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Abstract

We introduce a Bayesian approach to predictive density calibration
and combination that accounts for parameter uncertainty and model
set incompleteness through the use of random calibration functionals
and random combination weights. Building on the work of Ranjan and
Gneiting (2010) and Gneiting and Ranjan (2013), we use infinite beta
mixtures for the calibration. The proposed Bayesian nonparametric
approach takes advantage of the flexibility of Dirichlet process mixtures
to achieve any continuous deformation of linearly combined predictive
distributions. The inference procedure is based on Gibbs sampling
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and allows accounting for uncertainty in the number of mixture
components, mixture weights, and calibration parameters. The weak
posterior consistency of the Bayesian nonparametric calibration is
provided under suitable conditions for unknown true density. We study
the methodology in simulation examples with fat tails and multimodal
densities and apply it to density forecasts of daily S&P returns and
daily maximum wind speed at the Frankfurt airport.

AMS 2000 subject classifications: Primary 62; secondary 91B06.

JEL codes: C13, C14, C51, C53.

Keywords: Forecast calibration, Forecast combination, Density forecast,
Beta mixtures, Bayesian nonparametrics, Slice sampling.

1 Introduction

Combining forecasts from different statistical models or other sources of
information is a crucial problem in many important applications. A
wealth of papers have addressed this issue with Bates and Granger (1969)
being one of the first attempts in this field. The initial focus of the
literature was on defining and estimating combination weights for point
forecasts. For instance, Granger and Ramanathan (1984) propose to
combine point forecasts with unrestricted least squares regression coefficients
as weights. The ubiquitous Bayesian model averaging technique relies
on weighted averages of posterior distributions from different models and
implies linearly combined posterior means (Hoeting et al., 1999). Recently,
probabilistic forecasts in the form of predictive probability distributions have
become prevalent in various fields, including macro economics with routine
publications of fancharts from central banks, finance with asset allocation
strategies based on higher-order moments, and meteorology with operational
ensemble forecasts of future weather (Tay and Wallis, 2000; Gneiting and
Katzfuss, 2014).

Therefore, research interest has shifted to the construction of
combinations of predictive distributions, which poses new challenges
(Gneiting and Ranjan, 2013). A prominent, critically important issue is
that predictive distributions ought to be calibrated (Dawid, 1984; Kling and
Bessler, 1989; Diebold et al., 1998; Gneiting et al., 2007; Mitchell and Wallis,
2011). Moreover, the traditional linear pool (Stone, 1961; Hall and Mitchell,
2007) has been generalized to nonlinear aggregation schemes (Fawcett et al.,
2013; Gneiting and Ranjan, 2013), and time-varying approaches can account
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for time instabilities and estimation uncertainty in the combination weights
(Billio et al., 2013).

In this paper, we propose a flexible Bayesian nonparametric approach
to calibration and combination that relies on beta mixtures, and nests the
beta transformed linear pool introduced by Ranjan and Gneiting (2010)
and Gneiting and Ranjan (2013). We develop tools for Bayesian inference
for both cases of known and unkown number of mixture components. In
the case the number of component is not known we assume an infinite
mixture representation and a Dirichlet process prior (Ferguson, 1973; Lo,
1984; Sethuraman, 1994). This type of prior and its multivariate extensions
(e.g., see Müller et al. (2004), Griffin and Steel (2006), Hatjispyros et al.
(2011)), is now widely used due to the availability of efficient algorithms for
posterior computations (Escobar and West, 1995; MacEachern and Müller,
1998; Papaspiliopoulos and Roberts, 2008; Taddy, 2010), including but
not limited to applications in time series settings (Hirano, 2002; Chib and
Hamilton, 2002; Rodriguez and ter Horst, 2008; Taddy and Kottas, 2009;
Jensen and Maheu, 2010; Griffin, 2011; Griffin and Steel, 2011; Burda et al.,
2014; Bassetti et al., 2014; Wiesenfarth et al., 2014; Jochmann, 2015). A
recent account of Bayesian non-parametric inference can be found in Hjort
et al. (2010). In this paper we develop a slice sampling approach that builds
on the work of Walker (2007) and Kalli et al. (2011).

Also, we contribute to the recent literature on posterior consistency of
Bayesian nonparametric inference in econometrics, for example, see the
recent studies of Norets and Pelenis (2012), Pati et al. (2013), Pelenis
(2014), Norets and Pelenis (2015). In this paper we focus on the posterior
consistency of the nonparametric estimates of the calibration function and of
the linear combination of densities. We build on Wu and Ghosal (2009a,b)
and provide weak consistency under general conditions on the combined
densities and under both model set completeness and incompleteness
assumptions.

The remainder of the paper is organized as follows. Section 2 introduces
our beta mixture calibration and combination model and places it in
the context of the general density combination approach introduced by
Fawcett et al. (2013). This is followed by Section 3, where we propose
Bayesian inference based on slice and Gibbs sampling methods. Section
4 provides posterior consistency of the Bayesian nonparametric calibration
and combination in the weak sense under suitable conditions for unknown
true density and under the assumption of incomplete model set. In Section
5 we illustrate the effectiveness of our approach on simulation examples.
Section 6 provides case studies including some well-studied datasets in
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weather forecast and finance and see major improvements in the predictive
performance for daily stock returns and daily maximum wind speed. The
paper closes with a discussion in Section 7.

2 Beta mixture calibration and combination

Let F1, . . . , FM be a set of predictive cumulative distribution functions
(CDFs) for a real-valued variable of interest, y, which might be based on
distinct statistical models or experts. Following Ranjan and Gneiting (2010)
and Gneiting and Ranjan (2013), we consider combination formulas that
map the M -tuple (F1, . . . , FM ) into a single, aggregated predictive CDF, F .
Let

∆M =

{
ω = (ω1, . . . , ωM ) ∈ [0, 1]M :

M∑
m=1

ωm = 1

}
denote the unit simplex in RM . The beta transformed linear pool introduced
by Ranjan and Gneiting (2010) and Gneiting and Ranjan (2013) considers
combination formulas of the form

F (y|θ) = Bα,β

(
M∑
m=1

ωmFm(y)

)
(1)

for y ∈ R, where θ = (α, β,ω), Bα,β denotes the CDF of the beta
distribution with parameters α > 0 and β > 0 and density proportional
to xα−1(1 − x)β−1 on the unit interval. We interpret Bα,β as a parametric
calibration function, which acts on a linear combination of F1, . . . , FM with
mixture weights ω ∈ ∆M . In the particular case in which α = 1 and β = 1,
the calibration function is the identity function, and the beta transformed
linear pool reduces to the traditional linear pool. If F1, . . . , FM admit
Lebesgue densities f1, . . . , fM , respectively, the combination formula (1)
can be written equivalently in terms of the aggregated probability density
function (PDF), namely

f(y|θ) =

(
M∑
m=1

ωmfm(y)

)
bα,β

(
M∑
m=1

ωmFm(y)

)
(2)

for y ∈ R, where bα,β is the PDF of the beta distribution. In the
case M = 1 of a single predictive distribution, the transformation serves
to achieve calibration; when M = 2, we seek to combine and calibrate
simultaneously. The linear combination weights assign relative importance
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to the individual predictive distributions, and the beta transformed linear
pool admits exchangeable flexible dispersivity in a certain well defined sense
(Gneiting and Ranjan, 2013). However, the approach allows for a rather
limited, parametric class of calibration functions only.

In this paper we extend the approach and propose the use of mixtures
of beta calibration and combination models. We generalize (1) and (2) to

F (y|θ) =
K∑
k=1

wk Bαk, βk

(
M∑
m=1

ωkmFm(y)

)
(3)

and

f(y|θ) =
K∑
k=1

wk

(
M∑
m=1

ωkmfm(y)

)
bαk, βk

(
M∑
m=1

ωkmFm(y)

)
(4)

for y ∈ R, where θ = (w,α,β,ω), the vector w = (w1, . . . , wK) ∈ ∆K

comprises the beta mixture weights, α = (α1, . . . , αK) and β = (β1, . . . , βK)
are beta calibration parameters, and ω = (ω1, . . . ,ωM ), with ω1 =
(ω11, . . . , ω1M ), . . . ,ωK = (ωK1, . . . , ωKM ) ∈ ∆M the component specific
sets of linear combination weights.

It is well known that any continuous function g on the unit interval
can be approximated by a beta mixture. Specifically, if we let wk,K =∫ k/K
(k−1)/K g(x) dx for for K = 1, 2, . . . and k = 1, . . . ,K, then

lim
K→∞

(
sup
y∈[0,1]

∣∣∣∣∣
K∑
k=1

wk,K bk,K−k+1(y)− g(y)

∣∣∣∣∣
)

= 0.

