method

of undetermined coeffi cients to derive the set of admissible solutions written as (see the

Appendix11):

πt = φπt−1 − φet−1 + bet (5)

Equation (5) represents all the solutions of equation (3) that are a function only of the

history of the structural shocks. (3) thus admits an infinite number of solutions, and

we can distinguish two cases: (i) an infinite number of stable solutions, if |φ| < 1; (ii)

a unique stable solution along with an infinite number of unstable solutions, if |φ| > 1.

All these solutions are parameterized by b ∈ (−∞,+∞) , because a particular value of b

defines a particular solution. Following the terminology used by Blanchard (1979), two

important solutions often considered in the literature are: (i) the pure forward looking

solution corresponding to b = 1:

πFt = et; (6)

(ii) the pure backward looking solution, corresponding to b = 0:

πBt = φπBt−1 − φet−1 = −
∞∑
j=1

φjet−j = − φ

(1− φL)
et−1. (7)

Finally, it is easy to rewrite (5) as a linear combination of the forward (6) and backward

looking (7) solutions as:12

πt = (1− b) πBt + bπFt . (8)

This equation reveals that each particular solution is a weighted combination of the

backward and the forward one, and b is exactly the weight between these two solutions.

10It is straightforward to show that one can interpret ηt as a martingale difference process (see

Pesaran, 1987).
11The Appendix shows that the undetermined coeffi cient solutions in Muth (1961) and Blanchard

(1979) are given by:

πt =

∞∑
j=1

φj(b− 1)et−j + bet +
∞∑
j=1

b

φj
Etet+j .

12From (5):

πt (1− φL) = −φ (1− b) et−1 + b (1− φL) et

πt = (1− b)
(
− φ

(1− φL)et−1
)
+ bet.
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In this framework, it is natural to interpret b as the way agents form their expecta-

tions under the rational expectations hypothesis. One of the purposes of Muth ’s (1961)

original paper is to write the expectation at time t as an exponentially weighted average

of past observations, because a previous paper (Muth, 1960) demonstrated that, under

some assumptions, this is the optimal estimator. In the simple case of equation (3) the

expectation (when b 6= 0) is given by:

Etπt+1 = (b− 1)
∞∑
i=1

(
φ

b

)i
πt+1−i. (9)

Etπt+1 is the product of two terms. First, (b− 1) measures how much the past is

important in forming expectations in absolute terms: if b = 1, then the past does not

matter. Second, the weights
(
φ
b

)i
tell us how much agents look relatively more or less

into the past. The lower is b, the more past terms are important in setting expectations.

Then, b determines how the agents consider past observations in making forecasts both

in absolute terms (b versus 1), and in relative terms.

The Taylor principle states that the central bank conducts an "active" policy if it

moves the nominal interest rate more than proportionally with respect to inflation’s

variations, that is when |φ| > 1. Otherwise, |φ| < 1, monetary policy is labelled "pas-

sive". In this latter case, for every b ∈ (−∞,+∞) the implied dynamics are stable. By

contrast when the central bank conducts an active monetary policy, all the solutions are

unstable but the forward looking one: equation (6). The literature normally imposes a

stability criterion, ruling out non-explosive solutions. Therefore, it considers only two

cases: (i) determinacy, when monetary policy is active and the agents choose the unique

value of b, i.e. b = 1, that puts the system on the unique stable trajectory; (ii) indeter-

minacy, when monetary policy is passive and any value of b is consistent with a stable

solution. The stability criterion thus does not solve the problem of selecting a unique

equilibrium in this latter case. The literature then introduces an exogenous sunspot

(i.e. non fundamental) shock and it assumes that the economy will choose randomly

among infinite stable solutions depending on the realization of such shock. "Sunspot

equilibria can often be constructed by randomizing over multiple equilibria of a general

equilibrium model, and models with indeterminacy are excellent candidates for the ex-

istence of sunspot equilibria since there are many equilibria over which to randomize."

Benhabib and Farmer (1999, p.390)

2.2 The rational sunspot

Thinking along the Benhabib and Farmer (1999) lines, there is a natural and simple

way to introduce a sunspot shock in our setup: randomizing over b. We saw that: (i)
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there is an infinite number of equilibria; (ii) these equilibria are characterized by the

infinite number of ways agents could form their expectations coherently with the Muth’s

rational expectations original formulation; (iii) these equilibria can be parametrized by

b, as shown by equation (8). Therefore, it seems natural to consider b as the source of

the multiple equilibria, by assuming that bt is time varying and it follows a stochastic

process.

Above we wrote the infinite solutions in two different ways: according to the martin-

gale intuition, i.e. (4) and according to the undetermined coeffi cient method, i.e. (5).

Comparing these two ways highlights the fact that there are two possible sources of

multiplicity, because the expectation error can be written as ηt(et, ζt) = bet + ζt where

ζt is any sunspot or non-fundamental error, as is usually assumed in the indeterminacy

literature. The other source of multiplicity the literature does not consider is bet. Our

approach proposes a different way of introducing sunspots shock by randomizing over

b. In other words, we introduce a multiplicative sunspot shock, rather than an additive

one. Hence we will assume that ηt(et, ζt) = bt(ζt)et and that bt follows a random walk

process: bt = bt−1 + ζt, and ζt ∼ i.i.d.N(0, σ2ζ).

Our approach has a number of implications. Firstly, the interaction between the

structural and the sunspot shock changes the nature of the solution. In particular, we

consider solutions that satisfy the original Muth (1961) restrictions under undetermined

coeffi cient, that are given by (see Appendix):

πt = θtπt−1 − θtet−1 + btet (10)

with θt = φ
(1− bt)

(1− bt−1)
(with bt−1 6= 1 otherwise FL solution). Since our sunspot shock

satisfies the original Muth (1961) restrictions, we label it rational sunspot.

Secondly, the solution has the same form of (5) but it now implies drifting parameters

and stochastic volatility. Drifting parameters naturally arise because agents change the

way they form their expectation formation process each period, since:

Etπt+1 = (bt − 1)

∞∑
i=1

(
φ

bt

)i
πt+1−i. (11)

Hence, even in the absence of a structural shock, the sunspot shock changes the struc-

tural dependence of πt from its lagged value, because agents shift from one rational

expectations equilibrium trajectory to another one, that implies different structural dy-

namics. Note that in (11) we restrict the weights to be just a function of the current

realization of bt and not of the past values of b (see Appendix).13 A change in bt is going

13We impose this condition by following Muth (1961) restrictions on the solution. It follows that we
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to affect all the weights in (11) and not just the one in period t, where the sunspot is

realized. In some periods the agents form their expectations with great trust in the past,

while in some other periods they expect inflation to be more or less around its steady

state (the forward looking solution in this simple case). Under rational sunspots, the

sunspot is created not by an exogenous external additive element, but it is something

related to the degree of freedom agents have in making forecasts, in line with the rational

expectations hypothesis.

The sunspot shock also interacts with the structural shock through the term btet. The

sunspot shock thus changes the way the economy reacts to the structural shock, possibly

amplifying its effects on the economy. The emergence of stochastic volatility within the

rational expectations framework is the direct consequence of assuming a multiplicative

sunspot that makes the likelihood non Gaussian.

In other words, rational sunspots have the potential for an economic explanation

of drifting parameters and stochastic volatility, without departing from the rational

expectations hypothesis. The empirical research (Cogley and Sargent, 2005, Primiceri,

2005, Justiniano and Primiceri, 2008, and related literature) considers these as important

features in explaining the dynamics of macroeconomic variables.

Thirdly, the forecast error is now the sum of two terms:

ηt = (θt − φ) (πt−1 − et−1) + btet =
(Et−1bt − bt)
(1− Et−1bt)

Et−1πt + btet. (12)

The first term derives from the time varying coeffi cient θ in (10), because it depends on

θt−Et−1(θt) = θt−φ.14 This term captures the fact that our sunspot shock changes the
equilibrium trajectories agents choose by setting their expectations. The second term is

the interaction term between our rational sunspot shock and the structural shock, and

highlights the fact that a change in b also changes the impact response of the economy

to the structural shock.

Fourthly, the difference between our rational sunspot shock and the usual sunspot

shock in the literature is well explained by comparing the forecast error. The latter is

given by ηt = ζt
1−bt−1Et−1yt + bt(ζt)ωt in our case and by ηt = Mωt + ζLSt in the standard

case (e.g., LS). The key difference is that our sunspot is multiplicative rather than

additive, so our approach could just be interpreted as another way of introducing sunspot

shocks. One consequence of this assumption is that the likelihood is non Gaussian under

will not consider other possible solutions that Muth (1961) would label as "deviations from rationality".

