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Abstract

I construct a daily business cycle index based on quarterly GDP and textual

information contained in a daily business newspaper. The newspaper data are

decomposed into time series representing newspaper topics using a Latent Dirichlet

Allocation model. The business cycle index is estimated using the newspaper topics

and a time-varying Dynamic Factor Model where dynamic sparsity is enforced upon

the factor loadings using a latent threshold mechanism. The resulting index is shown

to be not only more timely but also more accurate than commonly used alternative

business cycle indicators. Moreover, the derived index provides the index user with

broad based high frequent information about the type of news that drive or reflect

economic fluctuations.

JEL-codes: C11, C32, E32

Keywords: Business cycles, Dynamic Factor Model, Latent Dirichlet Allocation (LDA)

∗This Working Paper should not be reported as representing the views of Norges Bank. The views

expressed are those of the authors and do not necessarily reflect those of Norges Bank. I thank Hilde

C. Bjørnland, Fabio Canova, Pia Glæserud, Juan F. Rubio-Ramı́rez, Maximilian Rohrer, and Christian

Schumacher for valuable comments. Vegard Larsen provided helpful technical assistance for which I am

grateful. Comments from participants at the Joint Research Workshop of Norges Bank and Deutsche

Bundesbank and the CAMP Workshop on Commodities, business cycles and monetary policy also helped

improve the paper. This work is part of the research activities at the Centre for Applied Macro and

Petroleum economics (CAMP) at the BI Norwegian Business School.
†Norges Bank and Centre for Applied Macro and Petroleum economics, BI Norwegian Business School.

Email: leif.a.thorsrud@bi.no

1

mailto:leif.a.thorsrud@bi.no


1 Introduction

Policy makers and forecasters need to assess the state of the economy in real time to devise

appropriate policy responses and condition on an updated information set. However, in

real time, our main measure of economic activity, GDP growth, is not observed as it is

compiled on a quarterly frequency and published with a considerable lag, usually up to at

least one month. To mediate these caveats, various more timely indicators (like financial

and labor market data) are monitored closely, and coincident indexes constructed.1

However, these common approaches face at least two drawbacks. First, the relation-

ships between the timely indicators typically monitored, e.g., financial market data, and

GDP growth are inherently unstable (see, e.g., Stock and Watson (2003)). Second, due

to limited availability of high frequency data, the type of data from which coincident

indexes often are constructed is constrained. As a result, changes in any coincident index

constructed from such series do generally not give the index user broad information about

what’s leading to the changes in the index. For example, changes in financial returns can

be observed daily and are commonly believed to be due to new information about future

fundamentals, but the changes themselves do not reveal what this new information is.

For policy makers in particular, as reflected in the broad coverage of various financial and

macroeconomic data in monetary policy reports and national budgets, understanding why

an index changes might be as important as the movement itself. Related to this, the indi-

cators often used are typically obtained from structured databases and professional data

providers. In contrast, the agents in the economy likely use a plethora of high-frequency

information to guide their actions and thereby shape aggregate economic fluctuations.

It is not a brave claim to assert that this information is highly unstructured and does

not come (directly) from professional data providers, but more likely reflect information

shared, generated, or filtered through a large range of channels, including media.

In this paper, I propose a new coincident index of business cycles aimed at addressing

the drawbacks discussed above. In the tradition of Mariano and Murasawa (2003) and

Aruoba et al. (2009), I estimate a latent daily coincident index using a Bayesian time-

varying Dynamic Factor Model (DFM) mixing observed daily and quarterly data. To this,

I make two contributions. First, the daily data set comes from a novel usage of textual

information contained in a daily business newspaper, represented as topic frequencies

across time. Thus, words are the new numbers, and the name: A newsy coincident index of

1Stock and Watson (1988) and Stock and Watson (1989) provide early examples of studies constructing

coincident indexes using single frequency variables and latent factors, while Mariano and Murasawa (2003)

extent this line of research to a mixed frequency environment using monthly and quarterly data. Later

contributions mixing even higher frequency data, e.g., daily, with quarterly observations are given by,

e.g., Evans (2005) and Aruoba et al. (2009).
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business cycles (NCI ). In turn, this innovation allows for decomposing the changes in the

latent daily business cycle index into the (time-varying) news components it constitutes,

and therefore also say something more broadly about why (in terms of news topics) the

index changes at particular points in time. My hypothesis is simple: To the extent that

the newspaper provides a relevant description of the economy, the more intensive a given

topic is represented in the newspaper at a given point in time, the more likely it is that

this topic represents something of importance for the economy’s current and future needs

and developments. Instead of relying on a limited set of conventional high frequency

indicators to measure changes in business cycle conditions, I use a primary source for new

broad based information directly - the newspaper.2

Second, building on the Latent Threshold Model (LTM) idea introduced by Nakajima

and West (2013), and applied in a factor model setting in Zhou et al. (2014), the DFM is

specified using an explicit threshold mechanism for the time-varying factor loadings. This

enforces sparsity on the system, but also explicitly takes into account that the relationship

between the latent daily business cycle index and the indicators used to derive it might

be unstable (irrespective of whether newspaper data or more standard high frequent data

is used to derive the index).

My main results show that both innovations listed above are important. I demon-

strate, using Receiver Operating Characteristic (ROC) curves, that compared to more

traditional business cycle indicators and coincident indexes, the NCI provides a more

timely and trustworthy signal about the state of the economy. This gain is achieved

through the combined usage of newspaper data and allowing for time-variation in the fac-

tor loadings. Moreover, the NCI contains important leading information, suggesting that

the NCI would be a highly useful indicator for turning point predictions and nowcasting.

Decomposing the NCI into the individual news topic contributions it constitutes reveals

that on average, across different business cycle phases, news topics related to monetary

and fiscal policy, the stock market and credit, and industry specific sectors seem to provide

the most important information about business cycle conditions. Finally, the sign and

timing of their individual contributions map well with the historical narrative we have

about recent business cycle phases.

In using newspaper data the approach taken here shares many features with a growing

number of studies using textual information to predict and explain economic outcomes,

but extends this line of research it into the realm of coincident index construction. For

2Economic theory suggests that news might be important for explaining economic fluctuations because it

contains new fundamental information about the future (see, e.g., Beaudry and Portier (2014)). Alterna-

tively, as in, e.g., Angeletos and La’O (2013), news is interpreted as some sort of propagation channel for

sentiment. Results reported in Larsen and Thorsrud (2015) indicate that information in the newspaper,

represented as topic frequencies, contain new fundamental information about the future.
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example, Tetlock (2007) classifies textual information using negative and positive word

counts, and links the derived time series to developments in the financial market; Baker

et al. (2013) construct an uncertainty index based on the occurrence of words in news-

papers associated with uncertainty and link it to policy-related economic uncertainty;

Choi and Varian (2012) use Google Trends and search for specific categories to construct

predictors for present developments in a wide range of economic variables.3

In this paper, textual information is utilized using a Latent Dirichlet Allocation (LDA)

model. The LDA model statistically categorizes the corpus, i.e., the whole collection

of words and articles, into topics that best reflect the corpus’s word dependencies. A

vast information set consisting of words and articles can thereby be summarized in a

much smaller set of topics facilitating interpretation and usage in a time-series context.4

Compared with existing textual approaches, the LDA approach offers several advantages.

In terms of word counting, which words are positive and which negative obviously relates

to an outcome. A topic does not. A topic has content in its own right. Moreover,

the LDA is an automated machine learning algorithm, so (subjectively) choosing the

words or specific categories to search for is not needed. Instead, the LDA automatically

delivers topics that best describe the whole corpus. This permits us to examine if textual

information in the newspaper is representative for economic fluctuations, and if so, identify

the type of new information (in terms of topics) that might drive or reflect economic

fluctuations. In Larsen and Thorsrud (2015), it is shown that individual news topics

extracted using a LDA model adds marginal predictive power for a large range of economic

aggregates at a quarterly frequency. Here I build on this knowledge and use similar topics

to construct the daily NCI.

The perhaps most closely related paper to this is Balke et al. (2015). They use cus-

tomized text analytics to decompose the Beige Book, a written description of economic

conditions in each of the twelve districts banks of the Federal Reserve System in the

U.S., into time series and construct a coincident index for the U.S. business cycle. They

find that this textual data source contains information about current economic activ-

ity not contained in quantitative data. Their results are encouraging and complement

3Bloom (2014) provides a summary of the literature which constructs aggregate uncertainty indexes based

on (among other things) counting pre-specified words in newspapers. See Tetlock (2014) for a short

overview of the usage of textual data in the finance literature. In macroeconomics, there is a growing

literature utilizing textual data to examine the effects of central bank’s communication (see, e.g., Apel

and Blix Grimaldi (2012) and the references therein).
4Blei et al. (2003) introduced the LDA as a natural language processing tool. Since then the methodology

has been heavily applied in the machine learning literature and for textual analysis. Surprisingly, in

economics, it has hardly been applied. See, e.g., Hansen et al. (2014), Hansen and McMahon (2015), and

Larsen and Thorsrud (2015) for exceptions.
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my findings. However, the Beige Book is published at an irregular frequency, and not

all countries have Beige Book-type information. In contrast, most countries have pub-

licly available newspapers published (potentially) daily.5 Finally, as alluded to above, in

contrast to existing studies using textual data, with the news topic approach one can

decompose the daily changes in the coincident index into news topic contributions.

The rest of this paper is organized as follows. Section 2 describes the newspaper data,

the topic model, and the estimated news topics. The mixed frequency and time-varying

DFM is described in Section 3. Results are presented in Section 4. Section 5 concludes.

2 Data

The raw data used in this analysis consists of a long sample of the entire newspaper

corpus for a daily business newspaper and quarterly GDP growth for Norway. I focus

on Norway because it is a small and open economy and thereby representative of many

western countries, and because small economies, like Norway, typically have only one or

two business newspapers, making the choice of corpus less complicated. Here, I simply

choose the corpus associated with the largest and most read business newspaper, Dagens

Næringsliv (DN), noting that DN is also the fourth largest newspaper in Norway irre-

spective of subject matter. DN was founded in 1889, and has a right-wing and neo-liberal

political stance. Importantly, however, the methodology for extracting news from newspa-

per data, and analyze whether or not it is informative about business cycle developments,

is general and dependent neither on the country nor newspaper used for the empirical

application.

To make the textual data applicable for time series analysis, the data is first decom-

posed into time series of news topics using a Latent Dirichlet Allocation (LDA) model. In

general, topic modeling algorithms are statistical methods that analyze the words of the

original texts to discover the themes that run through them and the themes’ connection

to one another. Although topic models are well known, and have been massively applied,

in the machine learning literature, their usage in the field of economics has been rare.

Blei (2012) provides a nice layman’s introduction to topic modeling. The newspaper

corpus and the LDA specification in this paper is similar to that described in Larsen and

Thorsrud (2015). Still, as the usage of textual data and the application of a LDA model

are relatively new in economics, I provide a summary of the computations below. I then

5In relation to this, the U.S. is in many aspects a special case when it comes to quantitatively available

economic data, simply because there is so much available at a wide variety of frequencies. For most other

countries, this is not the case. The usage of daily newspaper data can potentially mitigate such missing

information.
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examine the mapping between the estimated news topics and GDP growth using simple

principal components analysis, before presenting the proposed time-varying and mixed

frequency Dynamic Factor Model (DFM) in the subsequent section.

2.1 The news corpus, the LDA and topics

The DN news corpus is extracted from Retriever’s “Atekst” database, and covers all

articles published in DN from May 2, 1988, to December 29, 2014. In total this amounts to

Na = 459745 articles, well above one billion words, more than a million unique tokens, and

a sample of T d = 9741 days. This massive amount of data makes statistical computations

challenging, but as is customary in this branch of the literature, some steps are taken to

clean and reduce the raw dataset before estimation. A description of how this is done is

given in Appendix C. I note here that around 250 000 unique tokens are kept after the

filtering procedure.

The “cleaned”, but still unstructured, DN corpus is decomposed into news topics

using a Latent Dirichlet Allocation (LDA) model. The LDA model is an unsupervised

topic model introduced by Blei et al. (2003) that clusters words into topics, which are

distributions over words, while at the same time classifying articles as mixtures of topics.6

By unsupervised learning algorithm we mean an algorithm that can learn/discover an

underlying structure in the data without the algorithm being given any labeled samples

to learn from. The term “latent” is used, because the words, which are the observed data,

are intended to communicate a latent structure, namely the meaning of the article. The

term “Dirichlet” is used because the topic mixture is drawn from a conjugate Dirichlet

prior.