This result illustrates the flexibility of the beta mixture approach and
raises the possibility of parsimonious representations, where we assume that
ω1m = · · · = ωKm = ωm for m = 1, . . . ,M and αk = k and βk = K − k + 1
for k = 1, . . . ,K. When K < ∞ we refer to the general beta mixture
model in (3) and (4) as the BMK model, which is much more flexible, and
nests the beta transformed linear pool proposed by Ranjan and Gneiting
(2010) and Gneiting and Ranjan (2013) that arises in the special case
in which K = 1. Bayesian inference can provide guidance in choosing
appropriate compromises between parsimony and flexibility, especially when
K is unknown. In particular, our Bayesian approach allows us to treat the
parameter K as unbounded and random. We refer to this latter setting as
the infinite beta mixture or BM∞ calibration, for which we give details in
the following section.
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The beta mixture calibration and combination model can also be
interpreted in terms of generalized linear pool, introduced by Fawcett et al.
(2013). Specifically, we can write the aggregated PDF (4) as

f(y|θ) =
M∑
m=1

ω̃m(y) fm(y)

for y ∈ R, where the generalized weight functions are given by

ω̃m(y) =
K∑
k=1

ωkmwk bαk, βk

(
M∑
m=1

ωkmFm(y)

)

for m = 1, . . . ,M . We should notice that this simple result provides an
alternative interpretation of the generalized combination model in Fawcett
et al. (2013) as a calibration and combination model. One of the major
differences with respect to Fawcett et al. (2013) is that they use weight
functions that are piecewise constant, whereas the weight functions implied
by the beta mixture model are continuous.

For inference on our model we use a flexible Bayesian approach, which
we describe in the following section.

3 Bayesian inference

In Bayesian settings, it is convenient to express the standard beta
distribution with parameters α > 0 and β > 0 and density proportional
to xα−1(1 − x)β−1 in terms of its mean µ = α/(α + β) and the parameter
ν = α + β > 0 (Epstein, 1966; Robert and Rousseau, 2002; Billio and
Casarin, 2011; Casarin et al., 2012). We refer to the reparameterized PDF
as

b∗µ,ν(x) =
Γ(ν)

Γ(µν)Γ((1− µ)ν)
xµν−1(1− x)(1−µ)ν−1

1[0,1](x),

where Γ denotes the gamma function, and we use the symbol B∗
µ,ν to denote

the corresponding CDF.
We discuss inference in the time series setting at the unit prediction

horizon, where the training data comprise the predictive CDFs F1t, . . . , FMt,
which are conditional on information available at time t− 1, along with the
respective realization, yt, at time t = 1, . . . , T , respectively. We then wish to
estimate a calibration and combination formula of the form (3) that maps
the tuple F1t, . . . , FMt into an aggregated CDF, Ft. In practice, we use the
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estimated calibration and combination formula to aggregate the predictive
CDFs F1,T+1, . . . , FM,T+1, which are based on information available at time
T , into a single predictive CDF, FT+1, for the subsequent value, yT+1, of
the variable of interest. Extensions to multi-step ahead forecasts is possible,
and we leave this for further research.

To ease the notational burden in the time series setting, let ωk =
(ωk1, . . . , ωkM ) ∈ ∆M , and write

Ht(yt|ωk) =
M∑
m=1

ωkm Fmt(yt) (5)

and

ht(yt|ωk) =
M∑
m=1

ωkm fmt(yt) (6)

for t = 1, . . . , T and k = 1, 2, . . . ,K, respectively.

3.1 Bayesian finite beta mixture model

We work with a reparameterized version of the finite beta mixture
calibration and combination model (i.e., K < ∞), in which the aggregated
CDF and PDF can be represented as

Ft(yt|θ) =
K∑
k=1

wk B
∗
µk, νk

(Ht(yt|ωk)) (7)

and

ft(yt|θ) =
K∑
k=1

wk h(yt|ωk)b∗µk, νk(Ht(yt|ωk)) (8)

for t = 1, . . . , T . The parameter vector for the BMK model can then
be written as θ = (w,µ,ν,ω), where w = (w1, . . . , wK) ∈ ∆K , µ =
(µ1, . . . , µK) ∈ (0, 1)K , ν = (ν1, . . . , νK) ∈ (0,∞)K and ω = (ω1, . . . ,ωK) ∈
∆K
M , with K being a fixed positive integer. The parameter space is defined

as Θ = ∆K × (0, 1)K × (0,∞)K ×∆K
M .

Our Bayesian approach assumes that

w ∼ Dir(ξw1, . . . , ξwM ) (9)

and

µk ∼ Be(ξµ1, ξµ2), (10)

νk ∼ Ga(ξν1, ξν2), (11)

ωk ∼ Dir(ξω1, . . . , ξωM ) (12)
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for k = 1, . . . ,K, where Be(α, β) is a Beta distribution with density
proportional to xα−1(1−x)β−1 for x ∈ ∆1, Ga(γ, δ) is a Gamma distribution
with density proportional to xγ exp{−δx} for x > 0, and Dir(ξ1, . . . , ξM )

is a Dirichlet distribution with density proportional to
∏M
m=1w

ξm−1
m for

(w1, . . . , wM ) ∈ ∆M , with all these distributions being independent. Guided
by symmetry arguments in the Beta and Dirchlet case, and using a standard,
uninformative prior in the Gamma case (Spiegelhalter et al., 2004)¡, we
parameterize parsimoniously and set ξw1 = · · · = ξwM , ξµ = ξµ1 = ξµ2,
ξν1 = ξν2, and ξω1 = · · · = ξωM . In what follows, we refer to the common
hyperparameter values as ξw, ξµ, ξν , and ξω, respectively

Adopting a data augmentation framework (Frühwirth-Schnatter, 2006),
we introduce the allocation variables dkt ∈ {0, 1}, where k = 1, . . . ,K and
t = 1, . . . , T . The likelihood of the BMK calibration model is the marginal
of the complete data likelihood

L(Y,D |θ) =
T∏
t=1

K∏
k=1

(
wk ht(yt|ωk) b∗µk,νk (Ht(yt|ωk))

)dkt ,
where we let Y = (y1, . . . , yT ) and D = (d11, . . . , dK1, . . . , d1T , . . . , dKT ).
The implied joint posterior of D and θ given the observations Y satisfies

π(D,θ |Y ) ∝ g(µ,ν,ω)
K∏
k=1

wξw+Tk−1
k

∏
t∈Dk

ht(yt|ωk) b∗µk,νk(Ht(yt|ωk)),

where g(µ,ν,ω) is the prior density, Dk = {t = 1, . . . , T | dkt = 1}, and Tk is
the number of elements in Dk. To sample from the joint posterior, we use a
Gibbs sampler that draws iteratively from π(D |θ, Y ), π(µ,ν |w,ω, D, Y ),
π(ω |w,µ,ν, D, Y ), and π(w |ω,µ,ν, D, Y ), respectively, for which we give
details in Appendix A.1.

The output of the algorithm is a sample θ(i) = (w(i),µ(i),ν(i),ω(i))
for i = 1, . . . , I, where I is the number of iterations in the Gibbs
sampler. The sample is used to approximate with F̂T+1(yT+1) the desired
one-step-ahead cumulative posterior predictive distribution FT+1(yT+1) =∫
Θ FT+1(yT+1|θ)π(θ|Y )dθ, where π(θ|Y ) is the marginal distribution of
π(D,θ|Y ). In the special case when K = 1 we get

F̂T+1(yT+1) =
1

I

I∑
i=1

B∗
µ(i),ν(i)

(
M∑
m=1

ω(i)
m Fm,T+1(yT+1)

)
, (13)

which can be thought of as a Bayesian implementation of the beta
transformed linear pool (1) of Ranjan and Gneiting (2010) and Gneiting
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and Ranjan (2013). An advantage of the proposed approach based on Gibbs
approximation is that parameter uncertainty can be take into consideration
in the prediction. A plug-in approximation of the predictive, which does not
account for the parameter uncertainty, can be used, namely F̂T+1(yT+1) =
FT+1(yT+1|θ̂) where θ̂ is the parameter posterior mean which can be
approximated by the empirical average of θ(i) i = 1, . . . , I. Another
advantage of our approach is that credible intervals for the calibrated
predictive CDF can be easily approximated by using the output of the Gibbs
sampler.

3.2 Bayesian infinite beta mixture model

In the finite-mixture beta calibration and combination model the number of
the beta densities is given, and model selection procedures can be used to
choose the number of mixture components. As evidenced in previous studies
(see Billio et al. (2013) and Fawcett et al. (2013)), in a time series context
the model pooling scheme can be subject to time instability, thus as a new
group of observations arrives the pooling scheme can change dramatically.
Geweke (2010) discusses how standard weights converge to select one model
(or a subset of models), therefore not properly coping with such instability.
For these reasons, one would like to start with an infinite prior number
of calibration functions and local pooling schemes, only a finite number
of which are selected on a given finite sample. The consequence is that
the number K of beta mixture components can vary and increase with the
sample size. One of the side benefits of the model with infinite calibration
components is that it provides an answer to the problem of selecting the
number of components in the finite mixture approach.

We propose here a Bayesian non-parametric models which allows for
estimating the number of components and also for including the model
uncertainty in the posterior predictive. We refer to this model as the infinite-
mixture calibration model BM∞. Let us assume

ft(yt|θ) = b∗µ,ν (Ht(yt|ω))ht(yt|ω),

where θ = (µ, ν,ω), with ω = (ω1, . . . , ωM ). Our prior for the BM∞
parameters θ is nonparametric, i.e. θ ∼ G(θ) where G is a random
probability measure

G ∼ DP (ψ,G0)

and DP (ψ,G0) denotes a Dirichlet process (DP) (Ferguson (1973)) with
concentration parameter ψ and base measure G0. Following the standard
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result of Sethuraman (1994), the Dirichlet process prior can be represented
as

G(dθ) =

∞∑
k=1

wkδθk(dθ)

with random weights wk generated by the stick-breaking construction

wk = vk

k−1∏
l=1

(1− vl)

where the stick-breaking components vl are i.i.d. random variables from
Be(1, φ). The atoms θk are i.i.d. random variables from the base measure
G0. In our model the base measure is given by the product of the following
distribution

Be(ξµ, ξµ)Ga(ξν/2, ξν/2)Dir(ξω, . . . , ξω).