Note that this implies further restrictions on the considered solutions and thus works against our

framework by tying our hands.
14Since Et−1πt = φ (πt−1 − et−1) , then ηt = πt − Et−1πt = (θt − φ) (πt−1 − et−1) and given θt =

φ
(1− bt)
(1− bt−1)

, it follows: ηt = πt − Et−1πt =
(
bt−1 − bt
1− bt−1

)
φ (πt−1 − et−1) .
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sunspots and Gaussian with no sunspots, and thus our setup does not suffer from the

identification problem between a sunspot and a fundamental equilibrium, as in the case

of additive sunspot (Beyer and Farmer, 2007).

2.3 Unstable paths

As explained above, we construct sunspots equilibria randomizing among the infinite

rational expectations equilibria that are parametrized by b. The change in b, in terms

of equation (9), can be interpreted as changes in the expectations formation process.

When |φ| < 1 the agents jump among stable self-fulfilling equilibria. Is this possibility

only restricted to the case of passive policy? When the Taylor principle is respected

there is only one stable solution and values of bt different from one would pick an un-

stable trajectory, because of a temporary change in the expectations formation process.

However, if b is time varying, theoretically it is not possible to rule out equilibria that

are only temporarily unstable.15 We simply start from the acknowledgment that in the

empirical analysis, it would be appropriate to consider this possibility. Then, we want

to allow temporary "walks along unstable paths" (i.e. in our simple example above, it

would mean |φ| > 1 and bt different from one), by estimating the latent process for bt
and then ask to the data which kind of equilibria they preferred. Thus, we are not tak-

ing a stand a priori on the possible equilibria in our estimation strategy, by allowing for

all the possible cases: indeterminacy, determinacy and instability. We then propose a

methodology to let the data choose the preferred equilibria, and thus to test the empiri-

cal validity of these temporary unstable paths. This is what we turn to next, explaining

our proposed methodology in a more general context.

2.4 The general solution

We consider the class of models that can be written in the form of Blanchard and Kahn

(1980): [
Xt+1

EtPt+1

]
= A

[
Xt

Pt

]
+ γZt

where Xt is a (n×1) vector of predetermined variables, and Pt is a (m×1) vector of non-

predetermined variables. The exogenous disturbances are collected in the (κ× 1) vector

Zt, that has a multivariate normal distribution: Zt ∼ i.i.d. N(0,Σ). The exogenous

shocks in Zt are called fundamental errors. Finally, A and γ are matrices with the

parameters of the model.

15See the discussion of asymptotically equivalent stationary solutions in Gourieroux et al. (1982).
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The matrix A can be written using the Jordan decomposition

A = C−1JC

and we define the following set of block matrices:

C−1 =


B11 B12

(n× n) (n×m)

B21 B22

(m× n) (m×m)

 , C =


C11 C12

(n× n) (n×m)

C21 C22

(m× n) (m×m)

 ,

J =


J1 0

(n× n) (n×m)

0 J2

(m× n) (m×m)

 , γ =


γ1

(n× κ)

γ2
(n× κ)


In the Appendix we show that the general solution is described by the following system:

Xt = (B11J1C11 +B12J2C21)Xt−1 + (B11J1C12 +B12J2C22)Pt−1 + γ1Zt−1 (13)

C21Xt + C22Pt = J2Ht (C21Xt−1 + C22Pt−1) +

+Ht(C21γ1 + C22γ2)Zt−1 − btJ−12 (C21γ1 + C22γ2)Zt (14)

where bt is a (m×m) diagonal matrix:

bt =


b1,t 0 · · · 0

0
. . .

...
...

. . . 0

0 · · · 0 bm,t


in which

bi,t = bi,t−1 + ζ i,t ζ i,t ∼ N(0, σ2ζi) ∀i

and Ht = (I + bt) (I + bt−1)
−1. The shocks ζ i,t are the rational sunspot shocks, as in

the univariate example.

In general, if we have m non predetermined variables, the cardinality of the set of

solutions is infinite to the power of m. However, as in the simple example, when the

eigenvalues of the model are outside the unit circle, we can restrict the elements in bt to

ensure stability. In practice, to guarantee stability it is suffi cient to impose the following

stability criterion:

stability criterion: for i = 1...m, if |J2,i| > 1, then bi,t = 1 ∀t,
where J2,i is the ith element in the main diagonal of J2, and bi,t is the ith element

in the main diagonal of bt.
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The criterion reduces the degrees of freedom in the matrix bt, and it downsizes the set of

solutions. If, for example, there are r ≤ m number of eigenvalues outside the unit circle,

the number of stable solutions is∞(m−r). The limiting case is when the Blanchard-Kahn

condition is satisfied, that is when the number of eigenvalues outside the unit circle is

equal to the number of non predetermined variables: the criterion forces all the elements

in the main diagonal of b to be equal to 1, and this is the unique stable solution. If the

criterion is not satisfied, the dynamics of the variables are unstable.

3 Rational Sunspots at work: the Great Inflation

and the New Keynesian Model

We apply our new methodology to inflation dynamics through the lens of the following

prototypical New Keynesian model:

xt = Et(xt+1)− τ(Rt − Et(πt+1)) + gt, (15)

πt = βEt(πt+1) + κ(xt − zt), (16)

Rt = ρRRt−1 + (1− ρR)(ψ1πt + ψ2(xt − zt)) + εR,t, (17)

where x is output, π is inflation and R the nominal interest rate. π and R are expressed

in deviation from the steady state, and x in deviation from the steady state trend path.

The model admits 3 shocks: (i) a demand shock, g, that can be interpreted as a time-

varying government spending shock or a preference shock; (ii) a shock to the marginal

costs of production, z; (iii) a monetary policy shock, ε. The model and the notation are

exactly the same as the one in the seminal paper by LS, that is the natural paper to

compare the results of our methodology. The first equation is the New Keynesian IS

curve (NKIS), that relates the dynamics of the output xt to the real interest rate, given

by the nominal interest rate, Rt, minus expected inflation, Et(πt+1). The dynamics of

the inflation rate πt are described by the second equation, the New Keynesian Phillips

curve (NKPC). The NKIS and the NKPC come from the maximization problem of the

households and the firms, and they are found loglinearizing, around the steady state, the

respective first order conditions. A standard Taylor rule with inertia closes the model.

It describes how the central bank conducts the monetary policy, moving the nominal

interest rate Rt, in response to the deviations of inflation and output gap from their

targets.

As in LS, we also suppose that the shocks in the NKIS and in the NKPC are auto-

correlated, that is:

gt = ρggt−1 + εg,t; zt = ρzzt−1 + εz,t (18)
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and we allow for non-zero correlation, ρgz, between the two innovations εg,t and εz,t. The

standard deviations of the zero-mean innovations εg,t, εz,t and εR,t are denoted σg, σz
and σR, respectively.

The parameters of the model are also standard: β ∈ (0, 1) is the households’sub-

jective discount factor, τ is the elasticity of intertemporal substitution in consumption,

κ is the slope of the NKPC, that ultimately depends on the degree of nominal price

stickiness and the labour supply elasticity, ρR is the inertial parameter in the Taylor

rule while ψ1 and ψ2 measure the response of the nominal interest rate to the inflation

and the output targets, respectively.

The model has five variables: three predetermined (Rt, gt and zt) and two non pre-

determined (xt, πt). Then, the matrix bt has dimension two. We also know that among

the five eigenvalues of the dynamic system, three of them are inside the unit circle (be-

cause ρg, ρz, and ρR are less than one in absolute value), and one is always outside the

unit circle (for sensible values of the parameters, see Bullard and Mitra, 2002). The

remaining eigenvalue can be inside or outside the unit circle, depending on the following

condition (i.e. the Taylor principle):

ψ1 > 1− 1− β
κ

ψ2. (19)

The literature usually imposes the stability criterion to select valid equilibria and thus

it distinguishes two possible cases. If (19) holds, the model has two eigenvalues greater

than one in absolute value. This is the case of "determinacy": there is a unique stable

RE equilibrium, i.e. the forward looking one, because the number of eigenvalues outside

the unit circle is equal to the number of non predetermined variables. Otherwise, if (19)

does not hold, there will be an infinite number of stable RE equilibria and this case is

normally labelled "indeterminacy".

