Monetary Policy and Bubbles in a New Keynesian Model with Overlapping Generations

Jordi Galí

CREI, UPF and Barcelona GSE

August 2016

Jordi Galí (CREI, UPF and Barcelona GSE)

Monetary Policy and Bubbles

August 2016 1 / 22

Motivation

- Asset price bubbles: present in the policy debate...
 - key source of macro instability
 - monetary policy as cause and cure
 - ...but absent in modern monetary models
 - no room for bubbles in the New Keynesian model
 - no discussion of possible role of monetary policy
- Present paper: modification of the NK model to allow for bubbles
- Key ingredients:
 - (i) finitely-lived consumers (Blanchard (1984), Yaari (1965))
 - (ii) stochastic retirement (Gertler (1996))

Related Literature

- Real models of rational bubbles: Tirole (1985),..., Martín-Ventura (2012)
- Monetary models with bubbles: Samuelson (1958),..., Asriyan et al. (2016)
 - \Rightarrow flexible prices
- New Keynesian models with overlapping-generations à la Blanchard-Yaari: Piergallini (2018), Nisticò (2012), Del Negro et al. (2015)
 - \Rightarrow no discussion of bubbles
- Monetary policy, sticky prices and bubbles:
 - Bernanke and Gertler (1999,2001): ad-hoc bubble specification
 - Galí (2014). Main differences here:
 - variable employment and output
 - many-period, stochastic lifetimes (Blanchard-Yaari)
 - nests standard NK model as a limiting case

イロト 不得下 イヨト イヨト

A New Keynesian Model with Overlapping Generations

- Survival probability: γ
- Size of cohort born in period s: $(1-\gamma)\gamma^{t-s}$
- Total population size: 1
- Two types of individuals:
 - "Active": manages own firm, works for others.
 - "Retired": consume financial wealth
- Probability of remaining active: v
- Labor force (and measure of firms): $\alpha \equiv \frac{1-\gamma}{1-v\gamma} \in (0,1]$

Consumers

• Consumer's problem:

$$\max E_0 \sum_{t=0}^{\infty} (\beta \gamma)^t \log C_{t|s}$$
$$\frac{1}{P_t} \int_0^{\alpha} P_t(i) C_{t|s}(i) di + E_t \{ \Lambda_{t,t+1} Z_{t+1|s} \} = A_{t|s} + W_t N_{t|s}$$
$$A_{t|s} = Z_{t|s} / \gamma$$

• Optimality conditions:

$$C_{t|s}(i) = \frac{1}{\alpha} \left(\frac{P_t(i)}{P_t}\right)^{-\epsilon} C_{t|s}$$
$$\Lambda_{t,t+1} = \beta \frac{C_{t|s}}{C_{t+1|s}}$$
$$\lim_{T \to \infty} \gamma^T E_t \left\{ \Lambda_{t,t+T} A_{t+T|s} \right\} = 0$$

Jordi Galí (CREI, UPF and Barcelona GSE)

Monetary Policy and Bubbles

э.

► < ∃ ►</p>

Firms (I)

Technology

$$Y_t(i) = \Gamma^t N_t(i)$$

where $\Gamma \equiv 1 + g$

- $\bullet\,$ Calvo price setting: a fraction $v\gamma\theta$ of firms keeps prices unchanged
- Law of motion for the price level

$$p_t = v\gamma\theta p_{t-1} + (1 - v\gamma\theta)p_t^*$$

Optimal price setting

$$p_t^* = \mu + (1 - \Lambda \Gamma v \gamma \theta) \sum_{k=0}^{\infty} (\Lambda \Gamma v \gamma \theta)^k E_t \{ p_{t+k} + w_{t+k} \}$$

where $w_t \equiv \log(W_t/\Gamma^t)$ and $\Lambda \equiv \frac{1}{1+r}$. Assumption: $\Lambda \Gamma v \gamma \theta < 1$.

E SQA

イロト 不得下 イヨト イヨト

Firms (II)

• Implied inflation equation

$$\pi_t = \Lambda \Gamma E_t \{ \pi_{t+1} \} + \lambda (w_t - w)$$

where $\lambda \equiv \frac{(1-v\gamma\theta)(1-\Lambda\Gamma v\gamma\theta)}{v\gamma\theta}$.