The Dirichlet process prior assumption and the stick-breaking representation
of the DP allow us to write the combination and calibration model in terms
of infinite mixtures of random beta distributions with the following random
pdf

ft(yt|G) =

∫
ft(yt|θ)G(dθ)

=

∞∑
k=1

wkb
∗
µk,νk

(Ht(yt|ωk))ht(yt|ωk).

The number of components sampled in the first T observations is random
and its prior distribution is (Antoniak (1974))

P (K = k|ψ, T ) = T !Γ(ψ)

Γ(ψ + T )
|sTk|ψk

for k = 1, 2, . . ., where sTk is the signed Stirling number (Abramowitz and
Stegun, 1972, p. 824). The dispersion hyper-parameter ψ > 0 is driving
the prior expected number of parameters. Large values of ψ increase the
probability of introducing new components in the mixture. As the prior
dispersion depends crucially on this parameter, the results of the posterior
inference on the infinite mixture model are usually presented for different
values of ψ. It also possible to extend the nonparametric models by assuming
a further stage of the prior hierarchical structure and assuming a prior
for ψ. A common choice for the prior is a gamma distribution, Ga(c, d)
(see Escobar and West (1995)). The second important feature is that our
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inference approach provides, as a natural product, the posterior distribution
of the number of components given a sample of data and allows for the
inclusion of the number of components uncertainty in the predictive density.

Inference on infinite mixture models resulting from a Dirichlet prior
assumption requires the use of simulation methods. Gibbs samplers have
been proposed in Escobar (1994) and Ishwaran and James (2001), which
make use of the Polya-urn representation of the Dirichlet process. Ishwaran
and Zarepour (2000) proposed a sampler based on a truncation of the infinite
mixture representation. Papaspiliopoulos and Roberts (2008) proposed an
exact simulation algorithm based on retrospective sampling. In this paper
we apply the slice sampling algorithm proposed in Walker (2007) and Kalli
et al. (2011). The algorithm uses a set of auxiliary variables to deal with the
infiniteness problem of the mixture model. More specifically, let us introduce
a sequence of slice sampling variables ut, t = 1, 2, . . . , T , then ft(yt|G) is the
marginal of

ft(yt, ut|G) =
∞∑
k=1

1{ut<wk}b
∗
µk,νk

(Ht(yt|ωk))ht(yt|ωk)

Note that given a set of observations, yt and slice variables, ut, t =
1, . . . , T , the complete data likelihood can be written as

L(Y, U |G) =
T∏
t=1

∑
k∈At

b∗µk,νk (Ht(yt|ωk))ht(yt|ωk),

where Y = (y1, . . . , yT ), U = (u1, . . . , uT ), At = {k|ut < wk}. Note that
Nt = Card(At), that is the number of components of the infinite sum, is
finite when conditioning on the slice variables. Thus, the introduction of
the auxiliary variables allows us to have a finite mixture representation of
the infinite mixture model. Following a standard approach to inference for
mixture models (e.g., see Frühwirth-Schnatter (2006)) we now introduce a
sequence of allocation variables, dt, t = 1, . . . , T , with dt ∈ At. Each of
these variables indicates which component of the finite mixture provides the
observation yt. The complete data likelihood is

L(Y, U,D|G) =
T∏
t=1

1{ut<wdt
}b
∗
µdt ,νdt

(Ht(yt|ωdt))ht(yt|ωdt)

where D = (d1, . . . , dT ).
Let us denote by V = (v1, v2, . . .) and Θ = (θ1,θ2, . . .), with θk =

(µk, νk,ωk), ωk = (ω1k, . . . , ωMk), the infinite dimensional vectors of the
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stick-breaking components and atoms respectively. In what follows we
assume the dispersion parameter ψ is unknown with prior distribution π(ψ).

From the completed likelihood function and our assumptions on the prior
distributions, the joint posterior distribution of U , D, V , Θ and ψ given Y
is

π(U,D, V,Θ, ψ|Y ) ∝
T∏
t=1

1{ut<wdt
}b

∗
µdt ,νdt

(Ht(yt|ωdt))ht(yt|ωdt)

×
∏
k≥1

(1− vk)
ψ−1µ

ξµ−1
k (1− µk)

ξµ−1ν
ξν/2
k exp{−ξννk/2}

M∏
i=1

ω
ν/2−1
ik π(ψ).

Joint sampling from the posterior is not possible and this calls for
the application of a Gibbs sampling procedure. Adapting the sampler
described in Walker (2007) and Kalli et al. (2011) to our setting, we
develop an efficient collapsed Gibbs sampling procedure which generates
sequentially the parameters and the latent variables from the full conditional
distributions π(Θ|U,D, V, Y, ψ), π(V,U |Θ, D, Y, ψ), π(D|Θ, V, U, Y, ψ) and
π(ψ|Y ). The details of the steps of the Gibbs sampler are given in Appendix
A.2.

The output of the algorithm are samples w(i) and θ(i) = (µ(i),ν(i),ω(i))
for i = 1, . . . , I where I is the number of MCMC iterations, and can be used
to sample from the one-step-ahead cumulative predictive distribution. For
further details see Appendix A.2.

4 Posterior consistency

In this section we discuss the weak posterior consistency of the infinite
mixture model BM∞. Weak consistency guarantees that asymptotically
the posterior accumulates in weak neighbourhoods of the “true” density f0.
Roughly speaking, the posterior learns from the data and puts more and
more mass near f0.

In the following, we focus on the i.i.d. case and provide general results
which cover the models considered in the simulation examples and the
application to weather forecast. As regards the non i.i.d. case, posterior
consistency proof is case-specific depending heavily on the model used. For
instance, see Tang and Ghosal (2007) for posterior consistency of Bayesian
nonparametric estimates with transition kernel of an ergodic Markov process
and Choudhuri et al. (2004) for the estimation of the spectral density of
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stationary and short-memory Gaussian time series. Posterior consistency
results for calibration in the non i.i.d. case are left for future research.

Let F be the set of all possible densities on the sample space Y ⊂ R and
Π∗ be a prior on F . The posterior is said to be weakly consistent at f0 if
Π∗(U |y1, . . . , yn) converges a.s. to 1 for every weak neighbourhood U of f0,
whenever y1, y2, . . . are i.i.d. observations with common density f0.

The Schwartz theorem states that the consistency at a “true density”
f0 holds if the prior assigns positive probabilities to Kullback-Leibler
neighborhoods of f0. Hence one only needs to check if the Kullback-Leibler
property is satisfied by the prior setting and the true density f0, see Theorem
4.4.2 in Ghosh and Ramamoorthi (2003).

More formally, a Kullback-Leibler neighbourhood of a density f ∈ F of
size ε is defined as

Kε(f0) =

{
g ∈ F|

∫
f log

(
f

g

)
≤ ε

}
,

and the Kullback-Leibler property holds at f0 ∈ F , for short f0 ∈ KL(Π∗),
if Π∗(Kε(f0)) > 0 for all ε > 0. We will denote with supp(µ) the weak
support of a probability measure µ and with KL(f, g) the Kullback-Leibler
divergence between the two densities f and g, i.e. KL(f, g) :=

∫
f log

(f
g

)
.

In this section we will exploit the type I mixture prior representation of
Π∗. Let us recall that a prior on F is said to be a type I mixture prior if it
is induced via the map

G 7→ fG(y) =

∫
Θ
K(y;θ)G(dθ), (14)

where Θ is the mixing parameter space, K(y;θ) a density kernel on Y ×Θ
and G has distribution Π on the space M(Θ) of probability measures on Θ
(see Wu and Ghosal (2009a)).

In our joint calibration and combination model, the kernel is

K(y;θ) = b∗µ,ν(H(y|ω))h(y|ω) (15)

with θ = (θp,θc), where θp = ω indicates the pooling parameters, and
θc = (µ, ν) the calibration parameters. Since we deal only with the case of
i.i.d. observations, we drop from the kernel K the observation index, that
is the conditioning on other variables. The random mixing distribution Π is
given by a Dirichlet process prior, so that

θ|G ∼ G (16)

where G ∼ DP (ψ,G0). Again, for the sake of simplicity we assume that the
concentration parameter ψ is given.
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4.1 Joint calibration and combination consistency

Let us first consider the case in which both the pooling parameters and the
calibration parameters are unknown. In this case Θ = ∆M × [0, 1] × R+

and G is a DP process on M(∆M × [0, 1] × R+) with base measure G0 on
∆M × [0, 1]× R+ and concentration parameter ψ > 0.

Here Π∗ turns out to be the prior on F induced by

G 7→
∫
b∗µ,ν(H(y|ω))h(y|ω)G(dωdµdν)

when G ∼ DP (ψ,G0).
Before stating the first result, let us recall that h(y|ω) =∑M
m=1ωmfm(y).

Theorem 4.1. Assume that the functions fm(·) are continuous on Y. Let
u0 be a continuous density on (0, 1) such that∫ 1

0
[| log(x)|+ | log(1− x)|]u0(x)dx < +∞

and

∫ 1

0
log(u0(x))u0(x)dx < +∞.