Note, however, that in both cases, due to the presence of at least one unstable

eigenvalue, there is an infinite number of unstable RE equilibria that the literature

usually does not consider because it imposes the stability criterion.

We can test the validity of the stability criterion in a particular sample comparing

the relative performance of the New Keynesian model, under different hypotheses on the

set of valid solutions: stability, for the cases both of determinacy and indeterminacy,

and instability. Hence, we compare two assumptions: one in which the stability criterion

is imposed, and one in which we also consider solutions excluded by the same criterion.

The aim is to let the data speak about their preferred assumption.

14



3.0.1 Model MS: the subset of stable solutions

When the stability criterion is imposed, we exclude unstable solutions. We label this

case as model MS, and the matrix bt is:

bt =

[
b1,t 0

0 1

]

b1,t =

{
1 if ψ1 > 1− 1−β

κ
ψ2

b1,t−1 + ζt ζt ∼ N(0, σ2ζ) otherwise.

The south east element in bt is imposed to be 1 because, in the matrixA of the Blanchard

- Kahn canonical form, there is always one "explosive" eigenvalue. For the first element,

b1,t, instead, we distinguish the two cases described above. b1,t is automatically posed

equal to one, when the Taylor principle is satisfied, because the eigenvalue is outside

the unit circle and we need to select the forward looking solution. b1,t, instead, follows

a random walk driven by a sunspot shock, when the Taylor principle is not satisfied,

because the eigenvalue is then inside the unit circle and thus there is an infinite number

of stable solutions.

3.0.2 Model MU : a subset of unstable solutions

In this case, stability criterion is not imposed. We define the matrix bt as:

bt = b1,tI

b1,t = b1,t−1 + ζt ζt ∼ N(0, σ2ζ)

The set of solutions considered does not contain the stable set allowed in MS. The only

intersection between the two cases is the forward looking solution when b1,t = 1 , that

is the unique possibility for the stability criterion to hold in this case. The next section

explains the method used to compare the two assumptions just presented.

4 Econometric Strategy

We estimate the parameters of the New Keynesian model (15) - (17), and the latent

process b1,t using Bayesian methods. The assumption of a time varying b1,t implies that

the likelihood of the model is non Gaussian. For this reason we make our inference

using particle filtering. In the estimation of non linear or non Gaussian DSGE models

it is common to use a particle filter just to approximate the likelihood function within

a MCMC approach, being the Kalman filter non available (see Fernandez-Villaverde

15



and Rubio-Ramirez, 2005). We depart from this tradition, and use a Sequential Monte

Carlo method with parameter learning, based on Carvalho, Johannes, Lopes and Polson

(2010), that allows us to make sequential inference on the parameters and on the latent

process b1,t. Chen, Petralia and Lopes (2010) show how this approach is a valid alterna-

tive to MCMC in estimating DSGE models. In our case, the technique is particularly

useful in order to understand how the inference evolves over time, and to compare the

stable (MS) and the unstable model (MU).

4.1 The method

The purpose is to approximate the joint posterior distribution:

f (ϑ0:T , b0:T , ϕ, ν|y1:T ) (20)

where ϑt is a vector with all the latent processes except bt, ϕ is the vector with all the

parameters except the variances of the shocks, that are collected in ν, and yt is a vector

with the observed data at time t. The subscript j : h indicates the history of a variable

from time j to h, for example y1:t = {y1, y2, ...yt}.
In Monte Carlo simulations the target distribution is numerically approximated by

a suffi ciently large number of draws (particles) from the same distribution. Since we are

not able to draw directly from (20), we use an importance sampling technique: the idea

is to draw the particles from another distribution q (ϑ0:T , b0:T , ϕ, ν), called importance

distribution, and to approximate the target density (20) by assigning appropriate weights

to each particle. If the support of f (ϑ0:T , b0:T , ϕ, ν|y1:T ) is included in the support of

q (ϑ0:T , b0:T , ϕ, ν), then for each particle i the appropriate weight is:

w(i) =
f
(
ϑ
(i)
0:T , b

(i)
0:T , ϕ

(i), ν(i)|y1:T
)

q
(
ϑ
(i)
0:T , b

(i)
0:T , ϕ

(i), ν(i)
) (21)

Notice that we can specify the problem in a recursive way: under standard assumptions16

the weights can be recursively updated:

w
(i)
t ∝ w

(i)
t−1

f
(
yt|ϑ(i)t , b

(i)
t , ϕ

(i), ν(i)
)
f
(
ϑ
(i)
t , b

(i)
t |ϑ

(i)
t−1, b

(i)
t−1, ϕ

(i), ν(i)
)

q
(
ϑ
(i)
t , b

(i)
t , ϕ

(i), ν(i)
) (22)

so that, if we have an approximation of the target distribution at time t − 1, we can

obtain the approximation at t drawing from the so called importance transition density

q
(
ϑ
(i)
t , b

(i)
t , ϕ

(i), ν(i)
)
, and using equation (22).

16We assume that the latent processes are Markov chains, and that the standard dependence structure

for state space models applies.
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The design of the particle filter ultimately consists in choosing a convenient impor-

tance distribution. In the rest of the Section we describe the main aspects of our choice,

and we refer to the Appendix for the details and the algorithm.

The optimal choice for the importance transition density would be the conditional

distribution of the unknowns, given the observed data17, but it is not available, the

model being non Gaussian. However, we can get close to the optimal density noting

that, conditional on bt and on the parameters, the model is linear and Gaussian, and the

optimal transition density for ϑt simply corresponds to the standard posterior distrib-

ution computed with the Kalman filter. To get particles for bt, instead, we can simply

use its prior distribution.

The parameters of the model are also estimated recursively. We divided the para-

meters in two sets, collecting the variances in ν and all the other parameters in ϕ. The

reason is that for ν we are able to characterize the posterior distribution using a set of

suffi cient statistics st. In the Particle Learning approach st = S(st−1, ϑt, bt, ϑt−1, bt−1, yt)

is a random variable that can be recursively updated, and it can be added to the latent

vector. For each draw of ϑt, bt, we can update the suffi cient statistics at time t, and

obtain a draw of ν from its posterior distribution.

We are, however, not able to use the Particle Learning procedure for the parameters

in ϕ, and we use the method proposed by Liu and West (2001), approximating the

posterior of ϕ using mixtures of Normals. Liu and West (2001) build their approach on

the auxiliary particle filter proposed by Pitt and Shephard (1999), in which an impor-

tance density function for the predictive distribution is used to preselect the particles

that have the best forecasting ability. This resample - propagate scheme leads to higher

effi ciency.

Our econometric strategy is summarized by the importance transition density:

q
(
yt|ϑ(i)t−1, b

(i)
t−1,m

(i), ν(i)
)

︸ ︷︷ ︸
Predictive distribution

q
(
bt|b(i)t−1, ν(i)

)
︸ ︷︷ ︸

Prior of bt

N(ϕ;m(i), h2Σ)︸ ︷︷ ︸
Normal distribution for ϕ

· (23)

· q
(
ϑt|ϑ(i)t−1, b

(i)
t , ϕ

(i), ν(i), yt

)
︸ ︷︷ ︸
Optimal transition density for ϑt

f
(
ν(i)|s(i)t

)
︸ ︷︷ ︸
Posterior of ν

where m(i), h and Σ are the parameters of the Normal distribution, as in the Liu and

West (2001) filter (see the Appendix). The essence of the estimation algorithm can

be read from our proposal density: at each time we use the importance density for the

predictive distribution to preselect the best particles in terms of forecasting ability; then,

17This importance distribution is optimal in the sense that it minimizes the variance of our Monte

Carlo estimator.
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we proceed propagating each particle by drawing a value of bt from its prior distribution,

and a value for the parameters in ϕ using the Normal distribution suggested by Liu and

West (2001); given these values we can draw the other latent states in ϑt from the optimal

transition, and we update the suffi cient statistics; finally, we draw the parameters in ν

from its posterior distribution.

In the practical implementation, additional problems can occur, related to particle

degenerations, as it is common in the particle filtering literature. For this reason, some-

times an additional resampling step is needed. We refer to the Appendix for the detailed

algorithm.

4.2 Sequential model monitoring

Sequential Monte Carlo methods can be used to compare different models over time,

checking which specification is preferred in terms of predictive likelihood. This is

achieved using the sequential Bayes factor by West (1986): at each time we can com-

pute the predictive likelihood for each of the two modelsMS andMU , and the likelihood

ratio:

Ht =
f(yt|y0:t−1,MS)

f(yt|y0:t−1,MU)
. (24)

We asses the relative predictive performance of the most recent κ observations, com-

puting the so called cumulative Bayes factor: Wt(κ) = HtHt−1...Ht−κ+1, where the

parameter κ controls the length of the window in which the two models are compared.

