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and the Cross-Section of Safe Asset Returns∗
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Abstract

We study the cross-section of equilibrium returns on safe assets using a tractable as-

set pricing model with a micro-founded demand for liquidity, and multiple safe assets with

heterogeneous transaction costs. A key feature of our model is the “value of convenience”

which is an equilibrium object that measures the level of liquidity risk-sharing in the econ-

omy. Changes in asset supply or the transaction cost of a single safe asset affect aggregate

liquidity and the returns of all assets. The model features a pecuniary externality, which

investors fail to internalize when forming their portfolios, and which impacts equilibrium

welfare. Therefore, policies that increase the payoff on the most liquid asset or liquid as-

set supply management improve welfare in the competitive equilibrium. We test the main

predictions of our theory using a novel measure of relative (in)convenience yields in the US

Treasury market.
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1 Introduction

Safe assets, such as government bonds are not just risk-free assets. Many investors hold these

assets for the liquidity services they provide, since they either have a short enough maturity to

match investors’ liquidity needs or can be readily converted for cash in liquid secondary markets

with little price impact. Therefore, safe assets tend to command an additional premium, often

referred to as a liquidity premium or convenience yield (Krishnamurthy and Vissing-Jorgensen,

2012). However, there is substantial variation in safe assets’ convenience yields. To illustrate

this, Figure 1 plots the spreads between Treasuries and (maturity-matched) overnight indexed

swaps (OIS) – a common proxy of Treasury convenience – relative to the 3-months Treasury-OIS

spread.1 This difference in spreads, or relative spread, is a proxy for the relative (in)convenience

yields of U.S. Treasuries with different maturities after neutralizing the duration risk.

Figure 1: Treasury-OIS relative spreads

Notes: This figure shows the US Treasury-overnight indexed swaps (OIS) spread across different matu-

rities relative to the 3-months Treasury-OIS spread. Source: Bloomberg and authors calculations.

Motivated by this striking cross-sectional pattern, in this paper we develop a highly tractable

theory of convenience yields with multiple assets with heterogeneous transaction costs, agent

heterogeneity and aggregate risk. We use the model to illustrate a pecuniary externality that

1The OIS is a derivative, which is available with different maturities. Two parties swap a fixed rate for a
floating overnight rate. Combining a Treasury with a maturity-matched OIS contract effectively equalizes the
duration across tenors and ensures that we compare safe assets with similar interest rate sensitivity. Since OIS
is a derivative that requires no principal investment while Treasuries require upfront capital, the Treasury-OIS
spread measures the convenience yield, i.e., the return investors willingly forgo to hold actual Treasury securities.
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arises in the presence of heterogeneous transaction costs and analyze different welfare-improving

policies.

In our model, agents with recursive (Epstein and Zin, 1989) preferences face uninsurable id-

iosyncratic liquidity risk modeled via interim impatience shocks. This idiosyncratic risk creates

a demand for liquidity. Specifically, agents self-insure against the risk of needing to consume

early by holding and trading assets. Assets differ both in their exposure to an aggregate pay-

off risk factor but also in terms of their transaction costs when traded. Transaction costs are

assumed to be proportional to the value of assets sold. We refer to the transaction cost on an

asset as that asset’s illiquidity. A larger transaction cost incurred during sale implies greater

illiquidity. We assume there are multiple risk-free assets that differ in terms of their transaction

costs and relative supply, as well as a single illiquid risky asset (a market portfolio).

The intensity of idiosyncratic shocks that agents are exposed to, combined with the whole

asset and transaction cost structure, determine the equilibrium liquidity scarcity in this econ-

omy, which is fully summarized by a single equilibrium object. We refer to this important

equilibrium object as the value of convenience. The value of convenience is defined as the ratio

of equilibrium marginal utilities of consumption of an impatient versus a patient investor and

as such reflects the degree of liquidity risk-sharing that is attained in equilibrium. Intuitively,

a higher value of convenience implies a lower level of liquidity risk-sharing between investors.