Figure 1 illustrates the LDA model graphically. The outer box, or plate, represents

the whole corpus as M distinct documents (articles). N =
∑M

m=1Nm is the total number

of words in all documents, and K is the total number of latent topics. Letting bold-

font variables denote the vector version of the variables, the distribution of topics for a

document is given by θm, while the distribution of words for each topic is determined by

ϕk. Both θm and ϕk are assumed to have conjugate Dirichlet distributions with (hyper)

parameter (vectors) α and β, respectively. Each document consists of a repeated choice

of topics Zm,n and words Wm,n, drawn from the Multinomial distribution using θm and

ϕk. The circle associated with Wm,n is gray colored, indicating that these are the only

observable variables in the model.

At an intuitive level, the best way to understand the LDA model is likely to make a

thought experiment of how the articles in the newspaper (the corpus) were generated.

6This latter point is important, because it distinguishes the LDA model from other often used text clas-

sifying algorithms where each article is assumed to be described by only one single topic.
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Figure 1. The LDA model visualized using plate notation.

1. Pick the overall theme of articles by randomly giving them a distribution over topics,

i.e.: Choose θm ∼ Dir(α), where m ∈ {1, . . . ,M}.
2. Pick the word distribution for each topic by giving them a distribution over words,

i.e.: Choose ϕk ∼ Dir(β) , where k ∈ {1, . . . , K}.
3. For each of the word positions m, n, where n ∈ {1, . . . , Nm}, and m ∈ {1, . . . ,M}

3.1. From the topic distribution chosen in 1., randomly pick one topic, i.e.: Choose

a topic Zm,n ∼ Multinomial(θm).

3.2. Given that topic, randomly choose a word from this topic, i.e.: Choose a word

Wm,n ∼ Multinomial(ϕzm,n).

More formally, the total probability of a document, i.e., the joint distribution of all

known and hidden variables given the hyper-parameters, is:

P (Wm,Zm,θm,Φ;α, β) =

document plate (1 document)︷ ︸︸ ︷
Nm∏
n=1

P (Wm,n|ϕzm,n)P (Zm,n|θm)︸ ︷︷ ︸
word plate

·P (θm;α) ·P (Φ; β)︸ ︷︷ ︸
topic plate

(1)

where Φ = {ϕk}Kk=1 is a (K × V ) matrix, and V is the size of the vocabulary. The two

first factors in (1) correspond to the word plate in Figure 1, the three first factors to

the document plate, and the last factor to the topic plate. Different solution algorithms

exist for solving the LDA model. I follow Griffiths and Steyvers (2004), and do not

treat θm and ϕk as parameters to be estimated, but instead integrate them out of (1).

Considering the corpus as a whole, this results in an expression for P (W ,Z;α, β) =

P (Z|W ;α, β)P (W ;α, β) which can be solved using Gibbs simulations. Estimates of θm

and ϕk can subsequently be obtained from the posterior distribution. Further technical

details, and a short description of estimation and prior specification, are described in

Appendix D.
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The model is estimated using 7500× 10 draws. The first 15000 draws of the sampler

are disregarded, and only every 10th draw of the remaining simulations are recorded and

used for inference. K = 80 topics are classified. Marginal likelihood comparisons across

LDA models estimated using smaller numbers of topics (see Larsen and Thorsrud (2015)),

indicate that 80 topics provide the best statistical decomposition of the DN corpus.

Now, the LDA estimation procedure does not give the topics any name or label. To

do so, labels are subjectively given to each topic based on the most important words

associated with each topic. As shown in Table 3 in Appendix A, which lists all the

estimated topics together with the most important words associated with each topic, it

is, in most cases, conceptually simple to classify them. I note, however, that the labeling

plays no material role in the experiment, it just serves as a convenient way of referring

to the different topics (instead of using, e.g., topic numbers or long lists of words). What

is more interesting, however, is whether the LDA decomposition gives a meaningful and

easily interpretable topic classification of the DN newspaper. As illustrated in Figure 2,

it does: The topic decomposition reflects how DN structures its content, with distinct

sections for particular themes, and that DN is a Norwegian newspaper writing about

news of particular relevance for Norway. We observe, for example, separate topics for

Norway’s immediate Nordic neighbors (Nordic countries); largest trading partners (EU

and Europe); and biggest and second biggest exports (Oil production and Fishing). A

richer discussion about a similar decomposition is provided in Larsen and Thorsrud (2015).

2.2 News Topics as time series

Given knowledge of the topics (and their distributions), the topic decompositions are

translated into time series. To do this, I proceed in three steps.

Step 1. For each day, the frequency with which each topic is represented in the news-

paper that day is calculated. This is done by collapsing all the articles in the newspaper

for a particular day into one document, and then computing, using the estimated word

distribution for each topic, the topic frequencies for this newly formed document. See

Appendix D.1 for details. By construction, across all topics, this number will sum to one

for any given day. On average, across the whole sample, each topic will have a more or

less equal probability of being represented in the newspaper. Across shorter time periods,

i.e., days, the variation can be substantial. I define this as the D0 data set, which will be

a T d ×K matrix.7

7Since DN is not published on Sundays, but economic activity also takes place on Sundays, missing

observations are filled by simple linear interpolation. Note also that the construction described in Step

1 does not mean that only one topic is used as representative for a given day. For such an assumption

mixture models other than the LDA would have been more appropriate.
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Figure 2. A network representation of the estimated news topics. The nodes in the graph represent

the identified topics. All the edges represent words that are common to the topics they connect. The

thickness of the edges represents the importance of the word that connect the topics, calculated as edge

weight = 1/ (ranking of word in second topic + ranking of word in first topic). The topics with the same

color are clustered together using a community detection algorithm called Louvain modularity. Topics

for which labeling is Unknown, c.f. Table 3 in Appendix A, are removed from the graph for visual clarity.

Step 2. Since the time series objects constructed in Step 1 will be intensity measures,

i.e., reflecting how much DN writes about a given topic at a specific point in time, their

tone is not identified. That is, whether the news is positive or negative. To mediate

this, a sign-identified data set based on the number of positive relative to negative words

in the text is constructed. In particular, for each day t, all Na
t newspaper articles that

day, and each news topic in D0, the article that news topic k describes the best is found.

Given knowledge of this topic article mapping, positive/negative words in the articles

are identified using an external word list and simple word counts. The word list used

here takes as a starting point the classification of positive/negative words defined by the

Harvard IV-4 Psychological Dictionary. As this dictionary contains English words only,

it must be translated into Norwegian. The translated set of words consists of 40 positive
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and 39 negative Norwegian words, which is somewhat different from the Harvard IV-4

Psychological Dictionary both in terms of numbers and exact meaning.8

The count procedure delivers two statistics for each article, containing the number of

positive and negative words. These statistics are then normalized such that each article

observation reflects the fraction of positive and negative words, i.e.:

Post,na =
#positivewords

#totalwords
Negt,na =

#negativewords

#totalwords
(2)

The overall mood of article na, for na = 1, . . . , Na
t at day t, is defined as:

St,na = Post,na −Negt,na (3)

Using the St,na statistic and the topic article mapping described above, the sign of each

topic in D0 is adjusted accordingly as:

Dt,1 = St,naDt,k̃,0

where k̃ reflects that article na is mapped to topic k.

Step 3. To remove daily noise from the topic time series in the D1 data set, each

topic time series is filtered using a 60 day (backward looking) moving average filter. As

is common in factor model studies, see, e.g., Stock and Watson (2012), I also eliminate

very low frequency variation, i.e., changes in the local mean, by removing a simple linear

trend and standardize the data. For future reference I label this data set Df
1 .9

Figure 3 reports six of the topic time series, and illustrates how the different steps

described above affect the data. The gray bars show the data as topic frequencies across

time, i.e., as constructed in Step 1 above. As is clearly visible in the graphs, these mea-

sures are very noisy. Applying the transformations described in Step 2 and Step 3 changes

the intensity measures into sign identified measures and removes much of the most high

frequent movements in the series. As seen from the figures, the differences between the D0

and Df
1 measures are sometimes substantial, highlighting the influence of the sign iden-

tification procedure. The effect on the Monetary Policy topic is particular clear. From

8The translated word list can be obtained upon request. Counting the number of positive and negative

words in a given text using the Harvard IV-4 Psychological Dictionary is a standard methodology in

this branch of the literature (see, e.g., Tetlock et al. (2008)). In finance, Loughran and Mcdonald (2011)

among others, show that word lists developed for other disciplines mis classify common words in financial

texts, and suggest an alternative (English language) list. I leave it for future research to investigate if

this also holds for macroeconomic applications and languages other than English.
9The estimated NCI, see Section 4, becomes more (less) noisy if a shorter (longer) window size is used

to smooth the news topics (for similar prior specifications), but the overall cyclical pattern remains the

same. I have also experimented using other word count and topic article mappings to construct the D1

data set (in Step 2 ), observing that the methodology described above works best. Details about these

alternative transformations may be obtained on request.
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(a) Monetary Policy (72) (b) Retail (60) (c) Funding (42)

(d) Results (46) (e) Startup (61) (f) Statistics (44)

Figure 3. Individual news topics (topic numbers, confer Table 3 in Appendix A, in parenthesis). The

grey bars and blue lines report topic time series from the D0, and Df
1 data sets, respectively. See the

text for details.

Figure 3 we also observe that topics covary, at least periodically. The maximum (mini-

mum) correlation across all topics is 0.57 (-0.40) using the Df
1 data set. However, overall,

the average absolute value of the correlation among the topics is just 0.1, suggesting that

different topics are given different weight in the DN corpus across time.

2.3 GDP and news

Gross Domestic Product for mainland Norway, measured in constant 2012 prices (million

NOK), is obtained from Statistics Norway (SSB).10 The raw series is transformed to

quarterly growth rates. Likewise to above, the local mean of the growth rates is removed

using a linear time trend, and the series is standardized prior to estimation. In the rest of

this paper the raw quarterly growth rates will be referred to as GDP , and the adjusted

version, used for estimation, as GDP a.

How do the news topics relate to GDP a? To get a first pass impression I compute

the first principal component of the sign identified data set, Df
1 , using either all 80 topics

(PCA1 ), or only the 20 topics most correlated with linearly interpolated daily GDP a

(PCA2 ) (see Table 3 in Appendix A). These single common components explain only

10In Norway, using GDP excluding the petroleum sector is the commonly used measure of economic activity.

I follow suit here because it facilitates the formal evaluation of the NCI in Section 4.
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Figure 4. GDP a is recorded at the end of each quarter, but reported on a daily basis in the graph using

previous end-of-period values throughout the subsequent quarter. The red and blue lines are the first

principal component estimate of the Df
1 data set using 80 and 20 topics, respectively. Recession periods,

defined by a MS-FMQ model, see Section 4.1, are illustrated using gray color shading.

roughly 12 and 27 percent, respectively, of the overall variation in the data set, but seems

to capture important business cycle fluctuations surprisingly well (see Figure 4). However,

the factors derived from the simple PCA analysis do not seem to move in tandem with

output during the early and later part of the sample. In addition, they are far from

able to track the more high frequency movements in output. Having said this, it is still

interesting that an unsupervised LDA and PCA decomposition of a business newspaper

provides information about GDP a in the manner reported here. It is not only a novel

finding in itself, but also motivates the usage of a more supervised factor model using this

type of data. I turn to this next.

3 The Dynamic Factor Model

To estimate a coincident index of business cycles utilizing the joint informational content

in quarterly output growth and daily news topic series, I build on Mariano and Murasawa

(2003) and Aruoba et al. (2009) and develop a mixed frequency time-varying Dynamic

Factor Model (DFM).

Measured at the highest frequency among the set of mixed frequency observables,

which is daily in this analysis, the DFM can be written as:

yt =z0,tat + · · ·+ zs,tat−s + et (4a)

at =F1at−1 + · · ·+ Fhat−h + ωt (4b)

et =P1et−1 + · · ·+ Ppet−p + ut (4c)

Equation (4a) is the observation equation of the system. yt is a N×1 vector of observable
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and unobservable variables assumed to be stationary with zero mean, decomposed as

follows:

yt =

(
y∗1,t

y2,t

)
(5)

where y∗1,t is a Nq × 1 vector of unobserved daily output growth rates, mapping into

quarterly output growth rates as explained below, and y2,t is a Nd × 1 vector of daily

newspaper topic variables, described in Section 2.2. N = Nq + Nd, and zj,t is a N × q
matrix with dynamic factor loadings for j = 0, 1, · · · , s, and s denotes the number of

lags used for the dynamic factors at. The dynamic factors, containing the daily business

cycle index, follow a VAR(h) process given by the transition equation in (4b), where

ωt ∼ i.i.d.N(0,Ω). Finally, equation (4c) describes the time series process for the N × 1

vector of idiosyncratic errors et. It is assumed that these evolve as independent AR(p)

processes with ut ∼ i.i.d.N(0,U), and that ut and ωt are independent. The model’s

only time-varying parameters are the factor loadings (zj,t), which are restricted to follow

independent random walk processes.