(17)

Let f0(y) = u0(H(y|ω0))h(y|ω0) with ω0 in the interior of ∆M and assume
that, for every compact set C ⊂ Y,

inf
y∈C

h(y|ω0) > 0. (18)

Then f0 ∈ KL(Π∗) whenever G0 has full support.

The proof of the previous theorem is postponed to Appendix B. A useful
restatement of the previous result is contained in the following Corollary.

Corollary 4.1. Assume that there is ω0 in the interior of ∆M such that
h(·|ω0) is continuous and (18) holds for every compact set C ⊂ Y and let
f0 be a continuous density on Y such that∫

[| log(H(y|ω0))|+ | log(1−H(y|ω0))|]f0(y)dy < +∞

and KL(f0, h(·|ω0)) < +∞.

(19)

If G0 has full support, then f0 ∈ KL(Π∗).
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Proof. Write H0 and h0 for H(·|ω0) and its density. By assumption (18)
one gets that H0 is continuous and strictly increasing. Hence, if one defines

u0(x) :=
f(H−1

0 (x))

h0(H
−1
0 (x))

,

it follows that f0(y) = u0(H0(y))h0(y). Note that u0 turns out to be a
continuous function on (0, 1). It remains to check that assumption (19)
yields (17). Now, a change of variable gives∫

| log(H(y|ω0))|f0(y)dy =

∫
| log(H(y|ω0))|u0(H0(y))h0(y)dy =

∫
| log(x)|u0(x)dx.

Similarly for
∫
| log(1−H(y|ω0))|]f0(y)dy. Finally

KL(f0, h(·|ω0)) =

∫
log(u0(H0(y))u0(H0(y))h0(y)dy =

∫
u0(x) log(u0(x))dx.

The assumptions of Corollary 4.1 can be easily checked for many applied
contexts. Here we show that the assumptions are satisfied for the Gaussian
mixture and Student-t mixture examples considered later on in this paper
for the simulation study.

Example 4.1. Consider the case in which

h(y|ω) =

M∑
m=1

ωmφ(y|µm, σ2m), f0(y) =

K∑
i=1

piφ(y|µ∗i , σ∗2i )

where φ(·|µ, σ2) is the pdf of a normal distribution of mean µ and variance
σ2. Denote by Φ(·|µ, σ2) the cumulative distribution function of φ(·|µ, σ2).
Let us prove that that f0 ∈ KL(Π∗).

In order to apply Corollary 4.1 one needs to check that (19) is satisfied
for some ω0 in the interior of ∆M . E.g., consider the equal weights linear
pooling, ω0 = (1/M, . . . , 1/M). To this end observe that:

(i) given a mixture of M normal distributions with means and variances
(µm, σ

2
m), m = 1, . . . ,M , if 0 < σ− < minm σm ≤ maxm σm < σ+,

then there are two constants C− and C+ such that, for every y,

C−φ(y|0, σ2−) ≤
M∑
m=1

ωmφ(y|µm, σ2m) ≤ C+φ(y|0, σ2+);
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(ii) as y → +∞, one has (1− Φ(y|0, 1))/φ(y|0, 1) ∼ 1/y) and hence

| log(1− Φ(y|0, σ2))| ∼ y2/σ2.

Using (i) and (ii) one can check that

| log(1−H(y|ω0))| ≤ Cmax{| log(1−Φ(y|0, σ−2)|, | log(1−Φ(y|0, σ+2)|} ≤ C ′y2

for suitable constants C,C ′. Analogous considerations hold for
| log(H(y|ω0))|. Hence the first condition in (19) is satisfied. Using (i)
and the fact that KL(φ(·|µ1, σ21), φ(·|µ2, σ22)) < +∞, it is easy to obtain
also that KL(h(·|ω0), f0) < +∞.

Example 4.2. Consider the case in which

h(y|ω) =

M∑
m=1

ωmφ(y|µm, σ2m), f0(y) =

K∑
i=1

piTµ∗i ,σ∗
i ,ν

(y),

where Tµ,σ,ν is a t-distribution with location, scale and degrees of freedom
paramters µ, σ and ν respectively. Since f0(y) ∼ Cy−ν−1 as |y| → +∞,
arguing as in the previous example it is easy to see that (19) is satisfied
whenever ν > 2. In this case f0 ∈ KL(Π∗).

4.2 Calibration consistency

If the pooling parameters ω0 are known, the inference is limited to the
calibration parameters θc = (µ, ν), hence Θ = [0, 1] × R+ and G is a
DP process on M([0, 1] × R+) with base measure G0 and concentration
parameter ψ.

In this special case Π∗ turns out to be the prior induced by

G 7→
∫
b∗θc(H(y|ω0))G(dθc)h(y|ω0)

when G ∼ DP (ψ,G0).
The analogous of Corollary 4.1 is given below. Note that here ω0 is not

necessarily assumed to be in the interior of ∆M , which means that the set
of models in the combination scheme can be complete.

Theorem 4.2. Let ω0 be a given point in ∆M such that h(·|ω0) is
continuous and (18) holds for every compact set C ⊂ Y and let f0 be a
continuous density on Y such that (19) holds. If G0 has full support, then
f0 ∈ KL(Π∗).
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In some situations, it is useful to consider a base measure G0 without
full support. In this spirit, following the techniques of Tang et al. (2007),
we can prove the next result.

Theorem 4.3. Let ω0 be a given point in ∆M and let

f0(x) = u0(H(y|ω0))h(y|ω0)

with u0(x) = w0b
∗
µ0,ν0(x) + (1 − w0)

∫
(0,1)×R+ b

∗
µ,ν(x)P0(dµdν), P0 being a

probability measure on (0, 1)×R+. If (µ0, ν0) belong to supp(G0), supp(P0) ⊂
supp(G0), and for some ζ > 0 and 0 < η < min(µ0, 1− µ0, ν0, w0) one has∫ 1

0

u0(x)
ζ+1

xζA(1− x)ζB
dx < +∞, (20)

for A = (µ0 + η)(ν0 + η) − 1 and B = (1 − µ0 + η)(ν0 + η) − 1, then
f0 ∈ KL(Π∗).

5 Simulation examples

We assume that a combined predictive distribution can be obtained from
the two normal predictive distributions with different location and equal
scale parameters, N (−1, 1) and N (2, 1), where N (µ, σ2) denotes the normal
distribution with location µ and scale σ.

In the simulation experiments, the hyperparameter setting for the BC
and BMC model is ξjµ = 2, ξjν = 0.1 and ξjω = 1, and ξjw = 1, j = 1, 2. The
priors are informative, but with a large prior variance, thus one can expect
posterior inference should not be affected by the hyperparameter settings.
Our experiments show that the results, in terms of calibration, do not change
when considering less informative prior settings, and secondly that the use
of improper prior distributions in mixtures model, even if possible, still
remains an open issue. See e.g. Wasserman (2000) for a discussion on the
use of improper prior in mixture modelling.

• Linear pool (LP)

f(y|θ) = ωφ(y| − 1, 1) + (1− ω)φ(y|2, 1),

where θ = ω. The model weights in the linear pooling are estimated
using the recursive log score, see e.g. Jore et al. (2010). Equals BM1

with α = β = 1 fixed.
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• Beta-transformed linear pool (BM1)

f(y|θ) = fα,β (H(y|ω))h(y|ω),

where θ = (α, β, ω), h(y|ω) = ωφ(y| − 1, 1) + (1 − ω)φ(y|2, 1) and
H(y|ω) = ων(y| − 1, 1) + (1− ω)ν(y|2, 1).

• Two-component finite beta mixture model (BM2)

f(y|θ) = wfα1,β1 (H(y|ω1))h(y|ω1) + (1− w)fα2,β2 (H(y|ω2))h(y|ω2),

where θ = (w,α1, α2, β1, β2, ω1, ω2), and h(y|ω) and H(y|ω) have been
defined as in the BC model.

• Infinite beta mixture model (BM∞)

Estimation: Based on a set of 1,000 MCMC iterations after a burn-in
period of 2,000 iterations.

For expository purposes we arbitrarily set, in Table 1, α1 = α, β1 = β
and w = 1 for the BC models and ω1 = ω for the models with common
linear combination.

5.0.1 Multimodality

Let us denote with φ(x|µ, σ2) and Φ(x|µ, σ2) the pdf and cdf respectively of
a N (µ, σ2). We assume that the data are generated by the following mixture
of the three normal distributions

yt
i.i.d.∼ p1N (−2, 0.25) + p2N (0, 0.25) + p3N (2, 0.25), t = 1, . . . , 1000,

where p = (p1, p2, p3) ∈ ∆3.
The posterior means of the parameter of the calibration and combination

models are reported in Table 1. Figure 1 shows the empirical cdfs of different
sequences of probability integral transform (PIT). In all the experiments, the
PIT of the non-calibrated model (red lines) is far from the standard uniform
(black lines). In these datasets, the BC clearly lacks calibration. The BC cdf
(green line) is closer to uniformity than the NC model, but it has difficulties
in deforming the combination density some parts of the support.