5 Empirical Results

5.1 Data and subsamples

To compare our results with the seminal work by LS, we estimate the New Keynesian

model (15) - (17) on the same quarterly postwar data for inflation, output and nominal

interest rate used by LS, as available from the AER website. Inflation and interest rates

are annualized, and the HP filter is used to get a measure of the output gap.18

Figure 1 plots the inflation series. As it is clear, from the mid Sixties until the

end of the 70s, the U.S. experienced a period of price instability, also known as "Great

Inflation". Then, the Volcker disinflation took place and prices came back under control:

inflation became low, as did the volatility of prices and of other macroeconomic variables.

18As from footnote 9 at p. 202 in LS: (i) output is log real per capita GDP HP detrended over the

period 1955:I to 1998:IV; (ii) inflation is annualized percentage change of CPI-U; (iii) Nominal interest

rate is the average Federal Funds Rate in percent.
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By contrast to the previous period, these times are known as the "Great Moderation".

One popular explanation of this shift through the lens of the New Keynesian model

(e.g., Clarida et al, 2000) ascribes it to the shift in the monetary policy conducted:

from a passive (i.e., (19) not satisfied) to an active (i.e., (19) satisfied) monetary policy.

As we previously underlined, this interpretation excludes a priori unstable paths, even

though inflation exceeded 15%. Here we want to answer the following question: would

the data prefer an explanation of the Great Inflation based on a stable system with

sunspot shocks, as in LS, or one based on unstable dynamics?

Again we closely follow LS in considering two subsamples: the pre-Volcker period,

from 1960:I to 1979:II, and a post-82 period from 1982:IV to 1997:IV.19

5.2 Priors

Table 1 collects the prior distributions for the parameters. We chose them in accordance

with LS, in the same spirit that we chose the model specification and the data. While

we refer to LS for the detailed description of each prior, we focus on the few differences

we have.

The variance of the parameter ψ1 is 0.25 in LS, while we increase it to 1. This

parameter determines if the Taylor principle is respected, and when we impose stability

(modelMS) it draws the line between determinacy and indeterminacy. In our sequential

estimation we found it useful to have a wider prior, in order to not to weight too much

the first part of the sample in determining which of the two alternatives is preferred.

We specify the prior for the variance covariance matrix of the shock εg,t and εg,t
as an Inverse Wishart with scale matrix and degrees of freedom as in Table 1. The

Inverse Wishart prior allows us to update the posterior of the parameters using suffi cient

statistics, as in the Particle Learning approach described above. This is a big advantage

in terms of the effi ciency of our particle filter. On the other hand, our choice is very

similar to the one of LS in terms of mean and variances of the three parameters involved

(σg, σz and ρgz).

The variance of our sunspot shock is distributed as an Inverse Gamma with mean

and variance both equal to 0.005. This value is lower than the one in LS because our

sunspot shock enters in a multiplicative way.

Finally, the process b1,t at t = 0 is supposed to be Normally distributed, with mean

1, and variance 0.005, in accordance to the prior of the sunspot shock.

19As in LS, we exclude the Volcker disinflation period where monetary policy is characterized by

nonborrowed-reserve targeting rather than by an interest rate rule.
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Table 1

Prior Distributions

Parameter Density Mean Variance

ψ1 Gamma 1.1 1

ψ2 Gamma 0.25 0.152

ρR Beta 0.5 0.22

π∗ Gamma 4 4

r∗ Gamma 2 1

κ Gamma 0.5 0.2

τ−1 Gamma 2 0.52

ρg Beta 0.7 0.12

ρz Beta 0.7 0.12

σ2R Inverse Gamma 0.312 0.162

σ2b Inverse Gamma 0.005 0.005

Variance Covariance Density Scale Degrees of freedom

Σgz Inverse Wishart 3

[
0.42 0

0 1.22

]
5

5.3 Estimation results

Table 2 reports the estimates of the parameters in the two subsamples. For each sub-

sample, Table 2 shows the estimates for both the stable (MS) and the unstable (MU)

model and, for comparison, the correspondent estimates in the paper by LS (see Table

3, p. 206).

5.3.1 Great Inflation subsample

The model under stability: MS Let us first analyze the results for the model under

stability (model MS) where we impose the stability criterion. Contrary to LS, however,

our methodology allows us not to impose a determinate or an indeterminate equilib-

rium prior to the estimation, but lets the data choose which one to select during the

estimation. Despite this, Table 2 shows that under stability (model MS) our method-

ology recovers results very similar to LS. We interpret this finding as corroborating our

estimation methodology.

The point estimates of the policy rule parameters are very close and statistically

indistinguishable from the ones in LS, as visualized in Figure 2, that displays our prior

and posterior distributions and the 90% intervals in LS.20

20The 90 percent intervals do not overlap only for the slope of the Phillips Curve, κ, and of the
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Table 2

Estimates

Pre- Volcker
1960:I - 1979:II

Post-82
1982:IV - 1997:IV

Parameter MS MU LS MS MU LS

ψ1 0.77
[0.68 0.87]

0.31
[0.19 0.49]

0.77
[0.64 0.91]

2.18
[1.33 3.41]

0.42
[0.12 1.08]

2.19
[1.38 2.99]

ψ2 0.2
[0.13 0.31]

0.22
[0.16 0.34]

0.17
[0.04 0.30]

0.33
[0.14 0.72]

0.44
[0.30 0.70]

0.30
[0.07 0.51]

ρR 0.69
[0.61 0.76]

0.54
[0.47 0.66]

0.60
[0.42 0.78]

0.85
[0.79 0.89]

0.78
[0.72 0.83]

0.84
[0.79 0.89]

π∗ 1.83
[1.34 2.38]

4.03
[2.52 5.94]

4.28
[2.21 6.21]

3.73
[3.20 4.32]

2.86
[2.19 3.59]

3.43
[2.84 3.99]

r∗ 1.41
[1.16 1.86]

1.42
[1.07 2.11]

1.13
[0.63 1.62]

3.51
[2.88 4.22]

2.72
[1.94 3.49]

3.01
[2.21 3.80]

κ 0.12
[0.09 0.17]

0.09
[0.07 0.12]

0.77
[0.39 1.12]

0.53
[0.31 0.90]

0.18
[0.13 0.25]

0.58
[0.27 0.89]

τ−1 3.38
[2.54 4.21]

3.07
[2.49 3.59]

1.45
[0.85 2.05]

1.47
[0.96 2.40]

2.46
[1.71 3.42]

1.86
[1.04 2.64]

ρg 0.74
[0.70 0.77]

0.76
[0.73 0.79]

0.68
[0.54 0.81]

0.85
[0.77 0.91]

0.75
[0.68 0.8]

0.83
[0.77 0.89]

ρz 0.82
[0.78 0.85]

0.84
[0.79 0.87]

0.82
[0.72 0.82]

0.77
[0.63 0.88]

0.74
[0.66 0.80]

0.85
[0.77 0.93]

ρgz 0.12
[0.09 0.17]

0.06
[0.04 0.09]

0.14
[−0.4 0.71]

0.03
[0.01 0.06]

0.005
[−0.015 0.027]

0.36
[0.06 0.67]

σR 0.21
[0.19 0.25]

0.16
[0.14 0.19]

0.23
[0.19 0.27]

0.17
[0.14 0.21]

0.12
[0.10 0.14]

0.18
[0.14 0.21]

σg 0.20
[0.18 0.24]

0.16
[0.14 0.19]

0.27
[0.17 0.36]

0.14
[0.11 0.18]

0.14
[0.11 0.17]

0.18
[0.14 0.23]

σz 0.82
[0.69 1.00]

0.62
[0.54 0.74]

1.13
[0.95 1.30]

0.57
[0.49 0.69]

0.52
[0.40 0.71]

0.64
[0.52 0.76]

σς 0.05
[0.04 0.06]

0.07
[0.04 0.09]

0.20
[0.12 0.27]

− 0.04
[0.03 0.06]

−

90% credibility interval in brackets

Hence, in accordance with the literature, our method also points to indeterminacy as

the most plausible explanation of the Great Inflation period once the stability criterion

is imposed on the model. It suggests that the Fed did not respect the Taylor principle,

and thus movements in inflation (and output) were due to shifts in expectations due

to sunspots shocks. The estimated standard deviation of the sunspots for Ms shock is

lower (one fourth) than the one estimated by LS. The same is true for the standard of

the technology shock, σz, which is significantly lower in our estimates. This is because

our sunspot is a multiplicative sunspots shock that interacts and amplifies the structural

shocks, rather than an additive one as in LS’s approach. Hence, these standard devia-

tions are not really comparable due to the different assumption about how the sunspot

elasticity of intertemporal substitution, τ−1.
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affects the model.