• Remark: in the standard NK model, $\Lambda\Gamma=\beta$

(i.e.
$$r = (1 + \rho)(1 + g) - 1 \simeq \rho + g)$$
.

E 990

<ロ> (日) (日) (日) (日) (日)

Asset Markets (I)

• Nominally riskless bond

$$\frac{1}{1+i_t} = E_t \left\{ \Lambda_{t,t+1} \frac{P_t}{P_{t+1}} \right\}$$

• Valuation of individual stocks

$$Q_t^F(i) = \sum_{k=0}^{\infty} (v\gamma)^k E_t \{\Lambda_{t,t+k} D_{t+k}(i)\}$$

where $D_t(i) \equiv Y_t(i) \left(\frac{P_t(i)}{P_t} - W_t\right)$

• Aggregate stock market

$$Q_t^F \equiv \int_0^{\alpha} Q_t^F(i) di$$
$$= \sum_{k=0}^{\infty} (v\gamma)^k E_t \{ \Lambda_{t,t+k} D_{t+k} \}$$

Jordi Galí (CREI, UPF and Barcelona GSE)

Monetary Policy and Bubbles

→ ▲ 重 ▶ 重 ∽ Q C August 2016 8 / 22

• • • • • • • • • • • •

Asset Markets (II)

Bubbly asset

$$Q_t^B(j) = E_t\{\Lambda_{t,t+1}Q_{t+1}^B(j)\}$$

with $Q_t^B(j) \ge 0$ for all t. Recursively:

$$Q_t^B(j) = E_t\{\Lambda_{t,t+T} Q_{t+T}^B(j)\}$$

for T = 1, 2, 3, ...

• Remark: in the standard NK model

$$0 = \lim_{T \to \infty} E_t \left\{ \Lambda_{t,t+T} A_{t+T} \right\} \ge \lim_{T \to \infty} E_t \left\{ \Lambda_{t,t+T} Q_{t+T}^B(j) \right\} = Q_t^B(j)$$

implying $Q_t^B(j) = 0$.

E 990

イロン 不聞と 不同と 不同と

Asset Markets (III)

• Aggregate bubble:

$$Q_t^B = U_t + Q_{t|t-1}^B$$

where $Q^B_{t|t-k} \equiv \int_{j \in \mathcal{B}_{t-k}} Q^B_t(j) dj$ • Equilibrium condition:

$$Q_t^B = E_t \{ \Lambda_{t,t+1} Q_{t+1|t}^B \}$$

• Financial wealth "at birth":

$$A_{t|t} = Q_{t|t}^F + U_t / (1 - \gamma)$$

• Remark: in the absence of bubble creation

$$Q^B_t = E_t \{\Lambda_{t,t+1} Q^B_{t+1}\}$$

 $A_{t|t} = Q^F_{t|t}$
since $U_t = 0$ and $Q^B_{t+1|t} = Q^B_t$ for all t

Jordi Galí (CREI, UPF and Barcelona GSE)

→ ▲ 重 ▶ 重 • つ Q C August 2016 10 / 22

Labor Markets and Monetary Policy

• Wage equation:

$$\mathcal{W}_t = \left(\frac{N_t}{\alpha}\right)^{\varphi}$$

where $W_t \equiv W_t / \Gamma^t$ and $N_t \equiv \int_0^{\alpha} N_t(i) di$.

• Natural level of output

$$Y_t^n = \Gamma^t \alpha \mathcal{M}^{-\frac{1}{\varphi}} \equiv \Gamma^t \mathcal{Y}$$

• New Keynesian Phillips curve

$$\pi_t = \Lambda \Gamma E_t \{ \pi_{t+1} \} + \kappa \widehat{y}_t$$

where $\kappa \equiv \lambda \varphi$, and $\hat{y}_t \equiv \log(Y_t / Y_t^n)$.