More specifically, the two-component beta calibrations are able to
achieve a more flexible deformation of the cdf linear combination providing
a calibrated cdf (blue and magenta lines) which is close to the uniform cdf.
Figure 2 shows the results of the calibration and combination procedure
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Table 1: Parameter settings (posterior means) for the calibration models
BM1 and BM2, for different datasets, of i.i.d. 1000 observations
each, simulated from the mixture model p1N (−2, 0.25) + p2N (0, 0.25) +
p3N (2, 0.25), for different values of p = (p1, p2, p3). Note that for expository
purposes we arbitrarily set α1 = α, β1 = β and w = 1 for the BC models
and ω1 = ω for the common linear pooling models.

p (1/5, 1/5, 3/5) (1/7, 1/7, 5/7)

θ BM1 BM2 BM1 BM2

α 0.97 0.94 1.04 0.87
β 1.50 27.48 1.47 2.08
ω 0.20 0.04 0.17 0.29
w 0.36 0.44
α∗ 22.19 17.71
β∗ 4.87 5.09
ω∗ 0.67 0.54

p (1/5, 1/5, 3/5) (1/7, 1/7, 5/7)

θ BM1 BM2 BM1 BM2

w 1.00 0.48 1.00 0.29
α 0.74 2.47 0.74 6.61
β 1.72 2.11 2.03 2.44
ω 0.52 0.54 0.54 0.72
α∗ 2.30 1.96
β∗ 34.21 51.00
ω∗ 0.39 0.19

decomposed along the different components of the mixture. As an example
consider the first dataset, generated with p = (1/5, 1/5, 3/5). The solid and
dashed blue lines in the top-left plot of Figure 2 show the contribution of
the first and second component respectively of the BMC1 mixture model to
the calibration of the density. The first component mainly calibrates the pdf
on the positive part of the support and the second component calibrates the
pdf on the negative part of the support. The results in Table 1 show that
both components assign the same weights (ω = 0.449) to the first model
in the pool, i.e. N (−1, 1). This weight is higher than in the BC model,
which has a less flexible calibration function and thus assigns a lower weight
ω = 0.202 to the first model in the pool. The solid and dashed magenta
lines in the top-left plot of Figure 2 show a behaviour similar to the BMC1
components.
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Figure 1: PITs cdf for different calibration models and different datasets.

Table 1 indicates that the first BMC2 component assigns weight ω1 =
0.043 to the first model in the pool. This means that the calibration on
the negative part of the support set is done mainly using the predictive
distribution of the second model, N (2, 1). The calibration of the positive
part of the set is obtained thanks to the second BMC2 component which
assigns weight ω2 = 0.667 to the first model in the pool.

To investigate the sensitivity of the posterior quantities to the choice
of the hyperparameters, we combine and calibrate the cdfs, on the same
dataset, using two different values of the dispersion parameters, ψ = 1 and
ψ = 5,

The top charts of Figure 3 report the PITs of the average infinite
beta mixture calibration (BMC) model and their 99% credibility intervals
obtained from 1,000 MCMC samples after convergence. Usually a burn-in
sample of 1,000 is used. The PITs of the calibrated model (black lines)
belong to the credibility interval of the BMC, thus the resulting predictive
cdf is well calibrated. We should notice that the credibility intervals are
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Figure 2: Contribution of the calibration components for different models
BC, BMC1 (first and second mixture component, BMC11 and BMC12)
and BMC2 (first and second mixture component, BMC21 and BMC22),
and different datasets.

usually larger than the one obtained using a beta mixture with a fixed
number of components. In fact the calibrated density accounts for both
calibration parameter uncertainty and also for the uncertainty about the
number of mixture components. A comparison between the left- and right-
top chart also show that an increase in the value ofs the dispersion parameter
usually increases the uncertainty.

The credibility intervals (gray lines) obtained with the infinite beta
mixture calibration model, see Figure 3, always contain the PITs (first row)
and the predictive density function (second row) of the correct model. The
infinite BMC seems particularly accurate in the tails (right column). We
also note that the uncertainty of the number components in the infinite
beta mixture implies a wider high probability density region (HPD), see
gray lines in 3, than that given by the finite beta mixture calibration, see
third panel in 4. The prior and posterior distributions of the number of
mixture components in BMC are given in the bottom graph in Figure 3.
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Figure 3: Infinite beta mixture calibrated (BMC), calibrated (C) and
non calibrated (NC) combinations for a dataset of 1,000 samples from
p1N (−2, 0.25) + p2N (0, 0.25) + p3N (2, 0.25) with p = (1/5, 1/5, 3/5). PITs
cdf (top graph) and calibrated pdf (middle graph) of the combination models
C (black), NC (red) and BMC (blue) and BMC 99% HPD (gray). Prior
(black) and posterior (blue) number of components of the random BMC
model (bottom graph).
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The posterior density is more concentrated than the prior, suggesting that
data are informative on the number of calibration components.

5.0.2 Heavy tails

In second example, we assume that the data are generated by the following
mixture of t-distributions, i.e.

yt
i.i.d.∼ 1

2
T (−1, 1, 6) +

1

2
T (2, 1, 6), t = 1, . . . , 3000,

where T (µ, σ, ν) denotes a t-distribution with location, scale and degrees of
freedom parameters µ, σ and ν respectively. As before, we assume that
the predictive distribution is obtained from the combination of the two
normal distributions given in the example of the previous section, which are
N (−1, 1) and N (2, 1). The NC, BC, BMC1 and BMC2 models are defined
as in the first example. Fig 4 focuses on the right tail of the predictive
pdf and shows results for the calibrated and beta calibrated PITs cdf and
their 99% HPD. There is strong evidence of the difficulties of the BC model
in calibrating the tails. The BC underestimates the tail probability and
over-estimates the central part of the distribution. The BMC1 and BMC2
models are able instead to provide well-calibrated PITs on the tails of the
distribution.

In the second set of experiments we assume ψ is unknown. The resulting
hierarchical model is a continuous mixture of infinite Dirichlet mixture,
which usually leads to more dispersed predictive distributions. The results
of the infinite mixture calibration are given in Figure 5.

Both cdf (top panel) and pdf (second panel) indicate that the Bayesian
BC has problems producing well-calibrated predictions. The Bayesian
nonparametric calibration BMC, on the contrary, produces well-calibrated
densities, in particular on the tails; see also the 99% credibility intervals.
We note that the posterior distribution of the number of clusters is more
concentrated than the prior, thus there is learning from the data on the
number of mixture components. Finally, our experiments changing the
dispersion parameter indicate no substantial changes in the posterior density
over different hyperparameter values.

6 Empirical applications

Then, we investigate relative predictability accuracy for the out-of-sample
period. Precisely, as in Geweke and Amisano (2010), Geweke and Amisano
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Figure 4: Results of the Bayesian calibration model BC (top), BMC1
(middle) and BMC2 (bottom) for the right tail of the predictive distribution.
In each plot the PITs cdf of the calibrated (solid black line) and beta
calibrated model (solid coloured line) and their 99% HPD region (gray
dashed lines)

(2011) and Fawcett et al. (2013), we evaluate the predictive densities using
the Kullback Leibler Information Criterion (KLIC) based measure, utilizing
the expected difference in the Logarithmic Scores of the candidate forecast
densities. The KLIC computes the distance between the true density of a
random variable and some candidate density. Even though the true density
is not known, for the comparison of two competing models, it is sufficient
to consider the average Logarithmic Score (AvLS). The continuous ranked
probability score (CRPS), defined at time t for model k as:

CRPSt,k =

∫ (
Ft,k(zt)− 1[yt,+∞)(z)

)2
dz

where Ft,k(yt) and ft,k(yt) are the cdf and pdf, respectively, for model k.

6.1 Stock returns

The first application considers S&P500 daily percent log returns data from 3
January 1972 to 31 December 2008, an updated version of the database used
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Figure 5: Infinite beta mixture calibrated (BMC), calibrated (C) and
non calibrated (NC) combinations for a dataset of 2,000 samples from
1/2T (−1, 1, 6) + 1/2T (2, 1, 6). PITs cdf (top graphs) and calibrated pdf
(middle graphs) of the combination models C (black), NC (red) and BMC
(blue) and BMC 99% HPD (gray). Prior (black) and posterior (blue) number
of components of the random BMC model (bottom).
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in studies such as Geweke and Amisano (2010), Geweke and Amisano (2011)
and Fawcett et al. (2013).1 We estimate a Normal GARCH(1,1) model and
a t-GARCH(1,1) model via maximum likelihood (ML) using rolling samples
of 1250 trading days (about five years) and produce one day ahead density
forecasts. The first one day ahead forecast refers to December 15, 1975.
The predictive densities are formed by substituting the ML estimates for
the unknown parameters. We combine the two predictive densities using a
linear pooling with recursive log score weights, see description in Section 5.2

Also in this section, we refer to it as the non-calibrated model. Furthermore
we consider our mixture of beta probability density functions (BMC) to
achieve better calibration properties. We split the sample in two periods.
The data from December 15, 1975 to December 31, 2006 are used for an
in-sample calibration of our method to investigate its properties over a long
period. The data from January 3, 2007 to December 31, 2008 for a total
of 504 observations, are used for our out-of-sample analysis. Therefore, we
extend evidence in Geweke and Amisano (2010) and Geweke and Amisano
(2011) by focusing on the period related to Great Financial Crisis, with the
first semester of 2007 considered a tranquil period and the remaining part of
the sample corresponding to the most turbulent times. In this experiment,
we fit the calibration over a moving window of 250 days and produce one-day
ahead forecasts.3

First, we compare the two individual models and the two combinations
in terms of calibration, measured as PIT, over the full sample period (in-
sample and out-of-sample periods).4 Figure 6 reports calibration results for
the in-sample analysis. The BMC line is the closer to the 45 degree line,
which represents the PIT plot for the unknown true/ideal model. This 45
degree line always belongs to the confidence interval of the BMC. NC is
not calibrated for all quantiles. In particular, on the upper and lower tails,
the NC differs substantially from the BMC. As in the simulation exercises
the posterior density for the numbers of beta components in BMC is more
concentrated than the prior.