Apart from the usage of newspaper data, the DFM described above is fairly standard.

Similar specifications have been applied in recent work by Lopes and Carvalho (2007),

Del Negro and Otrok (2008), Ellis et al. (2014), and Bjørnland and Thorsrud (2015).

Some of these studies also include stochastic volatility in the DFM. In a mixed frequency

setting for example, Marcellino et al. (2013) estimate a DFM (using monthly and quarterly

data) without time-varying parameters, but with stochastic volatility. I abstract from this

property here to focus on the innovations introduced in this paper.

Two extensions are applied here: First, sparsity is enforced on the system through

the time-varying factor loadings using a latent threshold mechanism. Second, since the

variables in the yt vector are observed at different frequency intervals, cumulator variables

are used to ensure consistency in the aggregation from higher to lower frequencies and

make estimation feasible. Below I elaborate on these two extensions. A full description

of the model, and its extensions, is given in Appendix E.11

11It follows from the above discussion that there is a conceptually close resemblance between the LDA

model described in Section 2.1, and factor models commonly used in economics. In both instances, some

set of observed variables are assumed to be determined by a (predefined) number of common latent

variables. As such, one could envision a model where the observables, words and output growth in terms

of this analysis, and their relationship to latent factors where estimated jointly within one model. I am,

however, not aware of existing models in the literature that combine time series with textual data in

this manner. Incorporating the mixed frequency and latent threshold dynamics into such model would

complicate the problem further. Thus, as the first investigation of this sort, I opt for the simpler two-step

approach in this analysis.
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3.1 Enforcing sparsity and identification

Following the Latent Threshold Model (LTM) idea introduced by Nakajima and West

(2013), and applied in a DFM setting in Zhou et al. (2014), sparsity is enforced on the

system through the time-varying factor loadings using a latent threshold. For example,

for one particular element in z0,t, zi,0,t, the LTM structure can be written as:

zi,0,t = z∗i,0,tςi,0,t ςi,0,t = I(|z∗i,0,t| ≥ di,0) (6)

where

z∗i,0,t = z∗i,0,t−1 + wi,0,t (7)

with wi,0,t ∼ i.i.d.N(0, σ2
i,0,w). In (6) ςi,0,t is a zero one variable, whose value depends on

the indicator function I(|z∗i,0,t| ≥ di,0). If |z∗i,0,t| is above the the threshold value di,0, then

ςi,0,t = 1, otherwise ςi,0,t = 0.

In general, the LTM framework is a useful strategy for models where the researcher

wants to introduce dynamic sparsity. For example, as shown in Zhou et al. (2014), allowing

for such mechanism uniformly improves out-of-sample predictions in a portfolio analysis

due to the parsimony it induces. Here, the LTM concept serves two purposes. First, if

estimating the factor loadings without allowing for time variation, the researcher might

conclude that a given topic has no relationship with at, i.e., that zi,0:s = 0, simply because,

on average, periods with a positive zi,0:s,t cancels with periods with a negative zi,0:s,t. By

using the time-varying parameter formulation above, this pitfall is avoided. Second, it is

not very likely that one particular topic is equally important throughout the estimation

sample. A topic might be very informative in some periods, but not in others. The

threshold mechanism potentially captures such cases in a consistent and transparent way,

safeguards against over-fitting, and controls for the fact that the relationship between the

indicators and output growth might be unstable, confer the discussion in Section 1.12

As is common for all factor models, the factors and factor loadings in (4) are not

identified without restrictions. To separately identify the factors and the loadings, the

following identification restrictions on z0,t in (4a) are enforced:

z0,t =

[
z̃0,t

ẑ0,t

]
, for t = 0, 1, . . . , T (8)

Here, z̃0,t is a q × q identity matrix for all t, and ẑ0,t is left unrestricted. Bai and Ng

(2013) and Bai and Wang (2012) show that these restrictions uniquely identify the dy-

namic factors and the loadings, but leave the VAR(h) dynamics for the factors completely

unrestricted.

12The same arguments naturally applies when constructing coincident indexes using more conventional

indicators (like financial and labor market data).
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3.2 Introducing mixed frequency variables

Due to the mixed frequency property of the data, the yt vector in equation (4a) contains

both observable and unobservable variables. Thus, the model as formulated in (4) can

not be estimated. However, following Harvey (1990), and since y∗1,t is a flow measure,

the model can be reformulated such that observed quarterly series are treated as daily

observations with missing observations. To this end, the yt vector is decomposed as in

equation (5). Assuming further that the quarterly variables, e.g., output growth defined

in Section 2.3, are observed at the last day of each quarter, we can define:

ỹ1,t =


∑m

j=0 y
∗
1,t−j if ỹ1,t is observed

NA otherwise
(9)

where ỹ1,t is treated as the intra-period sum of the corresponding daily values, and m

denotes the number of days since the last observation period. Because quarters have

uneven number of days, ỹ1,t is observed on an irregular basis. Accordingly, m will vary

depending on which quarter and year we are in. This variation is however known, and

easily incorporated into the model structure.

Given (9), temporal aggregation can be handled by introducing a cumulator variable

of the form:

C1,t = β1,tC1,t−1 + y∗1,t (10)

where β1,t is an indicator variable defined as:

β1,t =

0 if t is the first day of the period

1 otherwise
(11)

and y∗1,t maps to the latent factor, at, from equation (4b). Thus, ỹ1,t = C1,t whenever

ỹt,1 is observed, and treated as a missing observation in all other periods. Because of the

usage of the cumulator variable in (10), one additional state variable is introduced to the

system. Importantly, however, the system will now be possible to estimate using standard

filtering techniques handling missing observations. Details are given in Appendix E.

Some remarks are in order. First, although mappings between mixed frequency vari-

ables have been applied extensively in both mixed frequency VARs and factor models, see

Foroni and Marcellino (2013) for an overview, the cumulator approach has been exploited

less regularly. For the purpose of this analysis it offers a clear advantage because it ex-

pands the number of state variables in the system only marginally. In contrast, using the

mixed frequency approaches in, e.g., Mariano and Murasawa (2003) and Aruoba et al.

(2009), would have expanded the number of state variables in the model by over 180 and

90, respectively. Such large number of states pose significant challenges for estimation,
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making it almost infeasible in a Bayesian context.13 Second, introducing (flow) variables

of other frequencies than daily and quarterly into the system is not difficult. For each new

frequency one simple constructs one new cumulator variable, specific for that frequency,

and augment the system accordingly.

3.3 Model specification and estimation

In the model specification used to produce the main results one latent daily coincident

index is identified. This latent daily coincident index is assumed to follow an AR(10)

process, thus, q = 1 and h = 10. I do not allow for lags of the dynamic factors in the

observation equation (4a) of the system, i.e., s = 0. Conceptually it would have been

straightforward to use higher values for s for the Nd rows in (4a) associated with the

observable daily observations. However, for the Nq rows associated with the quarterly

variables, setting s > 0 would conflict with the temporal aggregation described in Section

3.2. For all the N elements in et (see equation 4c), the AR(p) dynamics are restricted

to one lag, i.e., p = 1. To avoid end point issues due to data revisions with the latest

vintage of output, I restrict the estimation sample to the period 1989-01-01 to 2013-31-

12. Finally, based on simple correlation statistics between the news topic time series

and output growth I truncate the Df
1 data set to include only the 20 most correlated (in

absolute value) topics, see Table 3 in Appendix A. This latter adjustment is done to ease

the computational burden, but, as seen from Figure 4, unsupervised PCA estimates of

the topic time series result in almost identical factor estimates irrespective of whether 20

or 80 topics are used, suggesting that 20 topics are enough.14

The time-varying DFM is estimated by decomposing the problem of drawing from the

joint posterior of the parameters of interest into a set of much simpler ones using Gibbs

simulations. The Gibbs simulation employed here, together with the prior specifications,

are described in greater detail in Appendix E. The results reported in this paper are all

based on 9000 iterations of the Gibbs sampler. The first 6000 are discarded and only

every sixth of the remaining are used for inference.15

13For example, Aruoba et al. (2009) employ Maximum Likelihood estimation, and note that one evaluation

of the likelihood takes roughly 20 seconds. As Bayesian estimation using MCMC (see Section 3.3) requires

a large number of iterations, the problem quickly becomes infeasible in terms of computation time.
14Still, the truncation is admittedly somewhat arbitrary. Noting that comparable coincident index models

already proposed in the literature also resort to some type of variable selection prior to estimation, I leave

it for future research to devise potentially more optimal methods to truncate the topics data set.
15As shown in Appendix E.7, and in Appendix E.8 for a simulation experiment, the convergence statistics

seem satisfactory.
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(a) NCI and GDP a

(b) 2001:Q1 - 2001:Q3 (c) 2002:Q3 - 2003:Q1 (d) 2008:Q2 - 2009:Q3

Figure 5. GDP a is recorded at the end of each quarter, but reported on a daily basis in the graphs

using previous end-of-period values throughout the subsequent quarter. NCI is the standardized measure

of the daily business cycle index. Recession periods, defined by a MS-FMQ model (see Section 4.1), are

illustrated using gray color shading. Figures 5b to 5d focus on three specific periods where output

is illustrated using GDP . The indicators are normalized to zero on the first day of the first quarter

displayed. OSEBX is the cumulative return over the period, and Spread is the difference between the 10

year and 3 month money market interest rate.

4 A newsy coincident index of the business cycle

Figure 5 reports the estimated NCI. As clearly seen in the upper part of the figure, the

index tracks the general economic fluctuations closely. Compared to the simple PCA

estimates reported in Figure 4, the NCI seems to provide a better fit: It captures the

low growth period in the early 1990s, the boom and subsequent bust around the turn of

the century, and finally the high growth period leading up to the Great Recession. Note,

however, that in Norway, the downturn in the economy following the Norwegian banking

crisis in the late 1980s was just as severe as the downturn following the global financial

crisis in 2008.

An (informal) example of the importance of having timely information about the

state of the economy is given in Figures 5b to 5d. They show the benefits of the NCI

relative to using two timely and often-used indicators: the stock index (OSEBX ) and
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yield spreads (Spreads) (see, e.g., Estrella and Mishkin (1998)) around three important

turning points in the Norwegian economy the last decades. For example, as seen in Figure

5d, between the second and third quarter of 2008 output growth declined considerably.

During the month of August 2008, and in particular following Lehman Brothers collapse

on September 15, 2008, the stock index, the yield spread, and the NCI plummet. Since

the actual number for GDP growth in the third quarter of 2008 was not known before

late 2008, both leading indicators and the NCI would have been useful for picking up the

change in economic conditions prior to what we now know turned out to be a recession

in this example. However, Figure 5d, and in particular Figures 5b and 5c, also show

the problem with relying on the indicators alone: Their relationship with output growth

is unstable. During the recession period in the early 2000s for example, see Figure 5b,

the spread did not signal any downturn at all. Likewise, for this period the changes in

the stock index did not turn significantly negative before almost one quarter after the

recession started. In contrast, for all three recession periods reported in Figure 5, the

NCI provides a more or less timely signal of the downturn.

4.1 Business cycles and index evaluation

Making a formal evaluation of the NCI is challenging. By construction, the quarterly

sum of the daily NCI will equal the observed quarterly growth rates in GDP a (plus a

measurement error, c.f. Section 3.2), while daily business cycle conditions, on the other

hand, are not observed. Alternatively, in the tradition of Burns and Mitchell (1946),

and later work by, e.g., Bry and Boschan (1971) and Hamilton (1989), to mention just

two of many, aggregate economic activity can be categorized as phases of expansions and

contractions, and one can assess the index’s ability to classify such phases. This is the

route I take here.

Following Travis and Jordà (2011), I use Receiver Operating Characteristic (ROC)

curves and the area under the curve (AUROC) statistic to score the NCI ’s ability to

classify the state of the economy.16 Here, I do so along four dimensions: How well it

16In economics, Travis and Jordà (2011) introduced the ROC methodology to classify economic activity into

recessions and expansions. An ideal binary classifier would always indicate a recession when a recession

actually occurs (true positive), while never indicate a recession when it does not occur (false positive).