Transaction costs play a key role in determining the value of convenience, since the total trans-

action cost expenditure incurred by asset sellers creates a wedge between the marginal utilities

of patient and impatient investors. With proportional transaction costs, such as bid-ask spreads

and price impact costs, asset prices also impact this wedge, giving rise to a pecuniary exter-

nality that investors fail to internalize when making their portfolio decisions. To examine the

cross-section of safe asset returns, we characterize relative inconvenience yields, defined as a

return on an asset relative to the most liquid (zero transaction cost) safe asset in the economy.

This relative inconvenience yield depends not only on an asset’s illiquidity but also on the value

of convenience. A higher value of convenience implies higher relative inconvenience yields and

a wider cross-section of safe asset returns. Therefore, the value of convenience acts as a pricing

factor for assets in the economy.

We use our framework to analyze how a change in asset supply or in the illiquidity of a

single asset affects the returns on all assets via general equilibrium effects operating through

the value of convenience. For example, substituting less liquid with more liquid safe assets

one-for-one purifies the pool of safe assets, decreases the value of convenience, and compresses

relative inconvenience yields. We also show that when safe assets are on average more liquid
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than the risky market portfolio – a natural assumption – an increase in aggregate risk or

risk aversion decreases the value of convenience, narrowing the relative inconvenience yields

across safe assets. The reason for this surprising outcome is a revaluation effect, due to a

“flight to safety” adjustment in agents’ portfolios. Intuitively, ceteris paribus, higher equilibrium

valuations of the relatively more liquid risk-free safe assets (and, respectively, lower valuations

of the less liquid risky assets) after a “flight to safety” episode shrink the transaction cost

expenditure of impatient investors and lower the value of convenience.

In addition to serving as a pricing factor, the value of convenience fully summarizes equi-

librium welfare. The higher the value of convenience, the lower is equilibrium welfare. In our

framework there is a pecuniary externality that matters for aggregate welfare. Specifically,

price-taking investors do not internalize how their asset demand affects asset prices and ulti-

mately the equilibrium wedge between patient and impatient investors’ marginal utilities. We

show in a simple two-asset version of our model that distorting the asset demand of investors

towards the more liquid asset and away from the less liquid asset improves social welfare. Intu-

itively, ex post patient investors, who are not affected by the transaction costs treat all assets as

perfect substitutes. However, from a social optimum perspective, the more liquid asset is more

valuable as it carries a lower transaction cost. Therefore, the distortion in asset demand brings

closer together the private and social value of the two assets and increases aggregate welfare.

Consequently, there are welfare-improving policy interventions. For example, building di-

rectly on the two-asset intuition above, a revenue-neutral set of taxes and subsidies that distort

safe asset payoffs by increasing the relative payoff on the most liquid asset increases aggregate

welfare. An alternative welfare-improving policy involves substituting illiquid for liquid assets.

Through the lens of our simple theory, such policies broadly resemble central bank balance sheet

policies as well as government debt management policies.

Finally, we show a new set of stylized facts, which are consistent with our theoretical pre-

dictions. We compute relative spreads as the difference between a Treasury-OIS spread of a

given maturity (1 year to 10 years) and the 3-months Treasury-OIS spread, as shown in Figure 1

above. We argue that these relative spreads measure relative inconvenience yields on Treasuries.

We use plausibly exogenous debt ceiling episodes to show that a decrease in the growth of total

outstanding government debt decreases relative spreads by around 1.5 basis points – a fact that

our model can help rationalize. Finally, we show that relative inconvenience yields on Treasuries

co-move positively with the MOVE Index, which measures yield volatility of US Treasuries, and

is thus closely correlated with illiquidity and transaction costs in the Treasury market (Duffie

et al., 2023). However, they co-move negatively with the VIX Index, consistent with revaluation
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effects of safe assets during “flight to safety” episodes. This finding resonates with the hedging

perspective of safe assets offered by Acharya and Laarits (2025), who show that Treasuries have

higher convenience yields in periods when they provide a good hedge against equity risk.

Related literature Our paper contributes to the large and growing literature on safe assets

and convenience yields, spurred by the seminal contribution of Krishnamurthy and Vissing-

Jorgensen (2012) (see Gorton et al. (2012), Caballero and Farhi (2013), Krishnamurthy and

Vissing-Jorgensen (2015), Sunderam (2015), Caballero et al. (2016), Nagel (2016), Azzimonti

and Yared (2019), He et al. (2019), Gorton (2020), Ahnert and Macchiavelli (2021), Chris-

tensen et al. (2021), Diamond and Van Tassel (2021), Jiang et al. (2021), Kacperczyk et al.