We now turn our attention to the out-of-sample analysis and the log score

1We thank James Mitchell for providing data.
2More flexible weighting schemes, such as time-varying weights, can also be computed.
3We also investigated out-of-sample performance over the period from 15 December

1976 to 16 December 2002, the same sample applied in Geweke and Amisano (2010) and
Geweke and Amisano (2011). Superior performance of our BMC are confirmed in this
longer sample.

4Figures focusing only on the out-of-sample period provide similar evidence and
available upon request from the authors.
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Figure 6: Infinite beta mixture calibrated (BMC), calibrated (C) and non
calibrated (NC) combinations for the S&P500 daily percent log returns data.
PITs cdf (lines from 1 to 3) of the idea model I C (black), combination
models NC (red) and BMC (blue) and BMC 99% HPD (gray). Prior (black)
and posterior (blue) number of components of the random BMC model
(bottom).

results. Table 2 reports average log scores for the 4 forecasting methods.
BMC provides the highest score. Figure 7 shows that after the initial weeks
of January 2007 where models perform similarly, BMC outperforms the other
three approaches. The t-model provides higher scores than the normal one
and the non-calibrated combination. The accuracy of the normal Garch
model is very low during our OOS period, in particular on the extreme
events, which results in deteriorating NC performance after August 2007,
the beginning of the turbulent times. Just selecting the t-GARCH version
or, even better, applying local weights as in our BMC improves accuracy.
Figure 8 shows the BMC-based predictive density.
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Table 2: Average log scores for the Normal GARCH model (Normal),
t-GARCH model (Student-t), linear pooling (NC) and beta mixture
calibration (BMC) over the sample period from January 1, 2007 to December
31, 2008.

Normal Student-t NC BMC
AvLS -2.311 -1.650 -1.827 -1.450
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Figure 7: Cumulative log scores for the Normal GARCH model (Normal),
t-GARCH model (Student-t), linear pooling (NC) and beta mixture
calibration (BMC) over the sample period from January 1, 2007 to December
31, 2008.

6.2 Wind speed

The second empirical example considers the dataset used in Lerch and
Thorarinsdottir (2013).5 It consists of 50 ensemble member predictions
(Molteni et al., 1996) of wind speed at ten meters above the ground, obtained
from the global ensemble prediction system of the European Centre for
Medium-Range Weather Forecasts (ECMWF). We restrict our attention to
the ensemble predictions for the maximum wind speed at the station at
Frankfurt airport. The station ensemble forecasts are obtained by bilinear
interpolation of the gridded model output.

We consider the ECMWF ensemble run initialized at 00 hours UTC with
a horizontal resolution of about 33 km, a temporal resolution of 3-6 hours

5We thank Sebastian Lerch and Thordis Thorarinsdottir for providing data and
forecasts.
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Figure 8: Fanchart of the BMC model and observations (red points) over
the sample period from January 1, 2007 to December 31, 2008.

and lead times of 3, 6 and 24 hours. To obtain predictions of daily maximum
wind speed, we take the daily maximum of each ensemble member at the
Frankfurt location. One day ahead forecasts are given by the maximum over
lead times. The observations are hourly observations of 10-minute average
wind speed which is measured over the 10 minutes before the hour. To
obtain daily maximum wind speed, from 1 May 2010 to 30 of April 2011,
we take the maximum over the 24 hours corresponding to the time frame of
the ensemble forecast.

The results presented below are based on a verification period from 9
August 2010 to 30 April 2011, consisting of 263 individual forecast cases.
Additionally, we use data from 1 February 2010 to 30 April 2011 to obtain
training periods of equal length for all days in the verification period and for
model selection purposes and forecasts from May 1, 2010 to 8 August 2010
(100 observations) as initial training period for the combination methods.

Following Lerch and Thorarinsdottir (2013), we consider two competing
models: the truncated normal distribution (TN) and the generalized extreme
value distribution (GEV). The TN model is estimated by minimizing the
CRPS. The GEV model is estimated by maximum likelihood estimation.

First, we report in-sample results over the sample from May 1, 2010 to
30 April 2011. Then, we implement an out-of-sample exercise for the period
from August 9, 2010 to 30 April 2011. We report both log score and CRPS
results.
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Figure 9: Infinite beta mixture calibrated (BMC), calibrated (C) and non
calibrated (NC) combinations for the maximum wind speed at the station
at Frankfurt airport. PITs (left top) of the combination models C (black),
NC (red) and BMC (blue) and BMC 99% HPD (gray). Prior (black) and
posterior (blue) number of components of the random BMC model (right
top).

Table 3: Average log scores (AvLS) and average CRPS (AvCRPS) for the
truncated normal (TN), the generalized extreme value distribution (GEV),
linear pooling (NC) and beta mixture calibration (BMC) over the sample
period from August 9, 2010 to 30 April 2011.

TN GEV NC BMC
AvLS -2.812 -2.904 -2.433 -1.997
AvCRPS 1.346 1.802 1.314 0.982

Figure 9 reports in-sample calibration results. The BMC line is close
to the ideal model and always includes the 45 degree line in the confidence
interval. The NC performs poorly for small quantiles. The posterior density
for the numbers of beta components in BMC is more concentrated than
the prior, confirming also in this exercise that data are informative on the
number of mixture components. When focusing on the OOS exercise, the
BMC predictive distribution predicts accurately and provides the highest
average LS and the lowest average CRPS in Table 3. Gains are substantial,
as Figure 10 shows. The distribution is often multimodal, see Figure 11,
with the highest mode at low values of wind speed, and a second mode
concentrated around values of wind speed greater than 5 meters per second.

30



09.08.2010 28.09.2010 17.11.2010 06.01.2011 25.02.2011 16.04.2011
0

50

100

150

200

250

300

350

400

450

500

 

 
TN
GEV
NC
BMC

Figure 10: Cumulative CRPS for the truncated normal (TN), the the
generalized extreme value distribution (GEV), linear pooling (NC) and beta
mixture calibration (BMC) over the sample period from August 9, 2010 to
30 April 2011.

The truncated normal has too many values in the lower and upper tails;
the GEV is too skewed to the upper tail, thus predicting on average too
high values. The NC is also upper biased by the GEV. The BMC shifts the
probability mass of the predictive distribution from the upper tail to the
central part and the left tail, thus producing better calibrated forecasts.

7 Discussion

We propose a Bayesian approach to predictive density calibration accounting
for parameter uncertainty. We build on the predictive density calibration
and combination framework of Ranjan and Gneiting (2010) and Gneiting
and Ranjan (2013) and propose the use of infinite mixtures of beta densities
for the calibration. We rely upon the flexibility of the infinite beta
mixtures to achieve a continuous deformation of the linear combination of
predictive distributions. Each component of the beta mixture calibrates
different parts of the predictive cdf and uses component-specific combination
weights. Thanks to these features, our calibration model can also be viewed
as a mixture of local combination models. Furthermore, our Bayesian
framework allows for estimating the number of mixture components,
the beta parameters and the predictive weights, and including various
sources of uncertainty in the predictive density. We discuss properties of
our methodology in simulation exercises, showing how the infinite beta
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Figure 11: Fanchart of the BMC model and observations (red points) over
the sample period from August 9, 2010 to 30 April 2011.

components are adequate in applications with multimodal densities and
heavy tails. In empirical applications to stock returns and wind speed data,
our infinite beta mixture approach provides well-calibrated and accurate
density forecasts.
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A Computational details

A.1 Gibbs sampler for the finite beta mixture model

1. Full conditional distribution of D. Samples from the full conditional
of D given (θ, Y ) are obtained by drawing sequentially over t, vectors
dt = (d1t, . . . , dKt) from multinomial distributions with probabilities

π(dkt = 1|θ, Y ) ∝ wkb
∗
µk,νk

(H(yt|ωk))h(yt|ωk)

for k = 1, . . . ,K.

2. Full conditional distribution of (µ,ν). Samples from the full conditional
of (µ,ν) given (w,ω, D, Y ) are obtained in a sequence of Metropolis-
Hastings (MH) steps on a transformed space. Following Bouguila et al.
(2006), we let: µk = 1/(1+ exp{−γk}) and νk = exp{λk}, k = 1, . . . ,K and
draw iteratively from

π(γk, λk|w,ω, D, Y ) ∝∏
t∈Dk

b∗µk,νk (H(yt|ωk))µ
ξ1µ−1
k (1− µk)

ξ2µ−1νξ1ν−1
k exp{−ξ2ννk}J(µk, νk),

where J(µk, νk) = exp{−γk − λk}(1 + exp{−γk})−2(1 + exp{−λk})−2 is
the Jacobian of the transform. In the MH we use a Gaussian random
walk proposal distribution with covariance matrix Σ = 0.05I2, which yields
acceptance rates of about 0.4.

3. Full conditional distribution of ω. Samples from the full conditional of ω
given (w,µ,ν, D, Y ) are obtained by drawing iteratively ωk, k = 1, . . . ,K.
At each step we apply a MH with the prior distribution as proposal. The
acceptance probability of each MH step is:

min

∏
t∈Dk

b∗µk,νk(H(yt|ω∗))h(yt|ω∗)

b∗µk,νk(H(yt|ωk))h(yt|ωk)
, 1

 ,

where ω∗ ∼ Dir(ξω, . . . , ξω).
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4. Full conditional distribution of w. Samples from the full conditional of w
given (ω,µ,ν, D, Y ) are obtained by exploiting the conjugacy of the prior
distribution, in that

π(w1, . . . , wk|ω,µ,ν, D, Y ) ∝ Dir(ξw + T1, . . . , ξw + Tk).