Monetary Policy

$$\widehat{i}_t = \phi_\pi \pi_t + \phi_q \widehat{q}_t^B$$

where $\hat{i}_t \equiv \log \frac{1+i_t}{1+r}$, $q_t^B \equiv \frac{Q_t^B}{\Gamma^t \mathcal{Y}}$

Market Clearing

Goods market

$$Y_t(i) = (1 - \gamma) \sum_{s = -\infty}^t \gamma^{t-s} C_{t|s}(i)$$

for all $i \in [0, \alpha]$, implying

$$Y_t = (1 - \gamma) \sum_{s = -\infty}^t \gamma^{t-s} C_{t|s} = C_t$$

Labor market

$$N_t = \int_0^{\alpha} N_t(i) di = \Delta_t^p \mathcal{Y}_t \simeq \mathcal{Y}_t$$

where $\mathcal{Y}_t \equiv Y_t / \Gamma^t$

Asset markets

$$(1-\gamma)\sum_{s=-\infty}^t \gamma^{t-s} A_{t|s} = Q_t^F + Q_t^B$$

3

(日) (同) (三) (三)

Consumption function (age *j*, normalized by productivity)
(i) active individuals:

$$C_{j} = (1 - \beta \gamma) \left[\mathcal{A}_{j}^{a} + \frac{1}{1 - \Lambda \Gamma v \gamma} \left(\frac{\mathcal{W} \mathcal{N}}{\alpha} \right) \right]$$

(ii) retired individuals

$$\mathcal{C}_j = (1 - \beta \gamma) \, \mathcal{A}'_j$$

• Aggregate consumption function

$$\mathcal{C} = (1 - \beta \gamma) \left[\mathcal{Q}^{F} + \mathcal{Q}^{B} + \frac{\mathcal{W}N}{1 - \Lambda \Gamma v \gamma} \right]$$
$$= (1 - \beta \gamma) \left[\mathcal{Q}^{B} + \frac{\mathcal{Y}}{1 - \Lambda \Gamma v \gamma} \right]$$

using $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$, where $\mathcal{Q}^{\mathsf{F}} = \mathcal{D}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{W} \mathsf{N} + \mathcal{D}$ and $\mathcal{Y} = \mathcal{U}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{U}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{U}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{U}/(1 - \Lambda \Gamma v \gamma)$ and $\mathcal{Y} = \mathcal{U}/(1 - \Lambda v \gamma)$ and $\mathcal{U}/(1 - \Lambda v \gamma)$ and $\mathcal{U}/(1 - \Lambda v \gamma)$ and $\mathcal{U}/(1 - \Lambda v \gamma)$ and $\mathcal{$

Jordi Galí (CREI, UPF and Barcelona GSE)

• Bubbleless BGP $(\mathcal{Q}^B=0)$ $\Lambda\Gamma v=eta$

or, equivalently,

$$r = (1+\rho)(1+g)v - 1$$

Remark #1: $v = 1 \Rightarrow r = (1 + \rho)(1 + g) - 1 > g$

Remark #2: $v < \beta \Leftrightarrow r < g$

Jordi Galí (CREI, UPF and Barcelona GSE)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

• Recall:

$$Q_t^B = E_t \{ \Lambda_{t,t+1} Q_{t+1|t}^B \}$$

or, letting $q_t^B \equiv \frac{Q_t^B}{\Gamma^t \mathcal{Y}}$ and $u_t \equiv \frac{U_t}{\Gamma^t \mathcal{Y}}$
$$q_t^B = E_t \{ \Lambda_{t,t+1} \Gamma q_{t+1|t}^B \}$$
$$= E_t \{ \Lambda_{t,t+1} \Gamma (q_{t+1}^B - u_{t+1}) \}$$

• Bubbly BGP with no bubble creation ($\mathcal{Q}^B>$ 0, $u_t=$ 0 all t): $\Lambda\Gamma=1$

or, equivalently,

$$r = g$$

Implied bubble size:

$$q^{B} = rac{\gamma(eta-v)}{(1-eta\gamma)(1-v\gamma)} \equiv \overline{q}^{B}$$

3

(日) (同) (三) (三)