(2021), Acharya and Dogra (2022), Barro et al. (2022), Brunnermeier et al. (2024), Gorton and

Ordonez (2022), Van Binsbergen et al. (2022), Engel and Wu (2023), Krishnamurthy and Li

(2023), Lenel (2023), Herrenbrueck and Wang (2025), Mota (2023), among others).2 Following

Krishnamurthy and Vissing-Jorgensen (2012), much of this literature models convenience de-

mand via a reduced-form money-in-the-utility function. Our contribution to this literature is

to introduce a micro-founded general equilibrium model which endogenizes convenience yields

and liquidity scarcity as an equilibrium outcome of liquidity risk-sharing in the presence of

transaction costs. Moreover, our model, due to its microfoundations of liquidity demand, allows

for analyzing welfare and the welfare effects of policy interventions.

Our emphasis on transaction costs brings our paper close to models of equilibrium asset

prices with transaction costs and trading frictions (Amihud and Mendelson (1986), Aiyagari and

Gertler (1991), Heaton and Lucas (1996), Vayanos (1998), Vayanos and Vila (1999), Holmström

and Tirole (2001), Huang (2003), Lo et al. (2004), Vayanos (2004), Acharya and Pedersen

(2005), Duffie et al. (2005)).3 As in our framework, in these models, transaction costs imply

a liquidity premium for assets with different transaction costs or trading frictions.4 Closest to

our framework, Vayanos and Vila (1999) analyze a model with two risk-free assets, one without

a transaction cost and one with a positive transaction cost. They consider an OLG framework

with 3-period-lived agents that trade the assets for life-cycle reasons, with agents at different

stages of their life-cycles demanding different types of assets. Relative to their model we propose

2See Brunnermeier and Haddad (2014), Caballero et al. (2017), Golec and Perotti (2017), and Gorton (2017)
for a review of the literature.

3See Amihud et al. (2006) for a review of the literature. See also Constantinides (1986), Duffie and Sun (1990),
Davis and Norman (1990), Grossman and Laroque (1990), Dumas and Luciano (1991) for partial equilibrium
portfolio allocation models in the presence of transaction costs.

4In addition to differences in transaction costs or liquidity across assets, the liquidity premium may arise due
to liquidity risk. We also provide a microfoundation for the transaction costs arising due to a specific form of
liquidity risk – a correlation between the aggregate liquidity conditions in the economy and an asset’s returns,
similar to Holmström and Tirole (2001) and Acharya and Pedersen (2005).
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a framework where liquidity demand and pricing arises from the combination of uninsured

idiosyncratic liquidity shocks and transaction costs. Our framework can accommodate multiple

risk-free assets in addition to a risky asset (the market portfolio).

More recently, Brunnermeier et al. (2024) emphasize a retrading perspective on safe assets

convenience yields – the ability to retrade safe assets at a low transaction cost and at a pre-

dictable value whenever needed. They introduce an equilibrium price of service flows, which is

conceptually related to the value of convenience in our framework. Relative to their model we

provide a framework with a large set of assets, which can be used to understand the effects of

changes to the composition of safe assets in an economy. Our emphasis on risk-sharing ineffi-

ciencies arising from pecuniary externalities and our optimal policy results also complement the

insights of Brunnermeier et al. (2024). The central role of transaction cost expenditures, which

are endogenously determined in equilibrium, for aggregate liquidity conditions also brings our

theory close to models of endogenous liquidity, such as in Malherbe (2014), Kurlat (2013), and

Bigio (2015). Unlike these models, which endogenize per unit transaction costs via asymmetric

information frictions, we assume that the per-unit transaction costs are exogenous, and rather

focus on the endogenous determination of relative prices for assets with different transaction

costs.