When K = 1, we replace the single-move Gibbs sampler with a global
MH sampler with target distribution obtained by applying to the joint
posterior

π(µ, ν, ω|Y ) ∝
T∏
t=1

b∗µ,ν (H(yt|ω))h(yt|ω)µξ1µ−1(1− µ)ξ2µ−1

× νξ1ν−1 exp{−ξ2νν}ωξ1ω−1(1− ω)ξ2ω−1

where Y = (y1, . . . , yt), the change of variable µ = 1/(1 + exp{−θ1}),
ν = exp{θ2} and ω = 1/(1 + exp{−θ3}. We consider a random walk
proposal on the transformed parameter space accounting for the Jacobian
of the transformation, that is, J = exp{θ2 − θ1 − θ3}(1 + exp{−θ1})−2(1 +
exp{−θ3})−2. Setting the covariance matrix to Σ = diag{0.1, 0.05, 0.1}, we
achieve acceptance rates of about 0.4.

A.2 Gibbs sampler for the infinite beta mixture model

Let Dk = {t = 1, . . . , T |dt = k} denote the set of indexes of the observations
allocated to the k-th component of the mixture and withD = {k|Dk ̸= ∅} the
set of indexes of the non-empty mixture components. Then the cardinality
of D, Card(D), gives the number of mixture components and D∗ = supD
can be interpreted as the number of stick-breaking components used in the
mixture. As noted by Kalli et al. (2011), the sampling of an infinite numbers
of Θ and V is not necessary, since only the elements in the full conditional
pdfs of D are needed. The maximum number of atoms and stick-breaking
components to sample is N∗ = max{t = 1, . . . , T |N∗

t }, where N∗
t is the

smallest integer such that
∑N∗

t
j=1wj > 1 − ut. Thus sampling from the

joint π(V,U |Θ, D, Y, ψ) is obtained by splitting V = (V ∗, V ∗∗), where V ∗ =
(v1, . . . , vD∗) and V ∗∗ = (vD∗+1, . . . , vN∗), and by further collapsing the
Gibbs, that is by sampling from π(V ∗|Θ, D, Y, ψ) and π(U |V ∗,Θ, D, Y, ψ)
and then from π(V ∗∗|V ∗, U,Θ, D, Y, ψ).
1. Full conditional distribution of V ∗. Sampling from the full conditional of
V ∗ given (D,Θ, Y, ψ) is obtained by drawing vk, with k ≤ D∗, from the full
conditionals

π(vk|D,Y ) ∝ (1− vk)
ψ+bk−1vakk ,
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that is, the PDF of a Be(ak + 1, bk + ψ) with ak =
∑T

t=1 1{dt=k} and

bk =
∑T

t=1 1{dt>k}.

2. Full conditional distribution of U . Samples from the full conditional of
U given (V,D,Θ, Y, ψ) is obtained by simulating from the uniform

π(ut|V,D, Y ) ∝ 1

wdt
1{ut<wdt

}

for t = 1, . . . , T .

3. Full conditional distribution of V ∗∗. Sampling from the full conditional
of V ∗∗ given (V ∗, U,D,Θ, Y, ψ) is obtained by sampling from

π(vk|U,D, Y ) ∝ (1− vk)
ψ−1,

that is, the PDF of a Be(1, ψ), with k = D∗ + 1, . . . , N∗.

4. Full conditional distribution of Θ. Sample the elements k, k = 1, . . . , N∗,
of Θ given (U,D, V, Y, ψ), from the full conditional

π(θk|U,D, V, Y ) ∝
∏
t∈Dk

b∗µk,νk(H(yt|ωk))h(yt|ωk)

× µ
ξµ−1
k (1− µk)

ξµ−1ν
ξν/2
k exp{−ξννk/2}

M∏
i=1

ωξω−1
ik 1{ωk∈∆M}

for k ∈ D, and from the prior G0 for k /∈ D. We sample from the full
conditional by iterating over the following steps:

(a) π(µk, νk|ωk, U,D, V, Y, ψ)

(b) π(ωk|µk, νk, U,D, V, Y, ψ).

We apply here the same sampling strategy described for the parameter of
the finite beta mixture model.

5. Full conditional distribution of D. Samples from the full conditional of
D given (V,U,Θ, Y, ψ) are obtained by sampling from

π(dt|V,U, Y ) ∝ 1{ut<wdt
}fµdt ,νdt (H(yt|ωdt))h(yt|ωdt),

with dt ∈ {1, . . . , N∗
t }, where N∗

t is defined above.
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6. Full conditional distribution of ψ. If the dispersion parameter ψ is
assumed to be random with Ga(c, d) prior, then an extra step is needed
in the Gibbs sampler. More specifically, the full conditional distribution of
ψ given U , D, V and Θ has density

π(ψ|K,T ) ∝ B(ψ, T )ψK+c−1 exp{−dψ}1ψ∈(0,+∞),

which depends only on the number of observations T and the number of
mixture components N∗, which has been defined above.

The Gibbs sampler can used to generate draws from the predictive
distribution F̂T+1(yT+1). At each iteration a uniform random variable u(i) is

sampled from the unit interval and θ
(i)
j is used such that w

(i)
j−1 < u(i) < w

(i)
j .

If j > N∗ (i), then more weights are required than currently exist, and they

can be sampled from Be(1, ψ) and the additional θ
(i)
j from G0. Having taken

θ
(i)
j , y

(i)
T+1 can be sampled from B∗

µ
(i)
j ,ν

(i)
j

(
H(yT+1|ω(

ji))
)
.

B Proofs of the results of Section 4

The proof of Theorem 4.1 is based on an application of Theorem 1 and
Lemma 3 of Wu and Ghosal (2009a,b). For the shake of clarity we report
the statements of these results in Theorems B.1 and B.2 below.

To prove that f0 ∈ KL(Π∗), Wu and Ghosal (2009a) suggest to split the
problem in two steps, as shown in the next very simple theorem.

Theorem B.1 (Thm. 1 of Wu and Ghosal (2009a)). If for any ϵ there is a
probability measure Gϵ and a measurable set W ⊂ M(Θ), with Gϵ ∈ W and
Π(W) > 0, such that

(H1)
∫
log(f0/fGϵ)f0 < ϵ,

(H2)
∫
log(fGϵ/fG)f0 < ϵ for every G in W;

then f0 ∈ KL(Π∗).

Proof. Since∫
log
( f0(y)
fG(y)

)
f0(y) =

∫
log
( f0(y)
fGϵ(y)

)
f0(y)dy +

∫
log
(fGϵ(y)

fG(y)

)
f0(y)dy,
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one has

Π∗
{∫

log(f0(y)/fG(y))f0(y)dy < 2ϵ
}

≥ Π∗
{∫

log(fGϵ(y)/fG(y))f0(y)dy < ϵ
}
≥ Π(W) > 0.

Given a probability Gϵ satisfying (H1), in general some work is need to
verify assumption (H2). A useful sufficient condition is contained in Lemma
3 of of Wu and Ghosal (2009a).

Theorem B.2 (Lemma 3 of Wu and Ghosal (2009a)). Let Θ be a separable
metric space. If for any ϵ > 0 there is a probability measure Gϵ ∈ supp(Π)
such that (H1) holds and there is a closed set Dϵ such that

(H3) Dϵ contains sup(Gϵ) in its interior and∫
log
( fGϵ(y)

infθ∈Dϵ K(y; θ)

)
f0(y)dy < +∞,

(H4) infy∈C infθ∈Dϵ K(y; θ) > 0 for every compact set C ⊂ Y,

(H5) {θ 7→ K(y; θ) : y ∈ C} is uniformly equicontinuous on Dϵ,

then (H2) holds for a suitable W ⊂ M(Θ) with Π(W) > 0, and hence
f0 ∈ KL(Π∗).

Assumption (H1) –(H2), respectively– corresponds to (A1) –(A3),
respectively– in Theorem 1 of Wu and Ghosal (2009a). Note the Theorem
Wu and Ghosal (2009a) is stated for Type II prior and it has an additional
assumption (A2), which is not needed for Type I prior. Note also that
assumptions (H3)-(H4) correspond to assumptions (A7)-(A8) of Lemma 3
of Wu and Ghosal (2009a), while (H5) is slightly different from the original
assumption (A9), see Wu and Ghosal (2009b).

Proof of Theorem 4.1. Here we need to think ∆M as the set
{(ω1, . . . , ωM−1) ∈ [0, 1]M−1 :

∑M−1
i=1 ωi ≤ 1} endowed with the topology

induced by the euclidean norm. Clearly, ωM will denote 1−
∑M−1

i=1 ωi.
Verification of H1 of Theorem B.1. Since u0 is continuous on (0, 1) and∫ 1

0 log(u0(x))u0(x)dx < +∞ by Theorem 1 in Robert and Rousseau (2002)
there is

uϵ(x) = uP̃ϵ
(x) =

Kϵ∑
i=1

wi,ϵb
∗
µi,ϵ,νi,ϵ(x),
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where P̃ϵ(dµdν) :=
∑Kϵ

i=1wi,ϵδµi,ϵ,νi,ϵ(dµdν), such that KL(u0, uϵ) ≤ ϵ. If

Gϵ(dωdµdν) := δω0(dω)× P̃ϵ(dµdν), then

fGϵ(y) =

∫
b∗µ,ν(H(y|ω))h(y|ω)Gϵ(dωdµdν) = uϵ(H(y|ω0))h(y|ω0).