In Figure 6a, for example, such a classifier would be depicted by a point in the upper left corner. A

model not performing any better than random guessing would end up at the 45 degree line. Thus, using

the ROC one can easily compare the trade-offs (cost/benefit) one faces when using different models or

indicators for classification. The AUROC is an often used summary statistic within the ROC framework.

By definition the AUROC can not exceed 1, perfect classification, or be lower than 0.5. I compute the

AUROC score non-parametrically using the algorithm described in Travis and Jordà (2011), and refer to

their work for an overview of the ROC technicalities and advantages in terms of scoring business cycle
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(a) NCI and different reference cycles (b) NCI and quarterly classification

(c) NCI at various lead lengths (d) NCI and alternatives

Figure 6. Receiver Operating Characteristics curves (ROC). Figure 6a reports the NCI ’s ability of

classifying business cycle phases across four different business cycle chronologies. In Figures 6b to 6d the

MS-FMQ chronology is used as the reference cycle. Figure 6b reports the results when classification is

scored at a quarterly frequency. Figure 6c reports the results when the NCI is lagged p = {0, 40, . . . , 200}
days. Figure 6d compares the performance of the daily NCI against a set of daily and monthly alterna-

tives. For the monthly indicators, LFS and BCI, daily numbers are obtained using previous end-of-period

values throughout the subsequent month.

categorizes business cycles using different reference cycles; how well it categorizes business

cycles at a different level of time aggregation; how well it categorizes business cycles at

different lags; and finally, how well it categorizes business cycles compared to other often

used and observable alternatives. See Section 4.4 for evaluations of the NCI relative to

other estimated coincident indexes.

Figure 6a assesses the NCI ’s classification ability against four different business cycle

chronologies, developed by Aastveit et al. (2016) for the Norwegian economy.17 Each

chronologies. Still, as the true underlying state of the economy is never observed, even retrospectively,

and since the categorization of economic activity does not follow any universally agreed upon law, there

will be an inherent uncertainty also with this type of evaluation. An evaluation of a different sort, but

perhaps more hefty, can be obtained by running a real-time out-of-sample forecasting experiment.
17In contrast to in, e.g., the U.S., which has an official business cycle dating committee (NBER), no such
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chronology is constructed using different methodologies to extract the unobserved phases:

uni- and multivariate Bry-Boschan approaches (BB-GDP and BB-ISD), a univariate

Markow-switching model (MS-GDP), and a Markov-Switching factor model (MS-FMQ).

Aastveit et al. (2016) provide a description of these approaches and the data used. The

resulting quarterly classifications, and additional model details, are summarized in Table

2 in Appendix A.18 As seen from Figure 6a, irrespective of which reference cycle that is

used to define the Norwegian business cycle, the NCI yields a true positive rate of roughly

80 percent, at the cost of only 25 percent false positives. The AUROC measures are also

between 0.85 and 0.87 in all four cases, signaling very good classification. While these

results are strong, but not perfect, it should be remembered that the NCI might provide

an estimate of the economy’s phases that is closer to the unknown truth than any of the

other reference cycles I use to evaluate it. Moreover, the classification models typically

used are at the quarterly (or monthly) frequency, while the NCI allows for daily classifi-

cation. Aggregating the NCI to a quarterly time series, by simply computing the mean

growth rate for each quarter, we observe that the index’s classification ability becomes

even better, see Figure 6b. When using the MS-FMQ as the reference cycle, for exam-

ple, an AUROC of 0.92 is achieved at the quarterly frequency against 0.87 at the daily

frequency. Compared with the results reported for quarterly Norwegian data in Aastveit

et al. (2016), and U.S. data in Travis and Jordà (2011), this score is very competitive.19

The results reported in Figure 5 indicated that the NCI had leading properties. This

is confirmed more formally in Figure 6c. Lagging the NCI 40 days yields a higher AUROC

score than actually using the NCI as a contemporaneous classifier for the business cycle.

The performance of the NCI does not really start to drop before it is lagged almost one

quarter (80 days), suggesting that the NCI would be a highly useful indicator for turning

point predictions and nowcasting.

Traditionally, coincident indexes are constructed using a number of observable daily

and monthly variables. In Figure 6d, the classification properties of some of these variables

(see Appendix A for data descriptions) are compared to the NCI. The best performing

observable indicator in terms of ROC curve scoring is the daily Spread followed by the

monthly labor force survey (LFS ). Using stock returns or the business confidence indicator

institution or formal dating exists for Norway.
18Daily classifications are obtained by assuming that the economy remains in the same phase on each day

within the quarterly classification periods.
19Using the reference cycle generated by the MS-FMQ model for Norwegian data, Aastveit et al. (2016)

show that the BB-GDP model gets an AUROC of 0.93. Using U.S. data, and comparing various leading

indicators and coincident indexes, Travis and Jordà (2011) show that the best performing coincident

index is the one developed by Aruoba et al. (2009). This index receives an AUROC of 0.96 when the

NBER business cycle chronology is used as a reference cycle.
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(OSEBX and BCI ) are almost no better than random guessing in terms of classifying the

business cycle, confirming the impression from Figure 5. It is noteworthy that the PCA

estimated news index (see Section 2.3) performs better than any of the other alternatives.

At the cost of 40 percent false positive rates, it can give almost 100 percent true positive

rates. Still, the AUROC score for the PCA estimated news index is well below the NCI ’s.

In sum, the results presented above suggest that the NCI adds value. Although

other alternatives also provide information that is competitive relative to the NCI, these

alternatives are not necessarily available on a daily frequency and they do not provide the

users of such information any broader rational in terms of why the indicators fall or rise.

As shown in the next section, the NCI does.

4.2 News and index decompositions

Figure 7 illustrates how changes in the NCI can be decomposed into the contributions from

the individual news topics, and thereby address what type of new information underlies

changes in business cycle conditions.20 To economize on space, I only report nine of the

topics contributing to the NCI estimate. The 11 remaining topics are reported in Figure

9 in Appendix B. Three distinct results stand out.

First, the topics listed in Figure 7 do, for the most part, reflect topics one would

expect to be important for business cycles in general, and for business cycles in Norway

in particular. Examples of the former are the Monetary policy, Fiscal policy, Wage pay-

ments/Bonuses, Stock market, Funding, and Retail topics, while the Oil production and

Oil service topics are examples of the latter.21 The remaining topics (see Figure 9 in

Appendix B) are typically related to general business cycle sensitive sectors (reflected by,

e.g., Airline industry and Automobiles topics) and technological developments (reflected

by, e.g., IT-technology and Startup topics). Still, although most topics are easily inter-

pretable and provide information about what is important for the current state of the

economy, some topics either have labels that are less informative, or reflect surprising

categories. An example is the Life topic, reported in Figure 9. That said, such exotic or

less informative named topics, are the exception rather than the rule. It is also the case

that a given newspaper article contains many topics at the same time. To the extent that

different topics, meaningful or not from an economic point of view, stand close to each

20Technically, these results are constructed using the Kalman Filter iterations and decomposing the state

evolution at each updating step into news contributions (see Appendix E.5). The decompositions reported

in Figure 7 are based on running the Kalman Filter using the posterior median estimates of the hyper-

parameters and the time-varying factor loadings (at each time t).
21Norway is a major petroleum exporter, and close to 50 percent of its export revenues are linked to oil

and gas. See Bjørnland and Thorsrud (2015), and the references therein, for a more detailed analysis of

the strong linkages between the oil sector and the rest of the mainland economy.
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other in the decomposition of the corpus (see Figure 2) they might covary and therefore

both add value in terms of explaining the current state of the economy.

Second, while some topics seem to be important almost every period throughout the

sample, other topics only contribute significantly at certain time periods. The Oil service

topic provides an example: Almost throughout the whole sample, until the mid 2000s, its

contribution is close to zero. After 2004, however, its contribution becomes highly positive.

Similar observations can also be confirmed for the Stock market topic, in particular. The

extended periods of zero contribution are partly due to the threshold mechanism used

when estimating the time-varying factor loadings. I return to this discussion in Section

4.3.

Third, the timing of when specific topics become important, either positively or nega-

tively, resonates well with what we now know about the economic developments the last

two decades. Without dredging too deep into the historical narrative of the Norwegian

business cycle, I give three examples: It is by now well recognized that the extraordinary

boom in the Norwegian economy during the 2000s was highly oil-driven. The large pos-

itive contributions from the two oil topics, Oil service and Oil production, reflect this.22

It is also well known that Norwegian (cost) competitiveness has declined considerably

during the two last decades. According to the National Accounts statistics, annual wages

and salaries increased considerably during especially two periods: the mid-1990s and the

mid-late 2000s. Both patterns are clearly visible in the graph showing how media coverage

of the Wage payments/Bonuses topic contributes to the index fluctuations. Finally, we

see from the bottom graph in Figure 7 that the Funding topic, a newspaper topic focused

on words associated with credit and loans, contributed especially negatively during the

Great Recession period. Again, this resonates well with the historical narrative, given

what we today know about the Great Recession episode.

Some might find it tempting to interpret the news topics, and their contribution to

the NCI, as some type of causal relationship between news and economic fluctuations.

Technically, within the current framework, this is not a valid interpretation because the

decompositions reported in Figure 7 are based on predictive properties. Instead, the

newspaper topics should simply be interpreted as a broad panel of different high frequent

economic indicators, informative about the current state of the economy. Still, there is

a large literature emphasizing the role of news as an important channel for generating

business cycles, see, e.g., Beaudry and Portier (2014) for an overview. In particular, in

Larsen and Thorsrud (2015) it is shown, using the same raw text data as here, that

22During the 1980s and 1990s, value added in the oil service sector hardly grew in real terms (according to

the National Accounts statistics for Norway). From the early 2000s until today, the sector has grown by

over 300 percent.
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Figure 7. News topics and their (median) contribution to NCI estimates across time. The news topic

contributions are standardized and illustrated using different colors. GDP a, graphed using a dotted black

line, is recorded at the end of each quarter, but reported on a daily basis using previous end-of-period

values throughout the subsequent quarter. Recession periods, defined by a MS-FMQ model, see Section

4.1, are illustrated using gray shading.
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(a) Monetary Policy (72) (b) Results (46)

(c) Oil Service (51) (d) Stock Market (18)

Figure 8. Topics and threshold probabilities across time (topic numbers, confer Table 3 in Appendix

A, in parentheses). Each graph reports the posterior probability that the factor loading associated with

topic i is 0.

unexpected innovations to a quarterly news index cause persistent fluctuations in both

productivity, consumption, and output. While these responses are well in line with the

predictions given by the news driven business cycle view, they stand in stark contrast to

those one would obtain if the informational content of the news topics were associated with

some type of sentiment, see, e.g., Beaudry et al. (2011) and Angeletos and La’O (2013).

It is plausible that items in the newspaper generate a self-fulfilling feedback loop where

the mood of the news changes economic activity, thus validating the original sentiment.

4.3 Threshold probabilities

An important aspect of the modeling strategy described in Section 3 is the time-varying

factor loadings, and the sparsity enforced through the latent threshold mechanism. The

effect of the threshold mechanism could be seen (partly) through how the news topic

contributions varied across time, confer Figure 7. Following Nakajima and West (2013)

and Zhou et al. (2014), a more direct illustration is offered in Figure 8.

Figure 8 exemplifies how the posterior probability of a binding threshold varies across

time for factor loadings associated with four of the topics. It is particularly noteworthy
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how the threshold probability for the Stock market topic varies substantially; perhaps

capturing the conventional wisdom that the stock market predicts more recessions than

what we actually observe in the data. Note, however, that during the slow growth periods

in the beginning of the 2000s, when the world economy was hit by the bust of the dot-

com bubble, the threshold probabilities came down considerably. A similar pattern is

observed around the financial crisis, although the likelihood of a zero loading is only

close to zero somewhat late in the crisis. In contrast, for the Monetary Policy topic, the

threshold probability is essentially zero throughout the sample, indicating that this topic

is an important part of the daily business cycle index in all periods. For both the Oil

Service and Results topics the threshold probabilities show a more varied pattern. Still,

on average there is a greater probability of a binding threshold for the factor loadings

associated with the Oil Service topic in the early part of the sample compared to the

later periods. For the Results topic, the mid 1990s and 2000s stand out as particularly

informative, with long periods of (close to) zero threshold probabilities.

When investigating the threshold probabilities for the other factor loadings (not shown)

I observe that they in most cases do not bind. For the researcher or index user wanting

to enforce a larger degree of sparsity onto the system, a tighter prior for the threshold

parameter likely needs to be imposed (confer Appendix E.2). However, in unreported

experiments, and in this context, I find that imposing such a prior reduces the index’s

classification power.