Finally, our empirical measurement of convenience yields follows a recent wave of literature

applying the OIS rate as a proxy for the risk-free rate and the corresponding Treasury-OIS

spread as a proxy for the convenience yield embedded in Treasuries (Filipovic and Trolle (2013),

He et al. (2022), Klingler and Sundaresan (2023), Du et al. (2023), Fleckenstein and Longstaff

(2024), among others). Du et al. (2023) and Klingler and Sundaresan (2023) relate the increase

in the Treasury-OIS spread since the Global Financial Crisis (GFC) to the increase in the supply

of Treasuries.5 Specifically, Du et al. (2023) argue that Treasury supply is a significant driver

of the Treasury-OIS spreads and as a result contributed to the regime shift where dealers have

positive net positions in Treasuries. In contrast to these articles, our primary empirical interest

lies in the relative convenience yield across Treasuries. Our analysis, therefore, complements

recent work by Mota (2023) which also focuses on understanding relative convenience yields.

However, while she focuses on US corporate bonds and the relative bond-CDS basis, our focus

is on government bonds.

5In an earlier contribution, Greenwood and Vayanos (2014) also analyze pricing effects of relative supply of
Treasuries.
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2 Theory

In this section we present our theoretical framework. We start by informally discussing the

main features of our model. Agents in our model have standard Epstein-Zin (Epstein and Zin,

1989) preferences and form portfolios over risk-free and risky assets at an initial period.6 They

may then have interim trading needs, which arise due to uninsurable idiosyncratic shocks as in

the asset-pricing with uninsured idiosyncratic risk literature (e.g. Bewley (1979), Aiyagari and

Gertler (1991), Constantinides and Duffie (1996), Heaton and Lucas (1996), Heaton and Lucas

(2000), Constantinides (2002), Di Tella (2020), Brunnermeier et al. (2024)). In our framework,

these idiosyncratic shocks will take the form of shocks to marginal utility, making the agent

more impatient to consume in the period. Assets in our framework will each have a proportional

transaction cost that is borne by the seller of the asset in the interim period. As in Acharya

and Pedersen (2005), we interpret this transaction cost much more broadly than simple fees

or bid-ask spreads and instead let this cost encompass liquidity considerations related to price

impact and trading delays. In addition, in the Appendix we provide a microfoundation where

the transaction cost also incorporates liquidity risk – the covariance between the price of an

asset and the aggregate liquidity needs in the economy. Finally, we assume that there is always

a risk-free asset with zero transaction cost. This is consistent with theories of security design,

in which a riskless security has the lowest transaction cost (see Gorton and Pennacchi (1990),

DeMarzo and Duffie (1999), Dang et al. (2009)).7

2.1 Model set-up

The model has 3 periods: t = 0, 1, 2. The state at t = 2 is uncertain and described by the

realization z of a continuous random variable Z. There is a unit measure of 3-period lived

investors. Investors have non-storable endowments Y0 at t = 0 and Y1 at t = 1. A measure

λ of investors are subject to a liquidity/impatience shock at the beginning of t = 1. They are

denoted by type s = S and are referred to as impatient. The remaining investors are denoted

by s = S and are referred to as patient. Investors consume in all three periods, c0, c1,s, c2,s,

for s ∈
{
S, S

}
. The liquidity shock makes investors value consumption at t = 1 more and not

6Using Epstein-Zin preferences allows for a separation of the elasticity of intertemporal substitution (EIS)
from the coefficient of relative risk aversion. In our setting this would allow us to separately consider the effects
of changes in payoff risk or risk aversion on asset prices and relative convenience yields, holding the EIS fixed at
unity.

7Note that our framework only models the demand for convenience via liquidity needs, and we do not
explicitly model any additional demand for safety, for example due to limited participation in markets for risky
assets (Vissing-Jorgensen, 2002) or because of special properties of using safe and informationally-insensitive
assets as collateral (Dang et al., 2010). Our model can be easily modified to accommodate the latter channel as
borrowing against collateral for liquidity purposes (i.e. funding liquidity) and liquidating an asset (i.e. market
liquidity) are closely related concepts.
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value consumption at t = 2 anymore.

There are two types of assets. The first type is risk-free assets, and there are N such assets.

We denote the set of these assets by I = {1, 2, ..., N}. The second type is risky assets, and for

simplicity we assume there is only one such asset, which we refer to as the market portfolio and

denote it by m.

The risk-free asset i has a payoff of 1 in each state z at t = 2. In Section 4 we allow for more

general payoffs for the risk-free assets. For the market portfolio, we denote the payoff by φm(z).