• Bubbly BGP with bubble creation ($Q^B > 0$, $u_t = u > 0$ all t):

$$q^{B} = \frac{\gamma(\beta - \Lambda \Gamma v)}{(1 - \beta \gamma)(1 - \Lambda \Gamma v \gamma)}$$
$$u = \left(1 - \frac{1}{\Lambda \Gamma}\right) q^{B}$$

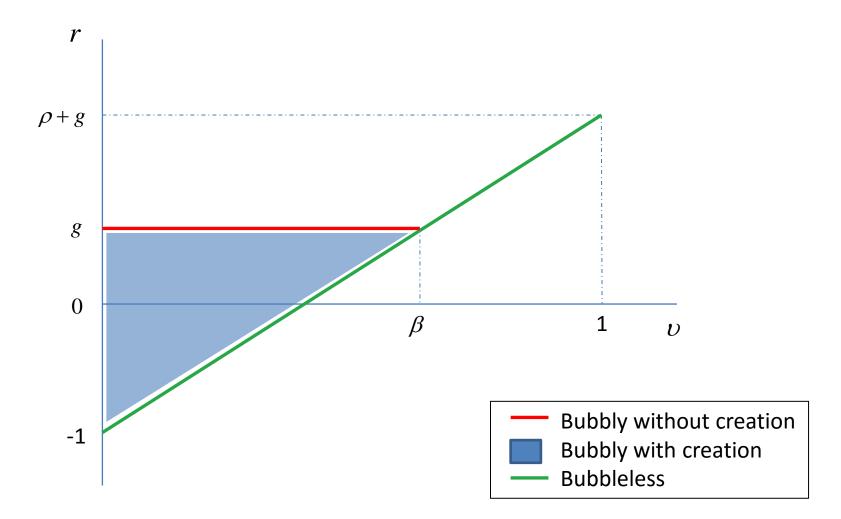
where

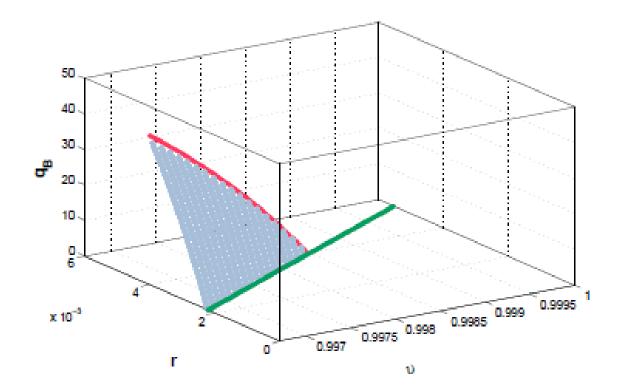
$$\begin{split} & \Lambda \Gamma > 1 \Leftrightarrow r < g \\ & \Lambda \Gamma < \frac{\beta}{v} \Leftrightarrow r > (1+\rho)(1+g)v - 1 \end{split}$$

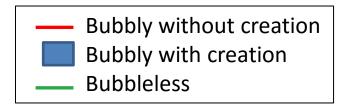
Remark #1: necessary and sufficient condition for existence: $v < \beta$ Remark #2: continuum of bubbly BGPs $\{q^B, u\}$ indexed by $r \in ((1+\rho)(1+g)v-1, g)$ Remark #3: q^B increasing in r, with $\lim_{r \to g} q^B = \overline{q}^B$

Jordi Galí (CREI, UPF and Barcelona GSE)

Figure 1. Balanced Growth Paths







Some Numbers

- Life expectancy (at 20): $(80-20) \times 4 = 240$ quarters $\Rightarrow \gamma = 0.9958$
- Average retirement age: $(63 20) \times 4 = 172$ quarters $\Rightarrow v = 0.9983$ (conditional on survival)
- Condition for existence of bubbles: $\beta > 0.9983$
- Average real interest rate (1960-2015): $r = 1.4\% \div 4 = 0.35\%$
- Average growth rate (1960-2015): $g = 1.6\% \div 4 = 0.4\%$
- $\bullet\,$ Consumers' discount factor on future income: $\Lambda\Gamma v\gamma\simeq$ 0.995 <1

イロト (過) (ヨ) (ヨ) (ヨ) () ()