4.4 Extensions and comparisons

In this section I do three experiments: First, I assess the importance of the LTM mech-

anism by estimating the DFM using the same information set as above, but without

allowing for time-varying parameters. Second, I asses the importance of using a larger

set of mixed frequency information by also including variables observed on a monthly fre-

quency in the model.23 Finally, to assess how well the NCI compares to other coincident

indexes estimated without utilizing the daily newspaper topics, I compare its performance

against three more standard alternatives.

The results from these experiments are summarized in Table 1. Across 40 different

evaluations, non of the alternative specifications improve upon the benchmark NCI. On

average, the benchmark NCI receives an AUROC score which is 27 (25) percent higher

than the alternatives when evaluated against four different daily (quarterly) reference

23By not including more variables of lower frequency than daily in the benchmark model, the NCI model

formulation departs from what is commonly used. For example, Mariano and Murasawa (2003) mix a

small set of monthly variables with quarterly output growth to construct a coincident index, while Aruoba

et al. (2009) mix both daily, weekly, monthly, and quarterly information to do the same.
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Table 1. ROC comparison across models. Each entry in the table reports the AUROC score of the

benchmark NCI model relative to five alternatives across different reference cycles (confer Section 4.1).

The numbers in parentheses report the relative scores when the models are evaluated at a quarterly

frequency. A value higher than one indicates that the NCI model receives a higher AUROC score. The

alternative mixed frequency DFM models are: an NCI model estimated without allowing for time-varying

factor loadings (NCI-F ); an NCI model estimated with an augmented data set including monthly labor

market data (NCI-DM ); a coincident index constructed without newspaper data, but with monthly

labor market and confidence data, and daily spreads and returns data (CI-DM ); two coincident indexes

constructed without newspaper data, but with daily spreads and returns data (CI-D and CI-FD). All

alternative models, except NCI-F and CI-FD, are estimated allowing for time-varying factor loadings. A

description of the data used is given in Appendix A.

NCI-F NCI-DM CI-DM CI-D CI-FD

BB-GDP 1.22 ( 1.22) 1.36 ( 1.24) 1.36 ( 1.24) 1.17 ( 1.04) 1.38 ( 1.45)

MS-GDP 1.26 ( 1.34) 1.35 ( 1.28) 1.35 ( 1.28) 1.22 ( 1.16) 1.17 ( 1.20)

BB-ISD 1.11 ( 1.10) 1.50 ( 1.56) 1.51 ( 1.56) 1.16 ( 1.04) 1.09 ( 1.07)

MS-FMQ 1.23 ( 1.30) 1.29 ( 1.26) 1.30 ( 1.27) 1.25 ( 1.16) 1.20 ( 1.24)

Average 1.20 ( 1.24) 1.37 ( 1.33) 1.38 ( 1.34) 1.20 ( 1.10) 1.21 ( 1.24)

cycles. Focusing on the effect of including the time-varying parameter formulation we

see that the benchmark model performs up to 26 (34) percent better than the alter-

native NCI-F when the daily (quarterly) MS-GDP reference cycle is used. Across all

the reference cycles, the results strongly suggest that allowing for time-varying factor

loadings increases classification precision. Moving to the second question raised above,

including monthly information into the model does not to increase the model’s classifica-

tion abilities. Irrespective of which frequency and reference cycle the benchmark index

is evaluated against, the NCI is on average 37 (33) percent better than the alternative

NCI-DM. Given the results presented in Figure 6, where the monthly variables themselves

did not actually obtain a very high AUROC, this is perhaps not very surprising. Finally,

when mixed frequency time-varying DFMs are estimated using conventional daily and/or

monthly variables only, the CI-D, CI-DM, and CI-FD models, the benchmark model is

clearly better for three out of the four reference cycles used. Interestingly, comparing

the results for the NCI-F model against the CI-FD model, we observe that they perform

almost identical. Thus, it is the combined effect of allowing for the LTM mechanisms for

the factor loadings and the usage of newspaper data which makes the NCI outperform the

other alternatives. Obviously, one can not rule out that a more careful selection of other

high frequent conventional variables might improve the relative score of the alternative

models estimated here. On the other hand, a more careful selection of news topics might

also improve the score of the NCI, and neither of the alternatives, CI-D, CI-DM, and

CI-FD, offer the benefits in terms of news decomposition illustrated in Section 4.2.
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5 Conclusion

In this paper I develop a time-varying mixed frequency Dynamic Factor Model where

dynamic sparsity is enforced on the factor loadings using a latent threshold mechanism,

and show how textual information contained in a business newspaper can be utilized

to construct a daily coincident index of business cycles. Both contributions, the usage

of newspaper data and the latent threshold mechanism, add value. The constructed

index has almost perfect classification abilities, and outperforms many commonly used

alternatives. In contrast to existing approaches, the usage of newspaper data also gives

the index user broad based information about what is leading to the changes in the daily

index. That is, when decomposing the coincident index into news topic contributions I

show that news topics related to monetary and fiscal policy, the stock market and credit,

and industry-specific sectors seem to provide the most important information about daily

business cycle conditions. Moreover, the sign and timing of their individual contributions

map well onto the historical narrative we have about recent business cycle swings.

The (macro)economic literature utilizing textual information and alternative data

sources is fast growing, but still in its early stages. Although highly data and com-

putationally intensive, the results presented here are encouraging and motivates further

research. Going forward, an assessment of the predictive power of the proposed daily

coincident index, and testing the methodology across different countries and media types,

are natural extensions.
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Appendices

Appendix A Data, reference cycles and topics

The newspaper corpus and data used for gross domestic product (GDP) are described

in Sections 2.1 and 2.3, respectively. Different classifications of the business cycle into

phases of expansions and recessions are listed in Table 2. A summary of all the estimated

news topics, and the most important words associated with each topic, are reported in

Table 3. The remaining data used in this analysis are obtained from Reuters Datastream,

and are as follows: Spread is constructed as the difference between the 10-year benchmark

rate and the interbank three month offered rate. OSEBX is (log) daily returns computed

using the Oslo Stock Exchange Benchmark index. Both the Spread and OSEBX variables

are recorded on a daily frequency. Missing observations, during weekends, are filled using

simple linear interpolation. Like for the daily newspaper topic time series, prior to esti-

mation I smooth the series using a 60-day (backward-looking) moving average filter, and

standardize the resulting variables. BCI is the seasonally adjusted industrial confidence

indicator for the manufacturing sector in Norway, and LFS is the seasonally adjusted la-

bor force. Both variables are recorded on a monthly frequency, and transformed to (log)

monthly growth rates. The series are smoothed using a two-month (backward-looking)

moving average filter and standardized prior to estimation.

Table 2. Reference cycles 1986 to 2014 (as estimated in Aastveit et al. (2016)). The different chronologies

build on: a Bry-Boschan approach using GDP growth (BB-GDP); a univariate Markow-switching model

using GDP growth (MS-GDP); the Bry-Boschan approach applied to a coincident index based on inverse

standard deviation weighting (BB-ISD); and a multivariate Markow-swithing model (MS-FMQ). For

both the BB-ISD and MS-FMQ models six quarterly variables are included: the Brent Blend oil price,

employment in mainland Norway, household consumption, private real investment in mainland Norway,

exports of traditional goods and GDP for mainland Norway. See Aastveit et al. (2016), and the references

therein, for more formal model, data, and estimation descriptions.

BB-GDP MS-GDP BB-ISD MS-FMQ

1986 - 1989 Peak 1987:Q2 1986:Q2 1987:Q4 1987:Q2
Trough 1989:Q3 1989:Q1

1990 - 1994 Peak 1991:Q1
Trough 1991:Q4 1991:Q4 1991:Q4

1995 - 2001 Peak 2001:Q1 2001:Q1 2001:Q1 2001:Q1
Trough 2001:Q3 2001:Q3 2001:Q3 2001:Q3

2002 - 2003 Peak 2002:Q2 2002:Q3
Trough 2002:Q4 2003:Q1

2004 - 2010 Peak 2008:Q2 2007:Q4 2007:Q4 2008:Q2
Trough 2008:Q3 2010:Q1 2009:Q1 2009:Q3
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Table 3. Estimated topics and labeling. The topics are labeled based on the meaning of the most

important words (see the text for details). The “Corr” column reports the topics’ correlation (using the

Df
1 data set, see Section 2.2) with linearly interpolated daily GDP a (the correlation rank is reported in

parenthesis). The words are translated from Norwegian to English using Google Translate.

Topic Label Corr First words

Topic 0 Calender 0.03(69) january, march, october, september, novem-

ber, february

Topic 1 Family business 0.18(19) family, foundation, name, dad, son, fortune,

brothers

Topic 2 Institutional investing 0.10(39) fund, investments, investor, return, risk, capi-

tal

Topic 3 Justice 0.04(65) lawyer, judge, appeal, damages, claim,

supreme court

Topic 4 Surroundings 0.18(18) city, water, meter, man, mountain, old, out-

side, nature

Topic 5 Housing 0.14(29) housing, property, properties, apartment,

square meter

Topic 6 Movies/Theater 0.08(50) movie, cinema, series, game, producer, prize,

audience

Topic 7 Argumentation 0.11(34) word, besides, interesting, i.e., in fact, sure,

otherwise

Topic 8 Unknown 0.09(42) road, top, easy, hard, lift, faith, outside, strug-

gle,fast

Topic 9 Agriculture 0.03(68) industry, support, farmers, export, produc-

tion, agriculture

Topic 10 Automobiles 0.18(17) car, model, engine, drive, volvo, ford, møller,

toyota

Topic 11 USA 0.09(47) new york, dollar, wall street, president, usa,

obama, bush

Topic 12 Banking 0.00(80) dnb nor, savings bank, loss, brokerage firm,

kreditkassen

Topic 13 Corporate leadership 0.05(59) position, chairman, ceo, president, elected,

board member

Topic 14 Negotiation 0.04(61) solution, negotiation, agreement, alternative,

part, process

Topic 15 Newspapers 0.22( 9) newspaper, media, schibsted, dagbladet, jour-

nalist, vg

Topic 16 Health care 0.00(77) hospital, doctor, health, patient, treatment,

medication

Topic 17 IT systems 0.17(24) it, system, data, defense, siem, contract, tan-

berg, deliver

Topic 18 Stock market 0.23( 8) stock exchange, fell, increased, quote, stock

market

Continued on next page
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Table 3 – continued from previous page

Topic Label Corr First words

Topic 19 Macroeconomics 0.07(53) economy, budget, low, unemployment, high,

increase

Topic 20 Oil production 0.18(20) statoil, oil, field, gas, oil company, hydro,

shelf, stavanger

Topic 21 Wage payments 0.26( 7) income, circa, cost, earn, yearly, cover, payed,

salary

Topic 22 Norwegian regions 0.17(23) trondheim, llc, north, stavanger, tromsø, lo-

cal, municipality

Topic 23 Family 0.04(64) woman, child, people, young, man, parents,

home, family

Topic 24 Taxation 0.03(71) tax, charge, revenue, proposal, remove, wealth

tax, scheme

Topic 25 EU 0.04(62) eu, eea, commission, european, brussel, mem-

bership, no

Topic 26 Norwegian industry 0.20(13) hydro, forest, factory, production, elkem, in-

dustry, produce

Topic 27 Unknown 0.07(54) man, he, friend, smile, clock, evening, head,

never, office

Topic 28 Norwegian groups 0.09(45) orkla, storebrand, merger, bid, shareholder,

acquisitions

Topic 29 UK 0.06(57) british, london, great britain, the, of, pound,

england

Topic 30 Narrative 0.03(72) took, did, later, never, gave, stand, happened,

him, began

Topic 31 Shipping 0.10(36) ship, shipping, dollar, shipowner, wilhelmsen,

fleet, proud

Topic 32 Projects 0.10(38) project, nsb, development, fornebu, en-

trepreneurship

Topic 33 Oil price 0.11(32) dollar, oil price, barrel, oil, demand, level,

opec, high

Topic 34 Sports 0.00(78) olympics, club, football, match, play, lilleham-

mer, sponsor

Topic 35 Organizations 0.10(41) leader, create, organization, challenge, con-

tribute, expertise

Topic 36 Drinks 0.13(30) wine, italy, taste, drinks, italian, fresh, fruit,

beer, bottle

Topic 37 Nordic countries 0.04(63) swedish, sweden, danish, denmark, nordic,

stockholm

Topic 38 Airline industry 0.21(12) sas, fly, airline,norwegian, braathens, airport,

travel

Topic 39 Entitlements 0.02(73) municipality, public, private, sector, pension,

scheme

Continued on next page
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Table 3 – continued from previous page