We further assume that logφm(z) is distributed according to logφm(z) ∼ N(µ − σ2/2, σ2).8

The total supply of all risk-free assets is denoted by Qf , while for the market portfolio the total

supply is Qm. The supply of each risk-free asset i is Qi, and therefore, Qf =
∑

i∈IQ
i. The

investors are equally endowed with these assets at the start of t = 0.

Since investors are ex ante symmetric at t = 0, we denote the quantity of risk-free asset

i ∈ I held by an investor at the end of t = 0 by Xi
1, while the quantity of the market portfolio is

denoted by Xm
1 . The quantity of risk-free asset i held by an investor type s ∈

{
S, S

}
at the end

of t = 1 is Xi
2,s, and analogously, for the market portfolio holdings. The prices of the risk-free

assets are denoted by P it , and the price of the risky asset by Pmt .

Investors who sell an asset at t = 1 pay a proportional transaction cost τ i for risk-free asset

i and τm for the market portfolio.9 The assumption that transaction costs (interpreted broadly

as any form of liquidation cost) are proportional to the market value of assets is an important

feature of our model and subsequent analysis. The assumption is, however, empirically relevant

in view of bid-ask spreads and price impact of trading. We assume that for risk-free asset

i = 1, τ1 = 0. Therefore, there is one risk-free asset without transaction costs in this economy.

Otherwise τ i > 0 for all i ̸= 1.

Lastly, investors are assumed to have recursive Epstein-Zin (Epstein and Zin, 1989) prefer-

ences given by:

U0 = log(c0) + E [χs log(c1,s) + βs log(U2,s)] ,

where U2,s =
(
E
[
c1−γ2

])1/(1−γ)
, and γ measures the degree of risk aversion. To model the t = 1

liquidity shock of the investors, we assume that

χs =


χ, s = S

χ, s = S

, with 1 = χ < χ, and βs =


1, s = S

0, s = S.

In what follows, we focus on the case where χ = 2. This is a convenient parametrisation, since

8Subtracting σ2/2 from the mean ensures that the expected value of logφm is µ and does not depend on σ2.
9In the Appendix we also allow for buyer-specific proportional transaction costs or subsidies.
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given the number of periods and the assumption of no discounting between periods, it implies

that there are no total utility differences between the patient and impatient investors, which

gives us tractability at the cost of little loss in generality. We can write the t = 0 preferences of

an investor of type s recursively as

U0 = log(c0) + E [U1,s] , (1)

with U1,s = χs log(c1,s) + βs log(U2,s) and U2,s =
(
E
[
c
(1−γ)
2,s

])1/(1−γ)
. At t = 1 we have

U1,s =


2 log(c1,S), s = S

log(c1,S) + log(U2,S), s = S.

(2)

The t = 0 budget constraint of an investor is given by

c0 +
∑
i∈I

P i0X
i
1 + Pm0 X

m
1 = Y0 +

∑
i∈I

P i0Q
i + Pm0 Q

m. (3)

We conjecture that all risk-free assets in period 1 have the same price P f1 and verify this

conjecture in the Appendix. Therefore, the t = 1 budget constraint for a type-s investor is

given by

c1,s +A2,s = Y1 +A1 −
∑
i∈I
τ iP f1 max

{
0, Xi

1,s −Xi
2,s

}
− τmPm1 max

{
0, Xm

1,s −Xm
2,s

}
,

(4)

where the last two terms on the right-hand side reflect the transaction costs incurred from

selling assets, and A1 denotes the asset holdings the investor has at the beginning of t = 1,

namely A1 ≡ P f1 X
f
1,s + Pm1 X

m
1,s, with Xf

1,s ≡
∑
i∈I
Xi

1,s. A2,s denotes the asset holdings of the

investor at the end of t = 1, with A2,S ≡ P f1 X
f
2,S + Pm1 X

m
2,S , where X

f
2,s ≡

∑
i∈I
Xi

2,s. Finally, the

period 2 budget constraint of a type-s investor in state z is given by

c2,s (z) = Xf
2,s + φm(z)Xm

2,s. (5)

Next, we define an equilibrium for this economy.