Figure 3 displays the transmission mechanism of the structural shocks, by showing

the generalized impulse response functions (GIRFs) and their 90% intervals of R, x and

π to the structural shocks: to the monetary policy shock in the first row, to the demand

shock in the second row and to the supply shock in the third row.21 These GIRFs

are very similar in shape to the ones of a determinate equilibrium.22 Note that the

technology shock is the only one that moves output and inflation in opposite directions,

as required to explain the stagflation episode during the last part of the Great Inflation

period. This explains why both forMS and LS, the standard deviation of the technology

shocks is much bigger than the other shocks.

Recall that the non-linear multiplicative sunspot shock affects the model only in the

presence of a structural shock. Hence, to understand how the sunspots shock affects the

transmission mechanism of our model, we plot in Figure 4 the GIRFs for two different

values of b: 1.3 and 1.5, respectively. The sunspot shock interacts with the structural

shocks, amplifying the effects of the latter, thereby acting similarly as a stochastic

volatility shifter (Justiniano and Primiceri, 2008). We interpret this shock as a shift in

the way people form expectations after a structural shock hits the economy.

We think that one of the most interesting aspects of our methodology is the estimated

path for b1,t that measures of how much expectations deviate from the standard forward

looking rational expectations solution. Recall that when b1,t = 1 then expectations are

selecting the forward looking solution, otherwise they are selecting a combination of the

backward and forward looking ones. Figure 5 shows the estimated path for b1,t in the

case ofMs, and the corresponding sequential estimate of the policy parameter ψ1. Figure

5 clearly depicts the challenge faced by the New Keynesian model in this subsample: to

explain the stable output and inflation paths in the first part of the subsample and then

the stagflation in the second part of the subsample, where output and inflation move

in opposite directions, and inflation accelerates. Up the first oil shock, the estimate of

b1,t points toward expectations aligned on the "standard" forward looking solution and,

correspondingly, ψ1 is estimated to satisfy the Taylor principle. Until to that point the

data would favour a determinate stable model. However, such a model cannot explain

the data in the second part of the subsample. Then, the data switch to favour the only

alternative model available under stability: a model with a sunspot shock. The extra

degree of freedom provided by the sunspot makes the data choose the indeterminate

model both in our and in LS’s estimation, despite the fact that the structural dynamics

21To construct the GIRFs, we take each IRFs generated by each particle (which is just a vector of

parameter values and b) and then we average across the IRFs of the 500,000 particles.
22Thees are also very similar to the IRFs in LS under their prior 2.
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of the model are a priori at odds with the data, as we argued above. b1,t drifts away

from 1, when inflation starts to grow in the data.

Of course, another plausible possibility explored in the literature to make a stable

determinate model able to match such behaviour in the data would be to have a sto-

chastic volatility model, where the standard deviation of technology shocks increases

in the second part of the subsample (e.g. Justiniano and Primiceri, 2008). Our mul-

tiplicative sunspot shock yields a similar effect, as explained above, but the sunspot

shock occurs only if the model is indeterminate given our assumptions on imposing the

stability criterion.

The model under instability: MU The modelMU instead does not impose the sta-

bility criterion, and hence it makes the data consider also unstable rational expectations

trajectories. The estimation points towards an even smaller reaction of monetary policy

to inflation.23 However, it should by now be clear to the reader that this does not imply

indeterminacy as usually intended in the literature, that is, an infinite number of stable

trajectories. It does imply another sort of indeterminacy, in the sense that we let the

data choose among an infinite number of rational expectations trajectories. However,

these trajectories will all be unstable in our case, irrespective of whether the Taylor

principle is satisfied or not. (19) is a condition for one eigenvalue to be inside or outside

the unit circle, but whatever the value of ψ1, there is always an unstable eigenvalue. As

explained in Section 3, in the case MU, we do not impose the stability criterion with

respect to this unstable eigenvalue, that is, we do not force the model to the forward

looking solution. It follows that, despite the parameter estimates being very similar be-

tween the two cases MU and MS, MU gives a completely different interpretation about

the instability of that period. Independently from the Fed policy, the dynamics of MU

are structurally unstable.

Figure 6 shows the GIRFs in this case. Again a supply shock generates stagflation.

Most importantly, however, stagflation could also now be generated by a monetary pol-

icy shock. In particular, a contractionary monetary policy shock can be inflationary:

inflation drops on impact but then starts rising and it is above steady state after 4

quarters. Interestingly, a somewhat similar behaviour is highlighted in LS under their

preferred Prior 1: "an increase in the nominal interest rate can have a slightly infla-

tionary effect" (p. 207, see Figure 3, p. 208 and the discussion at p. 207-208 therein).

They conclude that "before 1979 indeterminacy substantially altered the propagation

23The other parameter estimates are very similar between the two cases. MU implies a slightly

smaller standard deviation of the technology shock and a slightly higher standard deviation of the

sunspot shock.
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of shocks" ( abstract). Similarly, instability in our framework substantially alters the

transmission mechanism. However, in our case, output remains below steady state, so

that a monetary policy shock could generate an opposite response of output and infla-

tion. In LS case, instead, inflation and output move in the same way after a monetary

policy shock: after dropping on impact, they both become slightly positive. Our frame-

work therefore seems to be able to provide a transmission mechanism more prone to

accommodate stagflation.

This is also true regarding the effects of the sunspot shock. The impulse response

function to a sunspot shock in the case of the indeterminate model in LS does imply

(again) that output and inflation move in the same direction (see Figure 2, p. 207), not

in an opposite one, as in a stagflation episode. Intuitively, if a sunspot shock leads to a

self-fulfilling increase in inflation, then the real interest rate decreases, due to the passive

monetary policy, and thus output increases, rather than decreases. Thus the structural

dynamics implied by an indeterminate stable model do not seem to be well suited to

explain stagflation episodes after an additive sunspot shock. In our setup, instead, the

non-linear sunspot shock amplifies the responses of the model to a structural shock, as

explained above and shown in Figure 7.

The data could, however, still choose a stable forward looking solution when b1,t is

estimated to equal one. Figure 8 shows the estimated path for the latent process b1,t
under model MU . Similarly as before, it initially fluctuates around 1 (the 90 percent

interval is centered around 1) and then it drifts from 1 (now outside the 90 percent

interval), exactly when inflation starts increasing and drifting away from its steady state

value from 3% to 15%. If we allow unstable paths, the estimation then unambiguously

selects those to explain the data in this period.

It is possible to compare the relative fit of the stable (MS) and unstable (MU) models

by computing the Sequential Bayes factor as in West (1986). Figure 9 shows twice the

natural logarithm of the Sequential Bayes factor (as suggested by Kass and Raftery,

1995) together with the path of inflation in the sample for a 10 year window. Model

MS is at the numerator and model MU is at the denominator, so that a value of zero

of the logarithm of the cumulative Bayes factor means that the two models have the

same performance in terms of predictive likelihood; while a positive value means that

MS is preferred (and vice versa for negative values). The advantage of the Sequential

Bayes factor, with respect to the conventional measures in Bayesian Econometrics, is

that we can compare two models over time, and verify the sub-periods in which a model

performs better than another in terms of predictive likelihood. In our specific case, as

expected, the unstable model is much preferred from the ‘70s onwards, when inflation

starts drifting away reaching high values. According to the Kass and Raftery (1995, p.
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777) classification, there is "very strong" evidence in favour of MU from the beginning

of the ‘70s. In particular, the Sequential Bayes factor reaches a very low level from first

quarter of 1975 onwards.

Our methodology allows the data to choose between different possible alternatives:

determinacy, indeterminacy and instability. When the data are allowed this possibility,

they unambiguously select the unstable model to explain the stagflation period in the

‘70s.

5.3.2 Post-82 Subsample

In the second subsample, our estimates under stability again reproduce the same results

as in LS. There is no difference between our parameter estimates and the ones in LS,

again signalling the reliability of our estimation methodology (see Figure 10). The

Taylor principle is satisfied and hence the data choose the unique determinate forward

looking solution underMS, there is no sunspot shock and the process for b1,t degenerates

to the value of one.