Topic Label Corr First words

Topic 40 Employment conditions 0.08(51) cut, workplace, measures, salary, labor, work-

ing, employ

Topic 41 Norwegian politics 0.05(60) høyere, party, ap, labor party, stoltenberg,

parlament, frp

Topic 42 Funding 0.31( 3) loan, competition, creditor, loss, bankruptcy,

leverage

Topic 43 Literature 0.01(76) book, books, read, publisher, read, author,

novel, wrote

Topic 44 Statistics 0.27( 6) count, increase, investigate, share, average,

decrease

Topic 45 Watercraft 0.01(75) ship, boat, harbor, strait, shipowner, on

board, color

Topic 46 Results 0.31( 4) quarter, surplus, deficit, tax, group, operating

profit, third

Topic 47 TV 0.12(31) tv, nrk, channel, radio, digital, program, me-

dia

Topic 48 International conflicts 0.10(40) war, africa, irak, south, un, army, conflict,

troops, attack

Topic 49 Political elections 0.02(74) election, party, power, politics, vote, politi-

cian, support

Topic 50 Music 0.09(46) the, music, record, of, in, artist, and, play, cd,

band, song

Topic 51 Oil service 0.19(14) rig, dollar, contract, option, offshore, drilling,

seadrill

Topic 52 Tourism 0.21(11) hotel, rom, travel, visit, stordalen, tourist,

guest

Topic 53 Unknown 0.16(26) no, ting, think, good, always, pretty, actually,

never

Topic 54 Aker 0.11(35) aker, kværner, røkke, contract, shipyard, mar-

itime

Topic 55 Fishery 0.16(27) fish, salmon, seafood, norway, tons, nourish-

ment, marine

Topic 56 Europe 0.08(49) german, russia, germany, russian, west, east,

french, france

Topic 57 Law and order 0.06(56) police, finance guards, aiming, illegal, investi-

gation

Topic 58 Business events 0.00(79) week, financial, previous, friday, wednesday,

tdn, monday

Topic 59 Supervision 0.10(37) report, information, financial supervision, en-

lightenment

Topic 60 Retail 0.31( 2) shop, brand, steen, rema, reitan, as, group,

ica, coop

Continued on next page
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Table 3 – continued from previous page

Topic Label Corr First words

Topic 61 Startup 0.28( 5) bet, cooperation, establish, product, party,

group

Topic 62 Food 0.19(15) food, restaurant, salt, nok, pepper, eat, table,

waiter

Topic 63 Listed stocks 0.11(33) shareholder, issue, investor, holding, stock ex-

change listing

Topic 64 Asia 0.09(43) china, asia, chinese, india, hong kong, south,

authorities

Topic 65 Art 0.09(44) picture, art, exhibition, gallery, artist, mu-

seum, munch

Topic 66 Disagreement 0.08(52) criticism, express, asserting, fault, react,

should, alleging

Topic 67 Debate 0.15(28) degree, debate, context, unequal, actually,

analysis

Topic 68 Life 0.18(21) man, history, dead, him, one, live, church,

words, strokes

Topic 69 Distribution 0.18(22) customer, post, product, offers, service, indus-

try, firm

Topic 70 Telecommunication 0.08(48) telenor, mobile, netcom, hermansen, telia,

nokia, ericsson

Topic 71 IT technology 0.21(10) internet, net, pc, microsoft, technology, ser-

vices, apple

Topic 72 Monetary policy 0.33( 1) interest rate, central bank, euro, german, in-

flation, point

Topic 73 Education 0.04(66) school, university, student, research, professor,

education

Topic 74 Government regulations 0.03(70) rules, authorities, competition, regulations,

bans

Topic 75 Trade organizations 0.16(25) lo, nho, members, forbund, strike, organiza-

tion, payroll

Topic 76 Fear 0.04(67) fear, emergency, hit, severe, financial crisis,

scared

Topic 77 Fiscal policy 0.19(16) suggestions, parliamentary, ministry, selec-

tion, minister

Topic 78 Energy 0.05(58) energy, emissions, statkraft, industry, environ-

ment

Topic 79 Foreign 0.07(55) foreign, abroad, japan, japanese, immigration,

games
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Appendix B Additional results

Figure 9. News topics and their (median) contribution to NCI estimates across time. The news topic

contributions are standardized and illustrated using different colors. GDP a, graphed using a black dotted

line, is recorded at the end of each quarter, but reported on a daily basis using previous end-of-period

values throughout the subsequent quarter. Recession periods, defined by a MS-FMQ model (see Section

4.1) are illustrated using grey shading.
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Appendix C Filtering the news corpus

To clean the raw textual data set, a stop-word list is first employed. This is a list of

common words one does not expect to have any information relating to the subject of an

article. Examples of such words are the, is, are, and this. The most common Norwegian

surnames and given names are also removed. In total, the stop-word list together with the

list of common surnames and given names removed roughly 1800 unique tokens from the

corpus. Next, an algorithm known as stemming is run. The objective of this algorithm

is to reduce all words to their respective word stems. A word stem is the part of a word

that is common to all of its inflections. An example is the word effective whose stem is

effect. Finally, a measure called tf-idf, which stands for term frequency - inverse document

frequency, is calculated. This measures how important all the words in the complete

corpus are in explaining single articles. The more often a word occurs in an article, the

higher the tf-idf score of that word. On the other hand, if the word is common to all

articles, meaning the word has a high frequency in the whole corpus, the lower that word’s

tf-idf score will be. Around 250 000 of the stems with the highest tf-idf score are kept,

and used as the final corpus.

Appendix D LDA estimation and specification

The LDA model was developed in Blei et al. (2003). Here the estimation algorithm

described in Griffiths and Steyvers (2004) is implemented. First, recall that the corpus

consists of M distinct documents. N =
∑M

m=1Nm is the total number of words in all

documents, K is the total number of latent topics, and V is the size of the vocabulary.

Each document consists of a repeated choice of topics Zm,n and words Wm,n. Let t be

a term in V , and denote P (t|z = k), the mixture component, one for each topic, by

Φ = {ϕk}Kk=1. Finally, let P (z|d = m) define the topic mixture proportion for document

m, with one proportion for each document Θ = {θm}Mm=1. The goal of the algorithm is

then to approximate the distribution:

P (Z|W ;α, β) =
P (W ,Z;α, β)

P (W ;α, β)
(12)

using Gibbs simulations, where α and β are the (hyper) parameters controlling the prior

conjugate Dirichlet distributions for θm and ϕk, respectively. A very good explanation

for how this method works is found in Heinrich (2009). The description below provides a

brief summary only.

With the above definitions, the total probability of the model can be written as:

P (W ,Z,Θ,Φ;α, β) =
K∏
k=1

P (ϕi; β)
M∏
m=1

P (θm;α)
N∏
t=1

P (zm,t|θm)P (wm,t|ϕzm,t) (13)
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Integrating out the parameters ϕ and θ:

P (Z,W ;α, β) =

∫
Θ

∫
Φ

P (W ,Z,Θ,Φ;α, β) dΦ dΘ

=

∫
Φ

K∏
k=1

P (ϕk; β)
M∏
m=1

N∏
t=1

P (wm,t|ϕzm,t) dΦ

∫
Θ

M∏
m=1

P (θm;α)
N∏
t=1

P (zm,t|θm) dΘ

(14)

In (14), the terms inside the first integral do not include a θ term, and the terms inside

the second integral do not include a ϕ term. Accordingly, the two terms can be solved

separately. Exploiting the properties of the conjugate Dirichlet distribution it can be

shown that:∫
Θ

M∏
m=1

P (θm;α)
N∏
t=1

P (zm,t|θm) dΘ =
Γ
(∑K

k=1 αk
)∏K

k=1 Γ(αk)

∏K
k=1 Γ(n

(k)
m + αk)

Γ
(∑K

k=1 n
(k)
m + αk

) (15)

and ∫
Φ

K∏
k=1

P (ϕk; β)
M∏
m=1

N∏
t=1

P (wm,t|ϕzm,t) dΦ =
K∏
k=1

Γ
(∑V

t=1 βt
)∏V

t=1 Γ(βt)

∏V
t=1 Γ(n

(t)
k + βt)

Γ
(∑V

t=1 n
(t)
k + βt

) (16)

where n
(k)
m denotes the number of word tokens in the mth document assigned to the kth

topic, and n
(t)
k is the number of times the tth term in the vocabulary has been assigned to

the kth topic.

Since P (W ;α, β), in (12), is invariable for any of Z, the conditional distribution

P (Z|W ;α, β) can be derived from P (W ,Z;α, β) directly using Gibbs simulation and

the conditional probability:

P (Z(m,n) | Z−(m,n),W ;α, β) =
P (Z(m,n),Z−(m,n),W ;α, β)

P (Z−(m,n),W ;α, β)
(17)

where Z(m,n) denotes the hidden variable of the nth word token in the mth document,

and Z−(m,n) denotes all Zs but Z(m,n). Denoting the index of a word token by i =

(m,n), and using the expressions in (15) and (16), cancellation of terms (and some extra

manipulations exploiting the properties of the gamma function) yields:

P (Zi = k | Z−(i),W ;α, β) ∝ (n
(k)
m,−i + αk)

n
(t)
k,−i + βt∑V

t=1 n
(t)
k,−i + βt

(18)

where the counts n
(·)
·,−i indicate that token i is excluded from the corresponding document

or topic. Thus, sampling topic indexes using equation (18) for each word in a document

and across documents until convergence allows us to approximate the posterior distri-

bution given by (12). As noted in Heinrich (2009), the procedure itself uses only five

larger data structures; the count variables n
(k)
m and n

(t)
k , which have dimension M × K
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and K×V , respectively, their row sums nm and nk, as well as the state variable zm,n with

dimension W .

With one simulated sample of the posterior distribution for P (Z|W ;α, β), ϕ and θ

can be estimated from:

ϕ̂k,t =
n
(t)
k + βt∑V

t=1 n
(t)
k + βr

(19)

and

θ̂m,k =
n
(k)
m + αk∑K

k=1 n
(k)
m + αk

(20)

In the analysis of the main paper, the average of the estimated θ̂ and ϕ̂ from the 10

last samples of the stored Gibbs simulations are used to construct the daily news topic

frequencies.24 In un-reported experiments, the topic extraction results reported in Section

2.1 do not change much when choosing other samples for inference, for example using the

last sample only.

Before estimation, three parameters need to be pre-defined: the number of topics and

the two parameter vectors of the Dirichlet priors, α and β. Here, symmetric Dirichlet

priors, with α and β each having a single value, are used. In turn, these are defined as a

function of the number of topics and unique words:

α =
50

K
, and β =

200

N

The choice of K is discussed in Section 2.1. In general, lower (higher) values for α and β

will result in more (less) decisive topic associations. The values for the Dirichlet hyper-

parameters also reflect a clear compromise between having few topics per document and

having few words per topic. In essence, the prior specification used here is the same as

the one advocated by Griffiths and Steyvers (2004).

D.1 Estimating daily topic frequencies

Using the posterior estimates from the LDA model, the frequency with which each topic is

represented in the newspaper for a specific day is computed. This is done by first collapsing

all the articles in the newspaper for one specific day into one document. Following Heinrich

(2009) and Hansen et al. (2014), a procedure for querying documents outside the set on

which the LDA is estimated is then implemented. In short, this corresponds to using the

same Gibbs simulations as described above, but with the difference that the sampler is

run with the estimated parameters Φ = {ϕk}Kk=1 and hyper-parameter α held fixed.

24Because of lack of identifiability, the estimates of θ̂ and ϕ̂ can not be combined across samples for an

analysis that relies on the content of specific topics. However, statistics insensitive to permutation of the

underlying topics can be computed by aggregating across samples (see Griffiths and Steyvers (2004)).