Equilibrium Dynamics (I)

• Aggregate consumption function:

$$\widehat{c}_t = (1 - \beta \gamma)(\widehat{q}_t^B + \widehat{x}_t)$$

where

$$\begin{aligned} \widehat{x}_{t} &= \sum_{k=0}^{\infty} (\Lambda \Gamma v \gamma)^{k} E_{t} \{ \widehat{y}_{t+k} \} - \frac{\Lambda \Gamma v \gamma}{1 - \Lambda \Gamma v \gamma} \sum_{k=0}^{\infty} (\Lambda \Gamma v \gamma)^{k} E_{t} \{ \widehat{i}_{t+k} - \pi_{t+k+1} \} \\ &= \Lambda \Gamma v \gamma E_{t} \{ \widehat{x}_{t+1} \} + \widehat{y}_{t} - \frac{\Lambda \Gamma v \gamma}{1 - \Lambda \Gamma v \gamma} (\widehat{i}_{t} - E_{t} \{ \pi_{t+1} \}) \end{aligned}$$

 \Rightarrow solution to the forward guidance puzzle? (Del Negro et al. (2016)) \bullet Aggregate bubble dynamics:

$$\widehat{q}_t^B = \Lambda \Gamma E_t \{ \widehat{q}_{t+1}^B \} - q^B (\widehat{i}_t - E_t \{ \pi_{t+1} \})$$

 \Rightarrow role of monetary policy (Galí (2014)):

$$\mathsf{E}_t \{ \Delta \widehat{q}^{\mathcal{B}}_{t+1} \} = -\left(1 - \frac{1}{\Lambda \Gamma}\right) \widehat{q}^{\mathcal{B}}_t + \frac{q^{\mathcal{B}}}{\Lambda \Gamma} (\widehat{i}_t - \mathsf{E}_t \{\pi_{t+1}\})$$

Equilibrium Dynamics (II)

• New Keynesian Phillips curve

$$\pi_t = \Lambda \Gamma E_t \{ \pi_{t+1} \} + \kappa \widehat{y}_t$$

• Monetary Policy

$$\widehat{i}_t = \phi_\pi \pi_t + \phi_q \widehat{q}_t^B$$

• Goods market clearing

$$\widehat{c}_t = \widehat{y}_t$$

Jordi Galí (CREI, UPF and Barcelona GSE)

< ロ > < 同 > < 三 > < 三

Equilibrium Fluctuations: The Bubbleless Case

• Equilibrium dynamics

$$\begin{split} \widehat{y}_t &= E_t \{ \widehat{y}_{t+1} \} - (\widehat{i}_t - E_t \{ \pi_{t+1} \}) \\ \pi_t &= \frac{\beta}{v} E_t \{ \pi_{t+1} \} + \kappa \widehat{y}_t \\ \widehat{i}_t &= \phi_\pi \pi_t \end{split}$$

Local uniqueness

$$\phi_{\pi} > \max\left[1, \frac{1}{\kappa}\left(\frac{\beta}{\upsilon} - 1\right)\right]$$

$$v < \frac{\beta}{1+\kappa} \Rightarrow$$
 "reinforced Taylor principle"