By a simple change of variables,

KL(f0, fGϵ) =

∫
u0(H(y|ω0))h(y|ω0) log

(u0(H(y|ω0))h(y|ω0)

uϵ(H(y|ω0))h(y|ω0)

)
dy

=

∫ 1

0
u0(z) log

(u0(z)
uϵ(z)

)
dz.

That is
KL(f0, fGϵ) = KL(u0, uϵ) ≤ ϵ.

Note that supp(Gϵ) = {ω0}×∪Kϵ
i=1{(µi,ϵ, νi,ϵ)} and, sinceG0 has full support,

Gϵ ⊂ supp(Dir(ψ,G0)).
Verification of H3 of Theorem B.2. One can find a compact set D∗

ϵ

in (0, 1) × (0,+∞) such that D∗
ϵ contains ∪Kϵ

i=1{(µi,ϵ, νi,ϵ)} in its interior.

Moreover, recalling that h(y|ω) =
∑M

i=1ωifi(y) and that ω0 is in the
interior of ∆M , one can find a (sufficiently small) compact set ∆∗

ϵ ⊂ ∆M

containing ω0 in its interior such that if ω ∈ ∆∗
ϵ then C1,ϵh(y|ω0) ≤

h(y|ω) ≤ C2,ϵh(y|ω0) for every y. It follows that Dϵ = ∆∗
ϵ × D∗

ϵ is a
compact set containing supp(Gϵ) in its interior. Noticing that if ω ∈ ∆∗

ϵ

then C2,ϵH(y|ω0) ≥ H(y|ω) ≥ C1,ϵH(y|ω0) and C2,ϵ(1 − H(y|ω0)) ≥
(1−H(y|ω)) ≥ C1,ϵ(1−H(y|ω0)), one can write

Iϵ(y) := inf
(ω,µ,ν)∈Dϵ

K(y;ω, µ, ν)

= inf
(ω,µ,ν)∈Dϵ

h(y|ω)
H(y|ω)µν−1(1−H(y|ω))(1−µ)ν−1

B(µν, (1− µ)ν)

≥ C3,ϵh(y|ω0)H(y|ω0)
Aϵ−1(1−H(y|ω0))

Bϵ−1 =: I∗ϵ (y)

where C3,ϵ = C1,ϵC
−2
2,ϵ inf{C

µν+(1−µ)ν
1,ϵ /B(µν, (1 − µ)ν) : (µ, ν) ∈ D∗

ϵ} > 0,
Aϵ = sup{µν : (µ, ν) ∈ D∗

ϵ} > 0 and Bϵ = sup{(1− µ)ν : (µ, ν) ∈ D∗
ϵ} > 0.

Hence, one the one hand fGϵ(y) ≥ Iϵ(y) and hence log(fGϵ(y)/Iϵ(y)) ≥ 0,
on the other hand∫

log
(fGϵ(y)

Iϵ(y)

)
f0(y)dy ≤

∫
log
(fGϵ(y)

I∗ϵ (y)

)
f0(y)dy

≤
∫ 1

0
log
( uϵ(x)

xAϵ−1(1− x)Bϵ−1

)
u0(x)dx+ | log(C3,ϵ)|.
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Since C4,ϵx
A′

ϵ−1(1 − x)B
′
ϵ−1 ≤ uϵ(x) ≤ C5,ϵx

A′′
ϵ−1(1 − x)B

′′
ϵ −1 for suitable

constants, it follows that∫ ∣∣∣ log ( uϵ(x)

xAϵ−1(1− x)Bϵ−1

)∣∣∣u0(x)dx ≤ C6,ϵ

∫
[| log(x)|+| log(1−x)|]u0(x)dx < +∞

by assumption (17). Hence

0 <

∫
log
( fGϵ(y)

inf(ω,µ,ν)∈Dϵ
K(y;ω, µ, ν)

)
f0(y)dy < +∞.

Verification of H4 of Theorem B.2. It follows immediately that, for every
compact set C,

inf
y∈C

inf
(ω,µ,ν)∈Dϵ

K(y;ω, µ, ν) ≥ inf
y∈C

I∗ϵ (y)

and the right hand side is strictly positive by (18).
Verification of H5 of Theorem B.2. The function (ω, µ, ν, y) 7→

K(y;ω, µ, ν) is continuous and hence uniformly continuous on the compact
set C ×Dϵ. It follows that the family {(ω, µ, ν) 7→ K(y;ω, µ, ν) : y ∈ C} is
uniformly equicontinuous on Dϵ.

Proof of Theorem 4.2. The proof is a simple modification of the proof of
Theorem 4.1. Note that here the assumption that ω0 belongs to the interior
of ∆M is not needed.

Proof of Theorem 4.3. Given any measure Q on (0, 1) × R+ recall that
fQ(x) = uQ(H(y|ω0))h(y|ω0) where uQ(x) =

∫
b∗µ,ν(x)Q(dµdν). Again,

by a simple change of variables, KL(fG, f0) = KL(uG, u0). Hence to prove
that f0 ∈ KL(Π∗) it suffices to prove that for every ϵ > 0, P{KL(uG, u0) ≤
ϵ} > 0.

Now recall that if G ∼ DP (ψ,G0) then G admits the representation
G = w1δθ1 + (1 − w1)G1 where w1, θ1 = (µ1, ν1) and G1 are stochastically
independent, G1 ∼ DP (ψ,G0), w1 ∼ Beta(1, ϕ1) and θ1 ∼ G0.

Given η, η′ > 0 define Uη := {(w, µ, ν) ∈ (0, 1)2 × R+ : |w − w0| ≤
η, |µ−µ0| ≤ η, |ν−ν0| ≤ η} and U∗

η,η′ := {G = w1δθ1+(1−w1)G1 : (w1, θ1) ∈
Uη, |uG1 −uP0 |1 ≤ η′}, where we denote by |u1−u2|1 =

∫
|u1−u2|dx be the

L1 distance between two densities u1 and u2.
Note that if G ∈ U∗

η,η′ then

uG(x) ≥ w1b
∗
µ1,ν1(x) ≥ cηx

Aη(1− x)Bη
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where

cη :=
w0 − η

B((µ0 − η)(ν0 − η), (1− µ0 − η)(ν0 − η))
,

Aη := (µ0 + η)(ν0 + η)− 1, Bη := (1− µ0 + η)(ν0 + η)− 1,

provided that µ0 − η, 1− µ0 − η, ν0 − η, w0 − η are positive. Hence, for any
ζ > 0, [ u0(x)

uG(x)

]ζ
≤ c∗η,ζ

u0(x)
ζ

xAηζ(1− x)Bηζ
=: g∗(x)

for a suitable constant c∗η,ζ . By assumption (20), there is ζ such that

C0 :=
∫
g∗(x)u0(x)dx < +∞. Hence for such (η, ζ), by Lemma 7 of Ghosal

and van der Vaart (2007),

KL(u0, uG) ≤ C1d
2
H(uG, u0)[1 + max(0, log(d−1

H (uG, u0)))]

where dH(uG, u0) = (
∫
(
√
uG−

√
u0)

2dx)1/2 is the Hellinger distance between
u0 and uG. Note that the constant C1 depends on C0, η and ζ only. Since
dH(uG, u0)

2 ≤ |uG − u0|1 (see, e.g., Corol.1.2.1 in Ghosh and Ramamoorthi
(2003)) it follows that

KL(u0, uG) ≤ C2|uG − u0|1/21

for every G ∈ U∗
η,η′ when η

′ is small enough. Now, it is easy to check that

|uG − u0|1 ≤ 2|w1 − w0|+ |uδθ1 − uδθ0 |1 + |uG1 − uP0 |1

and that |uδθ1 − uδθ0 |1 goes to zero as |θ1 − θ0| → 0. Since if η′′ ≤ η
then U∗

η′′,η′ ⊂ U∗
η,η′ , using the previous results, for every ϵ > 0, one

can find sufficiently small η′ and η′′ ≤ η such that if G ∈ U∗
η′′,η′ then

KL(uG, u0) ≤ ϵ. By standard argument (see e.g. the proof of Thm.2 in
Tang et al. (2007)) if G1 is in a sufficiently small weak neighbourhood Vη′

of P0 then |uP0 − uG1 |1 ≤ η′, hence

{G = w1δθ1+(1−w1)G1 : G1 ∈ Vη′ , (w1, θ1) ∈ Uη′′} ⊂ U∗
η′′,η′ ⊂ {KL(uG, u0) ≤ ϵ}.

Moreover, supp(P0) ⊂ supp(G0) yields that P0 belongs to the support of
Dir(ϕ,G0) and hence P (G1 ∈ Vη′) > 0, while the fact that θ1 ∈ supp(G0)
yields that P ((w1, θ1) ∈ Uη′′) > 0. Using the independence of (w1, θ1) and
G1, one concludes

P (KL(u0, uG) ≤ ϵ) ≥ P (G ∈ U∗
η′′,η′) ≥ P (G1 ∈ Vη′)P ((w1, θ1) ∈ Uη′′) > 0.

45