In the case of model MU , on the other hand, the estimation yields results similar

to the Great Inflation subsample (see Table 2). The Taylor principle is not satisfied,

so the model is either on unstable paths or on one of the stable trajectories under

indeterminacy, when b1,t is equal to 1. Figure 11 shows that b1,t is always inside the 90%

probability interval for the whole period, meaning that the estimation cannot exclude a

stable trajectory.24

Comparing the two models as in the previous case using the Sequential Bayes factor

presents mixed evidence (see Figure 12). While the stable model is mostly preferred,

there is no strong evidence in favour of either one of the models.

6 Conclusion

We propose a novel way to introduce sunspots in a RE model to take into account

the possibility of unstable trajectories, through a simple generalization of the standard

Muth (1961) RE framework. First, we show how all the possible solutions could be pa-

rameterized by one single parameter that has a natural interpretation as the way agents

weight past data to form their RE. Then, we introduce rational sunspots by assuming

that this parameter is a random variable, so that agents select one of the possible RE

24Note that, under MU , the model will never recover a constant value of b1,t equal to 1, as it does

under MS when the Taylor principle is satisfied and the stability criterion is imposed. The estimation

under MU instead models b1,t as a random walk and thus subject to shocks. A path (and 90 percent

interval) as in Figure 8 is statistically indistinguishable from b1,t = 1.
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fundamental solutions. Third, we propose an empirical methodology that allows the

data to choose among the different RE alternatives: determinacy, indeterminacy and

instability. Finally, we apply this approach to the data to explain US inflation dynamics

in the Great Inflation and Great Moderation period. The empirical evidence suggests

that the Great Inflation in the U.S. can be explained by temporary unstable paths, while

the usual practice of excluding a priori unstable solutions seems not to be supported by

the data. When allowed, the data unambiguously select the unstable model to explain

the stagflation period in the ‘70s. Our framework provides a different interpretation of

the Great Inflation from a policy perspective. Despite our estimates point to a passive

monetary policy behaviour in the 70’s, our framework implies that this is not the cause

in itself of unstable inflation dynamics, that was instead due to drifting expectations,

independently from the stand of monetary policy.

Our analysis therefore suggests that unstable paths can be empirically relevant, also

within the context of rational expectations. This result may call for a rethinking of the

stability criterion as the selection mechanism among all the possible RE paths, and for

theoretically considering the possibility that RE could push the economy to walk along

unstable paths, at least temporarily.

This line of research is still in its infancy and can be expanded in many directions.

First, one direction would be to endogenize the process for the rational sunspot. The

process for the drifting expectations is taken as exogenous in this paper (as in the

sunspot literature) and then estimated on the data. However, we would like to be able

to say something about why agents RE start to drift, by endogenizing this expecta-

tion formation process and then estimating it on the data, in a spirit similar to the

escape dynamics literature put forward by Sargent. Second, another possible exten-

sion would be to consider processes for b that admit only temporary explosion as the

asymptotically equivalent stationary paths proposed in Gourieroux et al. (1982) or the

Markov-Switching framework. Third, there are many potential application of our frame-

work, notably, but not exclusively, finance, where boom and bust episodes of asset prices

(stock, houses, etc..) is a pervasive phenomenon.
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Appendix

The solution for the simple model

Consider equation (3) in the paper:

πt =
1

φ
Etπt+1 + et (25)

et = −1

φ
εt εt ∼ i.i.d.N(0, σ2ε) (26)

In this appendix we treat the general case with a time varying bt (then, the case with

bt constant is simply obtained). Suppose that

bt = bt(ζt) (27)

where ζt is a random variable, called sunspot shock, orthogonal to the fundamental

shocks es (s = 1, 2, ...) and such that Etζt = 0 ∀t.
Following Muth (1961) and Blanchard (1979) we guess the solution for model (25):

πt =
∞∑
j=1

uj,tet−j + btet +
∞∑
j=1

cj,tEtet+j (28)

where uj,t, bt and cj,t are coeffi cients to be determined. Hence verify using undetermined

coeffi cients:

πt =
1

φ
Etπt+1 + et

∞∑
j=1

uj,tet−j + btet +
∞∑
j=1

cj,tEtet+j =
1

φ
Et

( ∞∑
j=1

uj,t+1et+1−j + bt+1et+1 +
∞∑
j=1

cj,t+1Etet+1+j

)
+ et

that is:

u1,tet−1 + u2,tet−2 + u3,tet−3 + ....+ btet + c1,tEtet+1 + c2,tEtet+2 + ...

=
1

φ
Et (u1,t+1et + u2,t+1et−1 + u3,t+1et−2 + ...+ bt+1et+1 + c1,t+1et+2 + c2,t+1et+3 + ...) + et

equal coeffi cients to find an expression for the u′s:

et : bt =
1

φ
Etu1,t+1 + 1⇒ Etu1,t+1 = φ(bt − 1)

et−1 : u1,t =
1

φ
Etu2,t+1 ⇒ Etu2,t+1 = φu1,t

...

et−j : uj,t =
1

φ
Etuj+1,t+1 ⇒ Etuj+1,t+1 = φuj,t
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and for the c′s:

et+1 : c1,t =
1

φ
Etbt+1

et+2 : c2,t =
1

φ
Etc1,t+1

...

et+j+1 : cj+1,t =
1

φ
Etcj,t+1

These equations need an assumption on the stochastic process governing bt to be

satisfied. Otherwise, in general the system can not be solved.

Note that if bt is constant, then the solution could be written as:

πt =

∞∑
j=1

φj(b− 1)et−j + bet +

∞∑
j=1

b

φj
Etet+j. (29)

Random walk process for bt

Assume that bt is following a random walk process as bt = bt−1 + ζt, with ζt ∼
i.i.d.N(0, σ2ζ). Then Et+1bt+1 = bt. Hence:

rt: bt =
1

φ
Etu1,t+1 + 1⇒ Etu1,t+1 = φ(bt − 1)

However, given Etu1,t+1 = φ(bt − 1) what can we say about u1,t+1? Assuming that

u1,t+1 = F (bt+1), the problem then is to find the function F such thatEtu1,t+1 = φ(bt−1),

given the stochastic process for bt. Assuming that F is linear then we are looking for a

linear function such that Et (a1bt+1 + a0) = φ(bt−1), that is: a1Etbt+1+a0 = φbt−φ⇒
a1bt + a0 = φbt − φ⇒

a1 = φ

a0 = −φ

so

u1,t+1 = φbt+1 − φ (30)

Equal coeffi cients that multiply et−1:

Etu2,t+1 = φu1,t

Then, u1,t = φbt − φ needs to be equal to 1
φ
Etu2,t+1. Following the same reasoning,

assuming u2,t+1 is a linear function of bt+1, we need to solve for

Et (a1bt+1 + a0) = φu1,t = φ2bt − φ2.
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Then, it must be

a1 = φ2

a0 = −φ2

so that:

u2,t+1 = φ2bt+1 − φ2 (31)

generally

uj,t = φjbt − φj (32)

Having solved for the u′s let’s solve for the c′s. This is easy since Et+1bt+1 = bt:

et+1: c1,t =
1

φ
Etbt+1 =

1

φ
bt (33)

Following the method implemented above we obtain, in general:

cj,t =
1

φj
bt (34)

Equations (32) and (34) are the coeffi cients of equation (28), written as function of

bt. Equation (28) is a solution for model (25) only if it satisfies these restrictions.