40



Denote by W̃ the vector of words in the newly formed document. Topic assignments,

Z̃, for this document can then be estimated by first initializing the algorithm by randomly

assigning topics to words and then perform a number of Gibbs iterations using:

P (Z̃i = k | Z̃−(i), W̃ ;α, β) ∝ (n
(k)
m̃,−i + αk)ϕ̂k,t (21)

Since ϕ̂k,t do not need to be estimated when sampling from (21), fewer iterations are

needed to form the topic assignment index for the new document than when learning

both the topic and word distributions. Here 2000 iterations are performed, and only

the average of every 10th draw is used for the final inference. After sampling, the topic

distribution can be estimated as before:

˜̂
θm̃,k =

n
(k)
m̃ + αk∑K

k=1 n
(k)
m̃ + αk

(22)

Appendix E The Dynamic Factor model and estima-

tion

For estimation, the Dynamic Factor Model described in Section 3 is rewritten to incorpo-

rate the latent threshold mechanism for the time-varying factor loadings and the mixed

frequency variables. For notational simplicity, I assume in the following that s = 0 (as in

the benchmark model), h = 1, and p = 1. Moreover, I describe a model structure which

includes both one quarterly and monthly variable, i.e., N q = 1 and Nm = 1, in addition

to a Nd× 1 vector of daily observables. Accordingly, following Harvey (1990), the system

used for estimation can be written in matrix form as:

yt = Ztat + et (23a)

at = Ftat−1 +Rωt (23b)

et = Pet−1 + ut (23c)

where

yt =



yq1,t

ym1,t

yd1,t

yd2,t
...

yd
Nd,t


Zt =



1 0 0

0 1 0

0 0 z1,t

0 0 z2,t
...

...
...

0 0 zNd,t


at =


Ct,q

Ct,m

at,d

 et =



0

0

e1,t

e2,t
...

eNd,t


Ft =


βt,q 0 zqΦ

0 βt,m zmΦ

0 0 Φ
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R =


1 0 zq

0 1 zm

0 0 1

 ωt =


ωt,q

ωt,m

ωt,d

 P =



0 0 · · · · · · 0

0 0 · · · · · · 0
...

... Φ1 0 0
...

... 0
. . . 0

0 0 0 0 ΦNd


ut =



0

0

u1,t

u2,t
...

uNd,t


Here, q, m, or d superscripts denote that the variable is observed on a quarterly, monthly

or daily frequency, respectively, while q, m, or d subscripts denote that the parameter or

variable is associated with quarterly, monthly or daily variables, respectively. Ct,q and Ct,m

are the quarterly and monthly cumulator variables, and at,d is the daily coincident index.

βt,q and βt,m are indicator variables, associated with quarterly and monthly variables,

respectively.

The time-varying factor loadings are modeled as random walks following the Latent

Threshold Model (LTM) idea introduced by Nakajima and West (2013). For example, for

one particular element in the Zt matrix, zi,t, the LTM structure can be written as:

zi,t = z∗i,tςi,t ςi,t = I(|z∗i,t| ≥ di) (24)

where

z∗i,t = z∗i,t−1 + wi,t (25)

with wi,t ∼ i.i.d.N(0, σ2
i,w). In (24) ςi,t is a zero one variable, whose value depends on the

indicator function I(|z∗i,t| ≥ di). If |z∗i,t| is above the the threshold value di, then ςi,t = 1,

otherwise ςi,t = 0.

The vectors of error terms, vt, ut, and wt are independent:
ωt

ut

wt

 ∼ i.i.d.N(


0

0

0

 ,


Ω 0 0

0 U 0

0 0 W

)

and both Ω, U , and W are diagonal matrices:

Ω =


σ2
ωq

0 0

0 σ2
ωm

0

0 0 σ2
ωd

 U =



0 0 · · · · · · 0

0 0 · · · · · · 0
...

... σ2
1,u 0 0

...
... 0

. . . 0

0 0 0 0 σ2
Nd,u


W =



0 0 · · · · · · 0

0 0 · · · · · · 0
...

... σ2
1,w 0 0

...
... 0

. . . 0

0 0 0 0 σ2
Nd,w


I note here that by restricting the error matrix Ω to be non-singular, the model specifi-

cation basically assumes that the quarterly and monthly variables contain some measure-

ment error relative to the latent daily business cycle factor. Accordingly, identification of
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the latent factors, Ct,q, Ct,m, and at,d, is obtained by restricting the upper 3× 3 block of

the time-varying factor loadings matrix Zt to be an identity matrix. Thus, z1,t = 1 for all

t, and σ2
1,w = 0.

The model’s hyper-parameters are Ω, U , W , Ft, P , and d. Inside Ft, the indicator

variables βt,q and βt,m are time-varying, but their evolution is deterministic and need not

be estimated. Thus, the only time-varying parameters to be estimated within the model

are those in Zt, which together with at, are the model’s unobserved state variables.25

Estimation consists of sequentially drawing the model’s unobserved state variables and

hyper-parameters utilizing 4 blocks until convergence is achieved. In essence, each block

involves exploiting the state space nature of the model using the Kalman Filter and the

simulation smoother suggested by Carter and Kohn (1994), coupled with a Metropolis-

Hastings step to simulate the time-varying loadings. Below, I describe each block in

greater detail. For future reference and notational simplicity it will prove useful to define

the following: Y = [y1, . . . ,yT ]′, A = [a1, . . . ,aT ]′, Z = [Z1, . . . ,ZT ]′, E = [e1, . . . , eT ]′,

F = [F1, . . . ,FT ]′, and Q = RΩR′.

E.1 Block 1: A|Y ,Z,E,F ,P ,U ,Q

Equations (23a) and (23b) constitute a state space system we can use to draw the unob-

served state at using the Carter and Kohn’s multimove Gibbs sampling approach. How-

ever, to do so we need to make the errors in the observation equation conditionally i.i.d.

Given knowledge of equation (23c), we can define P (L) = (I − PL) and pre-multiply

equation (23a) by P (L) to obtain the system:

ỹt =Z̃tat + ut ∼ N(0,U ) (26a)

at =Ftat−1 +Rωt ∼ N(0,Q) (26b)

where ỹt = P (L)yt and Z̃t = P (L)Zt.

Since all hyper-parameters and state variables, less A, are known (or conditionally

known), we can use the equations in (26) together with Carter and Kohn’s multimove

Gibbs sampling approach (see Appendix E.5) to sample at from:

aT | · · · ∼ N(aT |T ,P
a
T |T ) t = T (27a)

at| · · · ∼ N(at|t,at+1 ,P
a
t|t,at+1

) t = T − 1, T − 2, · · · , 1 (27b)

to get A. Note here that the Kalman Filter can be run straightforwardly despite the fact

that the ỹt vector contains missing values (see Harvey (1990) for details).

25Note that, in principle, the zq, and zm hyper-parameters could have been made time-varying. However, I

find that estimation of the model then becomes much more sensitive to the prior specification, and have

therefore chosen to treat them as constant.
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E.2 Block 2: Z,U ,W ,d|Y ,A,E,P

Conditionally on A, the errors in (23a) are independent across the N variables in yt.

Moreover, we have assumed that the covariance matrix W associated with the time-

varying factor loadings in equation (25) is diagonal. Consequently, one can draw Z one

equation at a time. As above, we deal with the fact that the errors in the observation

equation are not conditionally i.i.d. by applying the quasi differencing operator, P (L), to

each equation. Thus, for each i = 2, . . . , Nd, we obtain the following Gaussian system:

ỹdi,t =ãt,dzi,t + ui,t (28a)

zi,t =z∗i,tςi,t ςi,t = I(|z∗i,t| ≥ di) (28b)

z∗i,t =z∗i,t−1 + wi,t (28c)

where ỹdi,t = (I − ΦiL)ydi,t, and ãt,d = (I − ΦiL)at,d.

To simulate from the conditional posterior of z∗i,ti and di in (28), the procedure outlined

in Nakajima and West (2013) is followed. That is, conditional on all the data and hyper-

parameters, we draw the conditional posterior of z∗i,t sequentially for t = 1 : T using a

Metropolis-Hastings (MH) sampler. As described in Nakajima and West (2013), the MH

proposals come from a non-thresholded version of the model specific to each time t, as

follows: Fixing ςi,t = 1, take proposal distribution N(z∗i,t|mt,Mt) where:

M−1
t =σ−2i,u ãt,dãt,d + σ−2i,w(I + 1) (29a)

mt =Mt[σ
−2
i,u ãt,dỹ

d
i,t + σ−2i,w{(z∗i,t−1 + z∗i,t+1) + (I − 1)z∗i,0}] (29b)

for t = 2 : T − 1. For t = 1 and t = T , a slight modification is needed. Details can be

found in Nakajima and West (2013). The candidate is accepted with probability:

α(z∗i,t, z
p∗
i,t) = min

{
1,

N(ỹdi,t|ãt,dz
p
i,t,σ

2
i,u)N(z∗i,t|mt,Mt)

N(ỹdi,t|ãt,dzi,t,σ2
i,u)N(zp∗i,t |mt,Mt)

}
(30)

where zi,t = z∗i,tςi,t is the current state, and zpi,t = zp∗i,tς
p
i,t is the candidate.

The independent latent thresholds in di can then be sampled conditional on the data

and the hyper-parameters. For this, a direct MH algorithm is employed. Let di,−j =

di,0:s\di,j. A candidate is drawn from the current conditional prior, dpi,j ∼ U(0, |β0|+K),

where K is described below, and accepted with probability:

α(di,j, d
p
i,j) = min

{
1,ΠT

t=1

N(ỹdi,t|ãt,dz
p
i,t,σ

2
i,u)

N(ỹdi,t|ãt,dzi,t,σ2
i,u)

}
(31)

where zi,t is the state based on the current thresholds (di,j, di,−j), and zpi,t the candidate

based on (dpi,j, di,−j).

Lastly, conditional on the data, the hyper parameters and the time-varying parameters,

we can sample the elements of U and W using the inverse Gamma distributions. Let
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letters denoted with an underscore reflect the prior, then:

σ2
i,u| · · · ∼ IG(v̄u, σ̄2

i,u) (32)

where v̄u = T +
¯
T u and σ̄2

i,u = [
¯
σ2
i,u¯
T u +

∑T
t=1(ỹ

d
i,t − ãt,dzi,t)′(ỹdi,t − ãt,dzi,t)]/v̄u, and:

σ2
i,w| · · · ∼ IG(v̄w, σ̄2

i,w) (33)

where v̄w = T +
¯
Tw and σ̄2

i,w = [
¯
σ2
i,w¯
Tw +

∑T
t=1(z

∗
i,t − z∗i,t−1)′(z∗i,t − z∗i,t−1)]/v̄w. Note here

that for σ2
i,u, the simulations are done for i = 1, . . . , Nd, while for σ2

i,w they are only done

for i = 2, . . . , Nd because z1,t = 1 for all t by restriction.

E.3 Block 3: F ,Ω|A

Conditional onA, the transition equation in (23b) is independent of the rest of the system.

While the first and second equations of (23b) do depend on the estimates of Φ, the part of

the transition equation associated with at,d is independent of the rest of the components

in (23b). Accordingly, Φ and σ2
ωd

, the element in the lower right corner of Ω, can first be

simulated independently from the rest of the parameters in (23b), and then σ2
ωm

, σ2
ωq

, zm,

and zq can be simulated conditionally on Φ and σ2
ωd

.

To simulate Φ and σ2
ωd

, we employ the independent Normal-Gamma prior. Accordingly,

continuing with letting letters denoted with an underscore reflect the prior, the conditional

posterior of Φ is:

Φ| · · · ∼ N(Φ̄, V̄ Φ)I[s(Φ)] (34)

with

V̄ Φ = (
¯
V Φ−1

+
T∑
t=1

a′t−1,dσ
−2
ωd
at−1,d)

−1 (35)

Φ̄ = V̄ Φ(
¯
V Φ−1

¯
Φ+

T∑
t=1

a′t−1,dσ
−2
ωd
at,d) (36)

and I[s(Φ)] is an indicator function used to denote that the roots of Φ lie outside the unit

circle. Further, the conditional posterior of σ2
ωd

is:

σ2
ωd
| · · · ∼ IG(vωd , σ2

ωd
) (37)

with v̄ωd = T +
¯
T ωd , and σ̄2

ωd
= [

¯
σ2
ωd¯
T ωd +

∑T
t=1(at − at−1Φ)′(at − at−1Φ)]/v̄ωd .

Once Φ and σ2
ωd

are drawn, we can construct, for j = {q,m}:

Ct,j − βt,jCt−1,j ≡ C∗t,j = zjat,d + ωt,j (38)

and draw from the conditional posterior of zj and σ2
ωj

. Using again the independent

Normal-Gamma prior:

zj| · · · ∼ N(z̄j, V̄
zj) (39)
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with

V̄ zj = (
¯
V z−1

j +
T∑
t=1

a′t,dσ
−2
ωj
at,d)

−1 (40)

z̄j = V̄ zj(
¯
V z−1

j

¯
zj +

T∑
t=1

a′t,dσ
−2
ωj
C∗t,j) (41)

Finally, the conditional posterior of σ2
ωj

is:

σ2
ωj
| · · · ∼ IG(v̄ωj , σ̄2

ωj
) (42)

with v̄ωj = T +
¯
T ωj , and σ̄2

ωj
= [

¯
σ2
ωj¯
T ωj +

∑T
t=1(C

∗
t,j − at,dzj)′(C∗t,j − at,dzj)]/v̄ωj .