Definition 1 (Equilibrium). An equilibrium for this economy consists of period 0 asset and

consumption choices of the investors,
{
Xi

1

}
i∈I, X

m
1 , and c0; period 1 asset and period 1 and 2

consumption choices for type-s investors,
{
Xi

2,s

}
i∈I , X

m
2,s, c1,s, and c2,s (z); and period 0 and 1

asset prices,
{
P i0
}
i
, Pm0 , P f1 , P

m
1 , such that
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a) given prices, the consumption allocations, and asset holdings solve the period 0 and period

1 problems of the investor (i.e. Eq. (1) subject to the period t = 0 budget constraint in

Eq. (3), as well as Eq. (2) subject to the period t = 1 budget constraint in Eq. (4), as

well as the period 2 budget constraint in Eq. (5) which must hold for all z);

b) given the period 0 and period 1 asset holdings of investors, the asset markets clear in both

t = 0 and t = 1, that is

Xi
1 = Qi, ∀i ∈ I

Xm
1 = Qm

and

λXi
2,S

+ (1− λ)Xi
2,S = Qi, ∀i ∈ I

λXm
2,S

+ (1− λ)Xm
2,S = Qm.

2.2 Characterisation

We solve the model backwards in time. We first look at the t = 1 problems and market clearing

conditions given the asset holdings of the investors as of the beginning of t = 1 and then

move to the t = 0 problem and market clearing conditions given some anticipated t = 1 prices.

Imposing rational expectations and given the t = 0 choices of agents this approach characterizes

the equilibrium of this economy.

2.2.1 t = 1 characterisation

From t = 1 onwards, there are two types of investors: patient and impatient. An impatient

investor sells all her assets because she derives no utility from consumption in future periods.

A patient investor’s problem can be split into a consumption-saving problem and a portfolio

choice problem.10 In the consumption-saving problem, she decides how much to consume in the

current period and how much to save for the next period. In the portfolio choice problem, she

decides how to allocate her savings over assets. Specifically, below we denote by w the portfolio

share invested in the market portfolio. Market clearing implies that patient investors hold all

assets at the end of t = 1. The following Lemma summarises the t = 1 characterisation.

Lemma 1 (t = 1 characterisation). Let A1 =
∑

i∈I P
f
1 Q

i
1 + Pm1 Q

m
1 denote the value of an

investor’s financial asset holdings at t = 1. The following characterises the equilibrium prices

10This is implied by the assertion that in equilibrium she only increases her asset holdings at t = 1, as we
verify in the Appendix.

10



and allocations at t = 1 and t = 2.

a) Investors’ t = 1 consumption and saving decisions:

c1,S =
2

1 + λ
Y1 −

∑
i∈I
τ iP f1 Q

i − τmPm1 Q
m

c1,S =
1

1 + λ
Y1

and

A2,S = 0

A2,S =
Y1 +A1

2
.

b) Patient investors’ t = 2 portfolio allocations solve P f1 X
f
2,S = (1− w)A2,S and Pm1 X

m
2,S =

wA2,S, where w solves:

V2(A2,S) = max
w

(
E
[
c2,S (z)

(1−γ)
])1/(1−γ)

s.t.

c2,S (z) =

[
(1− w)

1

P f1
+ w

φm (z)

Pm1

]
A2,S , ∀z.

c) Prices are determined by:

P f1 Q
f = (1− w)

1− λ

1 + λ
Y1

Pm1 Q
m = w

1− λ

1 + λ
Y1,

where w, with 0 ≤ w ≤ 1, is the equilibrium portfolio share invested by patient investors

in the market portfolio. Moreover, P i1 = P f1 , ∀i ∈ I.

Proof. See Appendix A.2.

2.2.2 t = 0 characterisation

At t = 0, investors choose their current consumption and their asset portfolio. The problem is

characterised by a standard Euler equation. The marginal utility of today’s consumption must

equal the expected marginal utility of tomorrow’s consumption times the return on each asset

earned by holding it from the first to the second period, where the expectation is taken over

the idiosyncratic investor-specific state at t = 1. All uninvested resources are consumed, and
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there is asset market clearing, with all assets held by the investors. Lemma 2 summarises the

equilibrium equations that characterise the economy at t = 0.