• Forward guidance puzzle remains

Figure 3a Monetary Policy and Equilibrium Uniqueness around the Bubbleless BGP

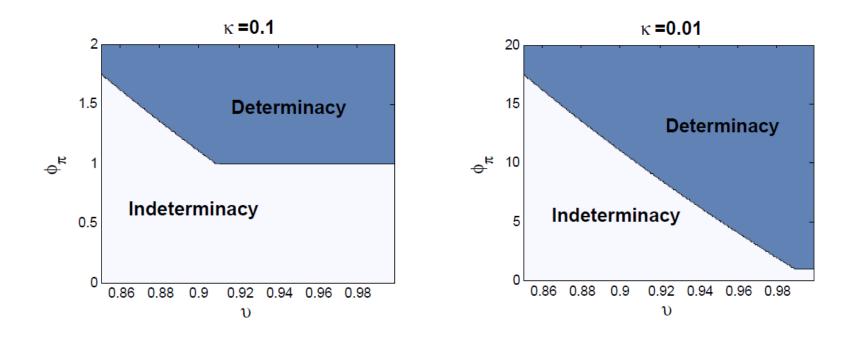
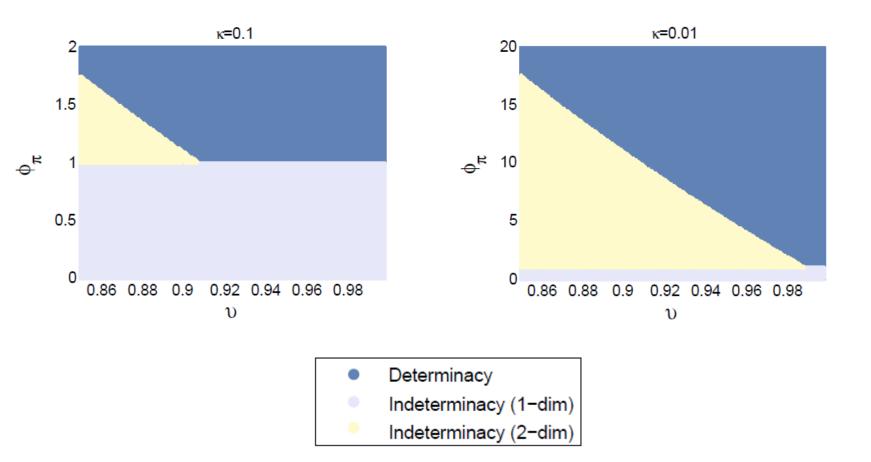


Figure 3b Monetary Policy and Equilibrium Uniqueness around the Bubbleless BGP



Bubbly Equilibrium Fluctuations

• Equilibrium dynamics

$$\widehat{y}_{t} = \frac{\Lambda \Gamma v}{\beta} E_{t} \{ \widehat{y}_{t+1} \} + \Phi \widehat{q}_{t}^{B} - \frac{Y v}{\beta} (\widehat{i}_{t} - E_{t} \{ \pi_{t+1} \})$$
$$\pi_{t} = \Lambda \Gamma E_{t} \{ \pi_{t+1} \} + \kappa \widehat{y}_{t}$$
$$\widehat{q}_{t}^{B} = \Lambda \Gamma E_{t} \{ \widehat{q}_{t+1}^{B} \} - q^{B} (\widehat{i}_{t} - E_{t} \{ \pi_{t+1} \})$$
$$\widehat{i}_{t} = \phi_{\pi} \pi_{t} + \phi_{q} \widehat{q}_{t}^{B}$$

where
$$\Phi \equiv \frac{(1-\beta\gamma)(1-v\gamma)}{\beta\gamma}$$
, $Y \equiv \left(1 + \frac{(1-\beta\gamma)(\Lambda\Gamma-1)}{1-\Lambda\Gamma v\gamma}\right)$, $q^B = \frac{\gamma(\beta-\Lambda\Gamma v)}{(1-\beta\gamma)(1-\Lambda\Gamma v\gamma)}$

- Particular case #1 (no bubble creation): $\Lambda\Gamma=\Upsilon=1$; $q^B=\overline{q}^B$
- Particular case #2 (about bubbleless BGP): $\Lambda \Gamma = Y = \frac{\beta}{v}$; $q^B = 0$
- Intermediate cases: $\Lambda\Gamma\in\left(1,rac{eta}{v}
 ight)$, $q^{B}\in\left(0,\overline{q}^{B}
 ight)$

Figure 4 Monetary Policy and Equilibrium Uniqueness: The Case of No Bubble Creation (r=g=0.004)