In our case, because the exogenous shocks are i.i.d. with zero mean, the sum
∑∞

j=1 cj,tEtet+j

in equation (28) is zero. Then, substituting equation (32) we have:

πt = (bt − 1)
∞∑
j=1

φjet−j + btet (35)

so that we have the pure forward looking solution when bt = 1 (equation, 6 in the paper):

πFt = et = −1

φ
εt

and the pure backward looking solution when bt = 0:

πBt = −
∞∑
j=1

φjet−j = −φ
∞∑
j=1

φjet−j−1 − φet−1

= φπBt−1 − φet−1 = φ
(
πBt−1 − πFt−1

)
,

that corresponds to equation (7). Note that equation (35) can be rewritten as:

πt = (1− bt) πBt + btπ
F
t (36)

that is, each particular solution depends on bt, and it can be written as a linear combi-

nation of the backward and the forward one.
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The recursive formulation

We first report the important equations:

πt = (1− bt)πBt + btπ
F
t (37)

πBt = φπBt−1 − φπFt−1 (38)

πFt = et (39)

substituting πBt and π
F
t in the first equation we obtain

πt = φ(1− bt)πBt−1 − φ(1− bt)et−1 + btet (40)

Multiply for (1− bt) equation (38) and substitute in the last equation to find πBt :

(1− bt)πBt = φ(1− bt)πBt−1 − φ(1− bt)et−1
(1− bt)πBt = πt − btet

πBt =
πt − btet
(1− bt)

Use this expression, lagged, in (40) to derive the complete set of solutions for model

(25), when bt−1 6= 1:

πt = αtπt−1 − αtet−1 + btet (41)

with αt = φ
(1− bt)

(1− bt−1)
. The particular case of bt = b constant is obtainable offsetting

the sunspot shocks, that is imposing σ2ζ = 0. The coeffi cient αt becomes:

αt = φ
1− bt−1
1− bt−1

= φ

and πt is described by equation (5):

πt = φπt−1 + εt−1 −
b

φ
εt

Expectations as a weighted average of past observations

Under the rational expectations hypothesis, the expected value in model (25), can be

written as a weighted average of the past observations (see Muth, 1961):

Etπt+1 =
∞∑
i=1

Vi,tπt+1−i = (42)

= V1,tπt + V2,tπt−1 + V3,tπt−2 + ...
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where we need to determine the coeffi cients Vi,t. Using equation (36) we have:

Etπt+1 = V1,t

[
(bt − 1)

∞∑
j=1

φjet−j + btet

]
+

+V2,t

[
(bt−1 − 1)

∞∑
j=1

φjet−j−1 + bt−1et−1

]
+

+V3,t

[
(bt−2 − 1)

∞∑
j=1

φjet−j−2 + bt−2et−2

]
+ ...

Rearrange:

Etπt+1 = V1,tbtet +

+ [V1,t (bt − 1)φ+ V2,tbt−1] et−1 +

+
[
V1,t (bt − 1)φ2 + V2,t (bt−1 − 1)φ+ V3,tbt−2

]
et−2 +

+...

Then, bring equation (36) one step ahead,

Etπt+1 = (bt − 1)
∞∑
j=1

φjet−j+1 =

= (bt − 1)
[
φet + φ2et−1 + φ3et−2 + ...

]
and compare coeffi cients:

et: (bt − 1)φ = V1,tbt

V1,t =
(bt − 1)

bt
φ

et−1: (bt − 1)φ2 = [V1 (bt − 1)φ+ V2bt−1]

V2 =
(bt − 1)

btbt−1
φ2

et−2: (bt − 1)φ3 =
[
V1,t (bt − 1)φ2 + V2,t (bt−1 − 1)φ+ V3,tbt−2

]
V3,t =

(bt − 1)

btbt−1bt−2
φ3

in general:

Vi,t =
(bt − 1)
i−j=1∏
0

bt−i

φi

and when bt = b constant:

Vi =
(b− 1)

bi
φi
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The multivariate case

b constant

We show how to compute the complete set of solutions of a system with rational expec-

tations.

Consider a system with rational expectations written in the form of Blanchard and

Kahn (1980): [
Xt+1

EtPt+1

]
= A

[
Xt

Pt

]
+ γZt (43)

Xt is a (n × 1) vector of predetermined variables and Pt is a (m × 1) vector of non

predetermined variables. Zt ∼ i.i.d. N(0,Σ) is a (κ × 1) vector of exogenous random

variables.

Use the Jordan form to rewrite A

A = C−1JC.

In the main diagonal of J there are the eigenvalues of A, ordered by increasing absolute

value. We decompose the matrices C−1, J , C and γ as follows:

C−1 =


B11 B12

(n× n) (n×m)

B21 B22

(m× n) (m×m)

 , C =


C11 C12

(n× n) (n×m)

C21 C22

(m× n) (m×m)

 ,

J =


J1 0

(n× n) (n×m)

0 J2

(m× n) (m×m)

 , γ =


γ1

(n× κ)

γ2
(n× κ)

 .

Define [
Yt

Qt

]
= C

[
Xt

Pt

]
,

and rewrite equation (43) in terms of

[
Yt

Qt

]
:

[
EtYt+1

EtQt+1

]
=

[
J1 0

0 J2

][
Yt

Qt

]
+

[
C11 C12

C21 C22

][
γ1
γ2

]
Zt . (44)

Now consider the second block of equation (44),

Qt = J−12 EtQt+1 + Ωt (45)
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where Ωt = −J−12 (C21γ1 + C22γ2)Zt. The system (45) has m disjoined equations,

and each of them admits an infinite number of solutions because of the presence of

an expected value. Defining qi,t as the ith element of Qt, and ωi,t the corresponding

disturbance, we write all the solutions of the generic row of equation (45) as

qi,t =
∞∑
j=1

ui,jωi,t−j + biωi,t +

∞∑
j=1

ci,jEtωi,t+j . (46)

Using matrices instead of scalars the solutions can be rewritten as

Qt =

∞∑
j=1

ujΩt−j + bΩt +

∞∑
j=1

cjEtΩt+j (47)

where uj, b and cj are diagonal matrices of coeffi cients to be determined. Bring equation

(47) one step ahead

EtQt+1 =

∞∑
j=1

ujΩt+1−j + EtbΩt+1 +
∞∑
j=1

cjEtΩt+1+j

and substitute in equation (45)

Qt = J−12

∞∑
j=2

ujΩt+1−j + J−12 u1Ωt − Ωt + J−12 EtbΩt+1 + J−12

∞∑
j=1

cjEtΩt+1+j . (48)

We find the coeffi cients comparing the matrices of equation (47) to the ones of equation

(48):

b = J−12 u1 + I =⇒ u1 = J2b− J2
u1 = J−12 u2 =⇒ uj+1 = J2uj j = 1...∞

c1 = J−12 b

c2 = J−12 c1 =⇒ cj+1 = J−12 cj j = 1...∞

The matrices uj and cj are functions of b and J2, and since J2 is given, the complete

set of solutions is parametrized by b. There are two particular cases: the pure backward

looking solution, corresponding to b = 0, that implies cj = 0 and uj = J j2 , j = 1...∞;
the pure forward looking solution corresponding to b = I, that implies uj = 0 and

cj = J−j2 , j = 1...∞. The backward looking solution can be written as follows:

QB
t =

∞∑
j=1

ujΩt−j (49)

QB
t =

∞∑
j=1

J j2Ωt−j = −J2Ωt−1 − J22Ωt−2 − J32Ωt−3 − ....

QB
t = −J2Ωt−1 + J2

[
−J2Ωt−2 − J22Ωt−3 − J32Ωt−4 − ...

]
QB
t = J2Q

B
t−1 − J2Ωt−1 (A7)
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The forward looking solution is

QF
t = bΩt +

∞∑
j=1

cjEtΩt+j = IΩt + J−12 EtΩt+1 + J−22 EtΩt+2 + ...

and since EtΩt+j = 0 ∀j ≥ 1, we obtain

QF
t = Ωt . (50)

Following Blanchard (1979) we write any other solution as a linear combination of the

backward and the forward looking solutions. In compact form

Qt = λQB
t + (I − λ)QF

t (51)

where λ = I −b is a diagonal matrix. The elements in the main diagonal of b are such
that b = 0⇒ Qt = QB

t , and b = I ⇒ Qt = QF
t .

Substitute the equations (A7) and (50) in equation (51)

Qt = λ
(
J2Q

B
t−1 − J2Ωt−1

)
+ (I − λ)Ωt

= λJ2Q
B
t−1 − λJ2QF

t−1 + J2Q
F
t−1 − J2QF

t−1 + (I − λ)Ωt .

In the last passage we have added and subtracted J2QF
t−1. Since both J2 and λ are

diagonal matrices the commutative property holds and we can write

Qt = J2
(
λQB

t−1 + (I − λ)QF
t−1
)
− J2Ωt−1 + (I − λ)Ωt

Qt = J2Qt−1 − J2Ωt−1 + bΩt (52)

Equation (52) represents the infinite number of solutions for Qt parametrized by b. The

complete set of solutions for model (43) is found using the definition of Qt and the first

n rows of the model written with the Jordan matrices:

Xt = (B11J1C11 +B12J2C21)Xt−1 + (B11J1C12 +B12J2C22)Pt−1 + γ1Zt−1 (53)

C21Xt + C22Pt = J2(C21Xt−1 + C22Pt−1) +(C21γ1 + C22γ2)Zt−1 +

−bJ−12 (C21γ1 + C22γ2)Zt (54)

In the paper we focus on the case in which the matrix A has at least n eigenvalues

inside the unit circle. This means that the model admits at least one stable solution.