Lemma 2 (t = 0 characterisation). Given anticipated period t = 1 asset prices P i1,∀i ∈ I

and Pm1 , the following list of equations characterises the economy at t = 0.

a) Prices are determined by the Euler equations with respect to every asset:

∂U0

∂c0
= λ

∂U1,S

∂c1,S

P j1
P j0

(1− τ j) + (1− λ)
∂U1,S

∂c1,S

P j1
P j0
, ∀j ∈ I ∪m.

b) The portfolio allocations, or asset holdings, are:

Xi
1 = Qi, ∀i ∈ I

Xm
1 = Qm.

c) Consumption is given by:

c0 = Y0.

Proof. See Appendix A.2.

2.3 Approximating the period t = 1 portfolio choice problem

For some of our theoretical results below, we will simplify the t = 1 portfolio choice problem of

the patient investor by applying a log-normal approximation for the equilibrium asset returns, as

in Iachan et al. (2021), which in turn is based on the log-normal portfolio choice approximation

in Campbell and Viceira (2002). Under that approximation, the portfolio choice problem of

the patient investor simplifies to a mean-variance portfolio choice problem, given normally

distributed log asset returns.

To set-up the simplified problem, we define the log returns rm2 (z) ≡ logRm2 = log
(
φm(z)
Pm
1

)
and rf2 ≡ logRf2 = log

(
1

P f
1

)
. Also, we define the log of the certainty-equivalent return on the

portfolio, Rce2 , by rce2 ≡ log(Rce2 ), and the log of the risk premium on the risky asset by

π ≡ logE[Rm2 ]− logRf = logE[φm(z)] + log
P f1
Pm1

.
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The approximate solution of the portfolio choice problem is then given by

rce2 − rf2 = max
w

wπ − γ

2
w2σ2.

The first-order condition gives the Merton share (Merton, 1969):

w =
π

γσ2
, (6)

that is the share invested in the risky asset is proportional to the Sharpe ratio, π/σ, where the

coefficient of proportionality depends inversely on the risk aversion coefficient γ. The certainty

equivalent log return of her portfolio is then

rce2 = rf2 +
1

2

π2

γσ2
. (7)

This approximation requires a minor adjustment in our equilibrium definition as well. In partic-

ular, the investor is assumed to act according to Eqs. (6) and (7) when forming t = 1 portfolios

and making her t = 0 and t = 1 consumption-saving decisions.

Finally, note that

π ≈ logE[φm(z)] +
P f1 − Pm1
Pm1

, (8)

whenever
P f
1 −Pm

1
Pm
1

is close to zero, so that log
P f
1

Pm
1

≈ P f
1 −Pm

1
Pm
1

. This will be the case whenever

the expected payoff of the market portfolio E[φm(z)] is close to the terminal payoff on the risk-

free assets and the risk premium is relatively small. We regard this as empirically plausible,

given the observed risk premia on risky assets in the macroeconomy, and will therefore use this

approximation for the log risk premium whenever we derive results involving a positive supply

of risky assets below.

We point out that from our main theoretical results below only Proposition 6 and the second

case in Proposition 5 depend on this log-approximation. The other results are independent of

it.

2.4 Asset maturity and transaction costs

While the transaction costs can be interpreted literally as such, in the Appendix, we provide

additional microfoundations for these costs. We first show two examples where we adjust our

framework to incorporate assets with different maturities, a feature we are particularly interested

in, in light of the stylized empirical facts we present in Section 5. In both examples we show

that long maturity assets are less convenient to accommodate agents’ interim liquidity needs and
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can, therefore, be associated with carrying higher transaction costs. In the first example, the

reason for that is that there is a mismatch between the maturity of the long maturity asset and

the horizon of liquidity needs. In the second example, we introduce liquidity risk by introducing

additional shocks, such that the t = 1 return on the long maturity asset is negatively correlated

with the marginal utility of consumption.