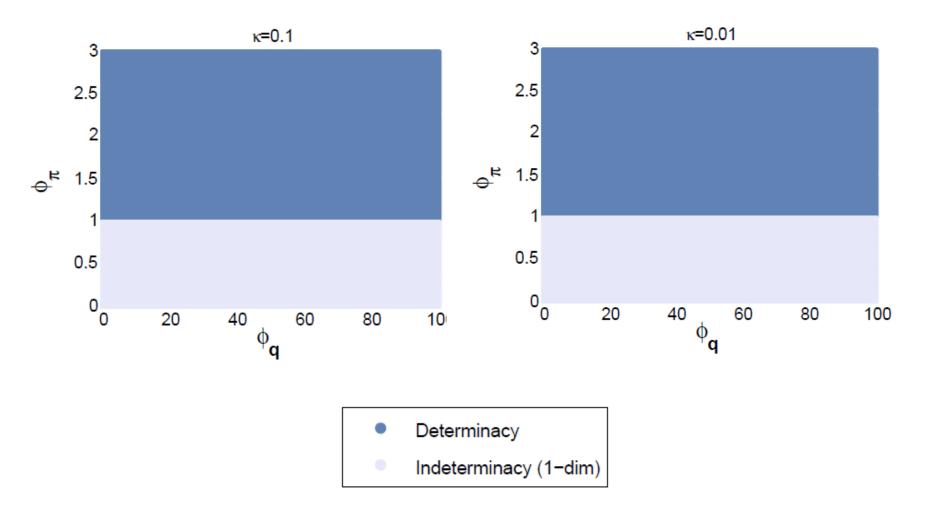


Figure 6a Monetary Policy and Equilibrium Uniqueness around a Bubbly BGP with Bubble Creation (r=0.003935)

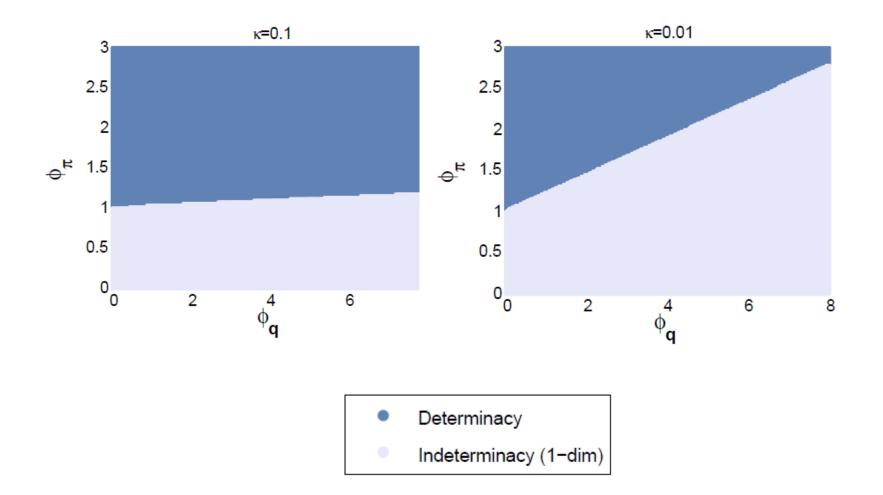


Figure 6b Monetary Policy and Equilibrium Uniqueness around a Bubbly BGP with Bubble Creation (r=0.003931)