If this condition is not satisfied the equations (53) and (54) continue to represent the

complete set of solutions that are all unstable.
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Adding sunspots

Add the hypothesis that each element in the main diagonal of b is described by the

following stochastic process:

bi,t = bi,t−1 + ζ i,t

with ζ i,t ∼ i.i.d.N(0, σ2ζi), i = 1, 2, ...m. With this hypothesis equation (46) becomes

qi,t =
∞∑
j=1

u
(j)
i,t ωi,t−j + bi,tωi,t

and its solution is:

qi,t = αi,tqi,t + αi,tωi,t−1 + bi,tωi,t

αi,t = J2,i
(1− bi,t)

(1− bi,t−1)
where J2,i is the ith eigenvalue in the main diagonal of J2. Putting in matrix form the

system with these m disjoined equations, we obtain the following system, analogous to

equation (52):

Qt = J2 (I + bt) (I + bt−1)
−1Qt−1 − J2 (I + bt) (I + bt−1)

−1 Ωt−1 + btΩt

Finally, the solution is represented by the following system:

Xt = (B11J1C11 +B12J2C21)Xt−1 + (B11J1C12 +B12J2C22)Pt−1 + γ1Zt−1

C21Xt + C22Pt = J2 (I + bt) (I + bt−1)
−1 (C21Xt−1 + C22Pt−1) +

+ (I + bt) (I + bt−1)
−1 (C21γ1 + C22γ2)Zt−1 − btJ−12 (C21γ1 + C22γ2)Zt

The particle filter

We want to approximate the target density:

f (ϑ0:T , b0:T , ϕ, ν0:T |y1:T )

where we use a little abuse of notation, and we denote νt as the inference on the para-

meters in ν at time t. We assume: (i) the latent processes ϑt and bt are Markov chains;

(ii) given ϑt and bt, yt is conditionally independent on ys ∀t and s 6= t. Then, we can

write the target density in a recursive way:

f (ϑ0:t, b0:t, s0:t, ϕ, ν0:t|y1:t) ∝ f (ϑ0:t, b0:t, s0:t, ϕ, ν0:t, yt|y1:t−1)
= f (yt|ϑt, bt, ϕ, νt) f (ϑt, bt, st, νt|ϑt−1, bt−1, st−1ϕ, , νt−1) f (ϑ0:t−1, b0:t−1, s0:t−1, ϕ, ν0:t−1|y1:t−1)
= f (yt|ϑt, bt, ϕ, νt) f (νt|st) f (ϑt|bt, ϑt−1, ϕ, νt−1) ·

· f (bt|bt−1, νt−1) f (ϑ0:t−1, b0:t−1, s0:t−1, ϕ, ν0:t−1|y1:t−1)
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where we use the fact that f (st|ϑt, bt, ϑt−1, bt−1, st−1, ϕ, νt−1) = 1. Following Liu and

West (2001), we suppose that the target density at t− 1 is approximated as

f (ϑ0:t−1, b0:t−1, s0:t−1, ϕ, ν0:t−1|y1:t−1) ≈
N∑
i=1

w
(i)
t−1N

(
m(i);h2Σ

)
where m(i) = aϕ(i) + (1− a)ϕ, Σ = V ar(ϕ) and h =

√
(1− a2). In our case we have

a = 0.99. Then, the target density for each particle i is

f
(
yt|ϑ(i)t , b

(i)
t , ϕ

(i), ν
(i)
t

)
f
(
ν
(i)
t |s

(i)
t

)
f
(
ϑ
(i)
t |ϑ

(i)
t−1, b

(i)
t , ϕ

(i), ν
(i)
t−1

)
f
(
bt|b(i)t−1, ν

(i)
t−1

)
N
(
m(i);h2Σ

)
and the importance transition density is

q
(
yt|ϑ(i)t−1, b

(i)
t−1,m

(i), ν(i)
)
f
(
ν(i)|sit

)
q
(
ϑt|ϑ(i)t−1, b

(i)
t , ϕ

(i), ν(i), yt

)
q
(
bt|b(i)t−1, ν(i)

)
N(ϕ;m(i), h2Σ) .

The algorithm

In practice the estimation is implemented through the following algorithm:

For t = 1...T:

0 Compute ϕ = E(ϕ) and Σ = V ar(ϕ). For i = 1...N put

m(i) = aϕ(i) + (1− a)ϕ

g(b
(i)
t−1) = E(bt|bt−1 = b

(i)
t−1)

For i = 1...N

1 Compute weights: w̃
(i)
t ∝ w

(i)
t−1q

(
yt|ϑ(i)t−1, g(b

(i)
t−1),m

(i), ν(i)
)

2 Resample
{
ϑ̃
(i)

t−1

}N
i=1

{
b̃
(i)
t−1

}N
i=1

{
s̃
(i)
t−1

}N
i=1

{
m̃(i)

}N
i=1

{
ν(i)
}N
i=1

according to w̃
(i)
t

3 Propagate:

(i) draw ϕ(i) from N(ϕ; m̃(i), h2Σ)

(ii) draw b̃
(i)
t from q

(
bt|b̃(i)t−1, ν(i)

)
(iii) draw ϑ̃

(i)

t from q
(
ϑt|ϑ̃

(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i), yt

)
4 Compute new weights: w

(i)
t =

f(yt|ϑ̃
(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i))

q(yt|ϑ̃
(i)

t−1, g(b̃
(i)
t−1), m̃

(i), ν(i))

5 Update sufficient statistics s̃
(i)
t = S(s̃

(i)
t−1, ϑ̃

(i)

t , yt)

6 Draw ν(i) from f
(
ν(i)|s̃it

)
7 Final draws:

{
ϑ
(i)
t

}N
i=1

{
b
(i)
t

}N
i=1

{
s
(i)
t

}N
i=1

{
ϕ(i)
}N
i=1

{
ν(i)
}N
i=1

using w(i)t

The weights at step 4 are computed as

w
(i)
t =

f
(
yt|ϑ̃

(i)

t , b̃
(i)
t , ϕ

(i), ν(i)
)
f
(
ϑ̃
(i)

t |ϑ̃
(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i)
)

q
(
yt|ϑ̃

(i)

t−1, g(b̃
(i)
t−1), m̃

(i), ν(i)
)
q
(
ϑ̃
(i)

t |ϑ̃
(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i), yt

) (55)
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Consider the density q
(
ϑ̃
(i)

t |ϑ̃
(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i), yt

)
in the denominator: it can be rewrit-

ten as

q
(
ϑ̃
(i)

t |ϑ̃
(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i), yt

)
=
f
(
yt|ϑ̃

(i)

t , b̃
(i)
t , ϕ

(i), ν(i)
)
f
(
ϑ̃
(i)

t |ϑ̃
(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i)
)

f
(
yt|ϑ̃

(i)

t−1, b̃
(i)
t , ϕ

(i), ν(i)
)

that substituted in (55) gives the expression in the algorithm.
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Figure 1: CPI inflation, quarterly data. Sample: 1955Q1 - 2006Q4
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Figure 2: MS : Comparison between the posterior distributions of the policy parameters

and the probability intervals of LS.
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Figure 3: Generalized Impulse Response Function in the MS model.
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Figure 4: Generalized Impulse Response Function in theMS model: solid line: b1 = 1.3,

dashed line: b1 = 1.5.
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Figure 5: Estimated path for b1,t for the stable model Ms in the Great Inflation sub-

sample (first panel); sequential inference on the parameter ψ1 (second panel).
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Figure 6: Generalized Impulse Response Function in the MU model.
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Figure 7: Generalized Impulse Response Function in theMU model: solid line: b1 = 1.3,

dashed line: b1 = 1.5.
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Figure 8: Estimated path of b1,t for the unstable model MU in the Great Inflation

subsample
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Figure 9: ComparingMS - MU , Great Inflation period. The panels show 2 ln(Wt) (solid

line, scale on the left axis) and the inflation rate (dashed line, scale on the right axis)
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Figure 10: MU : Comparison between the posterior distributions of the policy parameters

and the probability intervals of LS.
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Figure 11: Estimated path of b1,t for the unstable model MU in the Post-82 subsample
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Figure 12: Comparing MS - MU , Post-82 sub-sample. The panels show 2 ln(Wt) (solid

line, scale on the left axis) and the inflation rate (dashed line, scale on the right axis)
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