E.4 Block 4: E|Y ,A,Z and P |E,U

For each observation of the Nd daily variables, we have that:

ei,t = yi,t − zi,tat,d (43)

Thus, conditional on Y , A and Z, E is observable. As above, since E is independent

across the Nd equations, we can sample the elements of P in (23c) one equation at the

time. As this is done in the same manner as in equations (34) to (36) of Block 3 (with

the obvious change of notation), I do not repeat the computations here.

E.5 The Carter and Kohn algorithm and observation weights

Consider a generic state space system, written in companion form, and described by:

yt =Ztat + ut ∼ N(0,U) (44a)

at =Fat−1 +Rωt ∼ N(0,Q) (44b)

where we assume that the hyper-parameters θ = {U ,F ,R,Q}, and Zt are known, and

we wish to estimate the latent state at for all t = 1, . . . , T . To do so, we can apply Carter

and Kohn’s multimove Gibbs sampling approach (see Carter and Kohn (1994)).

First, because the state space model given in equation (44) is linear and (conditionally)

Gaussian, the distribution of at given Y and that of at given at+1 and Y for t = T −
1, . . . , 1 are also Gaussian:

aT |Y ∼ N(aT |T ,PT |T ), t = T (45a)

at|Y ,at+1 ∼ N(at|t,at+1 ,Pt|t,at+1), t = T − 1, T − 2, · · · , 1 (45b)
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where

aT |T = E(aT |Y ) (46a)

PT |T = Cov(aT |Y ) (46b)

at|t,at+1 = E(at|Y ,at+1) = E(at|at|t,at|t+1) (46c)

Pt|t,at+1 = Cov(at|Y ,at+1) = Cov(at|at|t,at|t+1) (46d)

Given a0|0 and P0|0, the unknown states aT |T and PT |T needed to draw from (45a)

can be estimated from the (conditionally) Gaussian Kalman Filter as:

at|t−1 = Fat−1|t−1 (47a)

Pt|t−1 = FPt−1|t−1F
′ +Q (47b)

Kt = Pt|t−1Z
′
t(ZtPt|t−1Z

′
t +U)−1 (47c)

at|t = at|t−1 +Kt(yt −Ztat|t−1) (47d)

Pt|t = Pt|t−1 −KtZtPt|t−1 (47e)

That is, at t = T , equation 47d and 47e above, together with equation 45a, can be used

to draw aT |T . Moreover, at|t,at+1 for t = T − 1, T − 2, · · · , 1 can also be simulated based

on 45b, where at|t,at+1 and Pt|t,at+1 are generated from the following updating equations:

at|t,at+1 = at|t + Pt|tF
′(FPt|tF

′ +Q)−1(at+1 − Fat|t) (48a)

Pt|t,at+1 = Pt|t + Pt|tF
′(FPt|tF

′ +Q)−1FPt|t (48b)

When computing the news topic contributions in Figures 7 and 9, I decompose the

state vector into a history of forecast error contributions. For simplicity, I use the notation

introduced in Appendix E.5 to describe how this is done. At each time interval t, the

forecast error in predicting yt is given by vt = yt −Ztat|t−1. In computing at|t, equation

(47d) above, the Kalman gain Kt is used to weight each forecast error when computing

the updated state estimate. If the predictions of the ith observable at time t are perfect,

vi,t = 0 and this observation does not contribute to potential updates from at|t−1 to at|t.

If the predictions of the ith observable at time t are not perfect, vi,t 6= 0, the observation

will influence the updated state estimate as long as it is given weight through the Kt

matrix. As the updating equation in 47d has a recursive structure, the time evolution of

at|t can easily be decomposed into a set of weighted forecast error contributions, resulting

in the decompositions shown in Figures 7 and 9.

E.6 Prior specification

To implement the MCMC algorithm, and estimate the model, prior specifications for the

initial state variables a0, Z0, and for the hyper-parameters Ω, U , W , Ft, P , and d
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are needed. The prior specifications used for the initial states take the following form:

a0 ∼ N(0, I · 100), and Z0 ∼ N(0, I · 100). The priors for the hyper-parameters Φ and Φ,

which are part of the Ft and P matrices, respectively, are set to:

¯
Φ ∼N(Φ̂OLS, V (Φ̂OLS))

¯
Φi ∼N(0, 0.5) for i = 1, . . . , Nd

where Φ̂OLS are the OLS estimates of an AR(h) using the first principal component of

the daily news dataset as dependent variable. V (Φ̂OLS) is a diagonal matrix where the

non-zero entries are the variance terms associated with the Φ̂OLS elements. To draw zq

and zm, which are part of the Ft matrix, I use:
¯
zj ∼ N(1, 1) for j = {q,m}.

The priors for the hyper-parameters Ω, U , and W , are all from the Inverse-Gamma

distribution, where the first element in each prior distribution is the shape parameter, and

the second the scale parameter:
¯
σ2
i,w ∼ IG(

¯
Tw, κ2w) where

¯
Tw = 8000 and κw = 0.003 for

i = 2, . . . , Nd;
¯
σ2
i,u ∼ IG(

¯
T u, κ2u) where

¯
T u = 100 and κu = 0.1 for all i = 1, . . . , Nd;

¯
σ2
ωj
∼

IG(
¯
T ωj , κ2ωj

) where
¯
T ωj = 1000 for j = {q,m, d}, and κωq = 0.003, and κωm = κωd

= 0.1.

In sum, as the full sample size T = 8769 observations, these priors are very informative

for the variance terms associated with the time-varying factor loadings, but less so for the

other parameters. Note, however, that the prior variance associated with the quarterly

cumulator variable error term, σ2
ωq

, is assumed to be considerably lower than the other

variance terms.

Finally, to draw the latent threshold, d, using the algorithm described in Appendix E.2,

the K parameter needs to be defined. K controls our prior belief concerning the marginal

sparsity probability. For example, assuming that a time-varying parameter follows Bt ∼
N(0, v2), and marginalizing over Bt, it can be shown that Pr(|Bt| = 0) = 2Φ(d

v
)−1, where

Φ is the standard normal CDF. DefiningK = d
v

as the standardized scaling parameter with

respect to the threshold, it can be seen that K = 3 implies a marginal sparsity probability

exceeding 0.99. As described in Nakajima and West (2013), a neutral prior will support a

range of sparsity values in order to allow the data to inform on relevant values, and they

suggest that setting K = 3 is a reasonable choice.26 However, in contrast to Nakajima

and West (2013), where the time-varying parameters follows AR(1) dynamics, the time-

varying factor loadings in (28) follows independent random walk processes. The random

walk is non-stationary, and does not have a marginal distribution. For this reason I have

experimented with estimating the model using different values for K, finding that higher

values for K, coupled with the rather tight priors for the variance of the factor loadings,

results in worse model performance (in terms of ROC and AUROC scoring). Accordingly,

26Note that when combined with the priors over the other hyper-parameters in the model, the implied

marginal prior for each threshold will not be uniform (see Nakajima and West (2013) for details).

48



Table 4. Convergence statistics. The AutoCorr row reports the 10th-order sample autocorrelation of

the draws, the RNE row reports the relative numerical efficiency measure, proposed by Geweke (1992),

while the IRL row reports the i-statistic, proposed by Raftery and Lewis (1992). For each entry we

report the mean value together with the minimum and maximum value obtained across all parameters

in parentheses.

Parameters

Statistic U Ω F P W d

AutoCorr −0.0
(−0.1,0.1)

0.1
(0.1,0.1)

0.1
(−0.1,0.1)

−0.0
(−0.1,0.1)

0.0
(−0.0,0.1)

0.0
(−0.2,0.1)

RNE 1.1
(0.3,1.9)

0.3
(0.2,0.5)

0.3
(0.7,1.7)

1.0
(0.6,1.6)

0.7
(0.4,1.0)

0.9
(0.4,1.5)

IRL 1.9
(1.9,1.9)

1.4
(1.4,1.4)

1.4
(1.2,1.2)

1.2
(1.4,1.4)

1.0
(1.0,1.0)

1.0
(1.0,1.0)

K = 0.05, in the estimations conducted in this analysis.

E.7 Convergence of the Markov Chain Monte Carlo Algorithm

Table 4 summarizes the main convergence statistics used to check that the Gibbs sampler

mixes well. In the first row of the table the mean, as well as the minimum and maximum,

of the 10th-order sample autocorrelation of the posterior draws is reported. A low value

indicates that the draws are close to independent. The second row of the table reports

the relative numerical efficiency measure (RNE), proposed by Geweke (1992). The RNE

measure provides an indication of the number of draws that would be required to produce

the same numerical accuracy if the draws represented had been made from an i.i.d. sample

drawn directly from the posterior distribution. An RNE value close to or below unity is

regarded as satisfactory. Autocorrelation in the draws is controlled for by employing a 4

percent tapering of the spectral window used in the computation of the RNE. The last

row, labelled IRL, reports the mean of the i-statistic. This statistic was proposed by

Raftery and Lewis (1992). In essence, it measures the ratio of two other statistics: the

total number of draws needed to achieve the desired accuracy for each parameter, and

the number of draws that would be needed if the draws represented an i.i.d. chain, see

Raftery and Lewis (1992) for details.27 Values of IRL exceeding 5 indicate convergence

problems with the sampler.

As can be seen from the results reported in Table 4, the sampler seems to have con-

verged. That is, the mean autocorrelations are all very close to zero, and the minimum or

maximum values obtained seldom exceed 0.1 in absolute value. Moreover, the mean RNE

statistic does not exceed unity by a large margin for any of the parameters. Finally, the

27The parameters used for computing these diagnostics are as follows: quantile = 0.025; desired accuracy

= 0.025; required probability of attaining the required accuracy = 0.95.
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Table 5. Estimates and true DGP parameters. The numbers reported in parenthesis are standard

deviations. See also Figure 10.

F1 Ω3,3 U3,3 U4,4 U5,5 U6,6

Estimated 0.99 0.48 1.29 1.05 0.99 1.00
(0.01) (0.01) (0.02) (0.02) (0.02) (0.02)

True 0.99 0.5 1 1 1 1

IRL statistics are always well below 5. Additional convergence results can be obtained on

request.

E.8 A simulation experiment

To control the estimation procedure, and verify the code, I run a simple simulation exper-

iment. Artificial data is generated from a data generating process like the one described

in Appendix E, with T = 8769 daily observations. Nq = 1, Nm = 1, and Nd = 8, such

that N = 10. Quarterly and monthly observations are attributed across some generic

year, quarters and months, such that the artificial sample contains roughly 100 and 300

observable quarterly and monthly observations, respectively.

Hyper-parameters used to simulate the data are set as follows: All diagonal elements

in W , U , and Ω are set to 0.001, 1, and 0.5, respectively. The threshold parameter d is

set equal to 0.3 for all of the time-varying factor loadings. The autoregressive process for

the law of motion for the latent daily factor, at, is specified with one lag and Φ = 0.99.

The autoregressive processes for the idiosyncratic errors are specified with Φi = 0 for

i = 1, . . . , Nd. Finally, zj = 1 for j = {q,m}, and the latent state variables in A0 and

Z0 are initialized at zero. The prior specifications used for estimation are in expectation

all set equal to the true values, but for neither specification is the degrees of freedom

parameters set higher than 100.

Figure 10 reports the estimated latent daily factor alongside the simulated factor. As

is clearly seen in the figure, they are very close to being perfectly correlated. In the

figure four of the estimated time-varying factor loadings, together with their simulated

counterparts, are also illustrated. Again, the estimated and simulated processes are very

similar. As seen from the figures, the estimation procedure is also capable of identifying

the true threshold value with a large degree of precision. Table 5 reports the posterior

median and standard deviation of the parameter estimates for Φ1, Ω3,3, and Ui,i for

i = {3, 4, 5, 6}. All estimates are precisely estimated and very close to their true values.
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Index

z3,3 z4,3

z5,3 z6,3

Figure 10. The upper graph reports the simulated daily index together with its estimate. The subse-

quent graphs report the simulated factor loadings for daily observations 3 to 6, together with the true

thresholds (d) and the estimated loadings and thresholds.
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