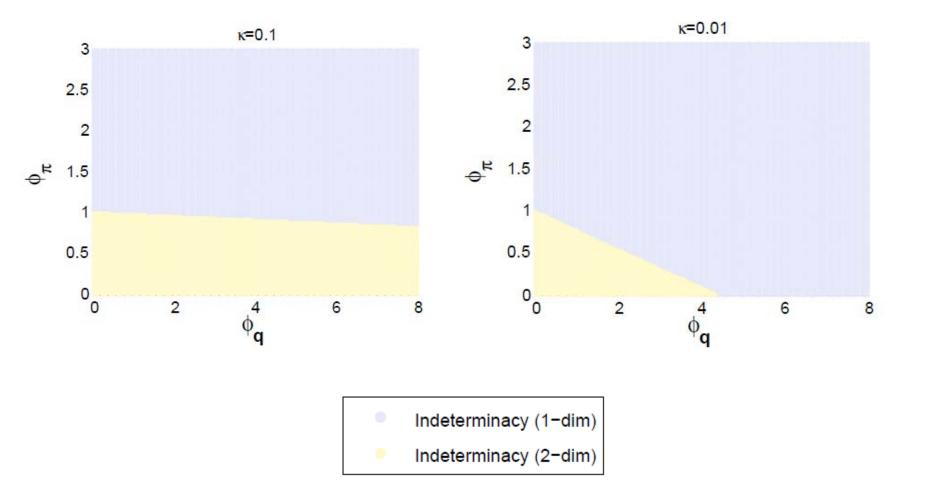


Figure 5 Monetary Policy and Equilibrium Uniqueness around the Bubbleless BGP

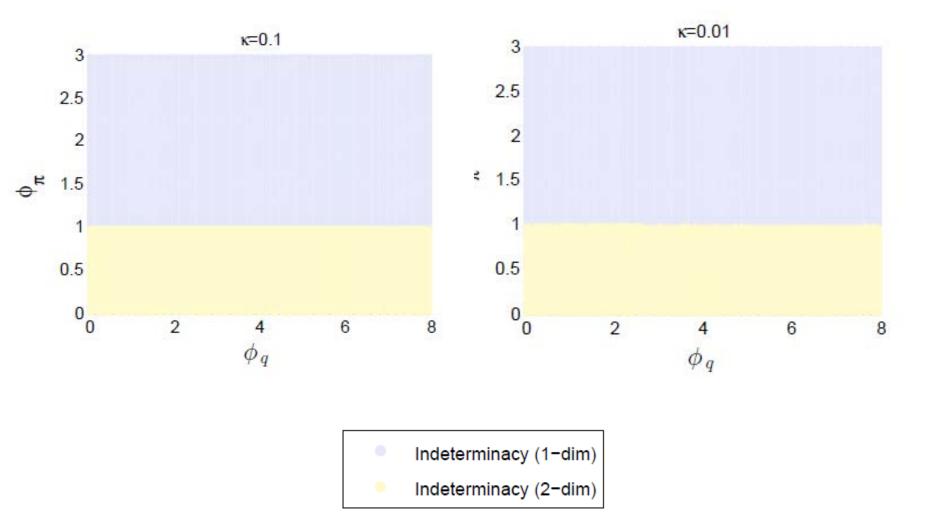
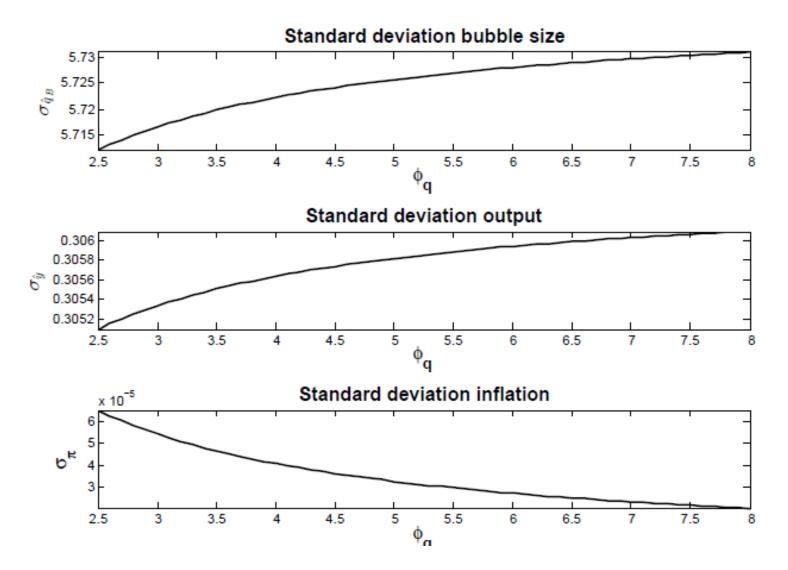


Figure 8 Macro Volatility and Leaning against the Bubble Policies (type II bubbles, r=0.39%)



Main Messages and Next Steps

- Reminder of the possibility of bubbly equilibria once we depart from the infinite-lived representative consumer framework
 - more likely in an environment of low natural interest rates
- Perils of using interest rate policy to tame asset price bubbles
 - indeterminacy more likely
 - risk of larger fluctuations
- Caveats
 - rational bubbles
 - no role for credit supply factors
- Next steps:
 - Welfare and role of monetary policy
 - Global equilibrium dynamics (nonlinearities, switching equilibria)