3 Theoretical results

3.1 The value of convenience

An important equilibrium object that is central to our theoretical results is the value of con-

venience. To define this object, let m1,s ≡ ∂U1,s

∂c1,s
/∂U0
∂c0

denote the ratio of marginal utilities of

consumption for an investor of type s ∈
{
S, S

}
. Define

η ≡
m1,S

m1,S
=
∂U1,S

∂c1,S
/
∂U1,S

∂c1,S
. (9)

Therefore, η captures the degree to which period t = 1 marginal utilities of consumption between

patient and impatient investors are aligned in equilibrium. Indeed, as we show in Section 4

below, in the first-best full liquidity risk-sharing case η = 1, and there is full equalization of

marginal utilities across idiosyncratic states at t = 1. Moreover, the higher is η, the further away

this economy is from the full-insurance benchmark. In our decentralised economy, generally

η ≥ 1, with the value of η determined in equilibrium. Therefore, η can be thought of as

reflecting the equilibrium liquidity scarcity in this economy. For this reason we refer to η as the

value of convenience.

Proposition 1 (Value of Convenience). The value of convenience η is given by

η =
2

1+λY1
2

1+λY1 − Ω
(10)

with Ω ≡ τ̃P f1 Q
f + τmPm1 Q

m and τ̃ ≡
∑

i
Qi

Qf τ
i.

Proof. We use the investors’ t = 1 consumption specified in Lemma 1 and insert it in the

derivative of the logarithmic utility function given by 1
c1,s

for s = S, S. Taking the ratio

according to equation (9) yields equation (10).

The value of convenience is a function of model primitives and asset prices. τ̃ is the

(weighted) average transaction cost on risk-free assets in this economy. Ω gives the total trans-

action cost expenditure that an impatient seller incurs in equilibrium. This expenditure creates
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a wedge in the marginal utilities of patient and impatient investors. The larger is the expendi-

ture, the larger is the wedge and the higher is the value of convenience η. Since the transaction

cost expenditure depends on asset prices, changes in these prices would impact the wedge in

marginal utilities and the degree of risk-sharing in equilibrium.

We can further simplify η by using the equations from equilibrium prices from Lemma

2 above. Specifically, we have that the equilibrium transaction cost expenditure is Ω =

[τ̃(1− w) + τmw] (1− λ)Y1/(1 + λ). Substituting into Eq. (10) and simplifying, we get that

η =
1

1− (1− λ)[τ̃(1− w) + τmw]/2
. (11)

Therefore, the value of convenience depends on a weighted average of the (relative-supply

weighted) transaction costs of the risk-free assets and the transaction cost on the risky as-

set, where the weight is the equilibrium portfolio share invested in risky assets, w. If Qm = 0,

this equation further simplifies to

η =
1

1− (1− λ)τ̃ /2
. (12)

In that case η depends only on the average transaction costs τ̃ and the share of impatient

investors λ. Specifically, η increases in τ̃ . Intuitively, a higher average transaction cost increases

the total transaction cost expenditure and decreases the self-insurance possibilities, leading to a

higher value of η. η also decreases with the share of impatient investors, λ. The larger the share

of impatient investors, the lower the t = 1 price of the safe assets, P f1 , due to the larger supply

pressure and cash-in-the-market pricing from the patient investors. However, a lower t = 1

price actually mitigates the impact of the transaction costs, as it reduces the total transaction

cost expenditure. This improves liquidity insurance and leads to a lower η.

3.2 Relative inconvenience yields

We compare the return of a specific asset relative to the return on the most liquid risk-free

asset in the economy. A higher relative return means that the most liquid asset commands

a premium (a higher convenience yield) over that specific asset.11 Below, for brevity, we will

use the term relative inconvenience yield when referring to the (positive) relative return of a

specific asset and the most liquid risk-free asset.

We define the period t = 1 gross return on an asset i ∈ I ∪ {m} as Ri1 ≡ P i
1

P i
0
and show the

following result.

11Note that we are consistent with standard measures of convenience yields, which are always expressed in
terms of relative returns or spreads.
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Proposition 2 (Relative inconvenience yields). Define ψj ≡ Rj
1

R1
1
as the return on asset j

relative to the return on the most liquid asset in the economy, risk-free asset 1. Then

ψi =
1

1− λτ i −m1,Sτ
iR1

1

=
1

1− τ i λ
λ+(1−λ)/η

, for all i ∈ I ∪m.

Proof. See Appendix A.2.

Proposition 2 shows that the relative inconvenience yield ψi is influenced by three forces.

First, an asset’s return has to compensate for the transaction cost incurred by selling the asset.

Second, an asset’s return has to compensate for the transaction cost being incurred precisely

when the investor is impatient. Third, how much the transaction cost matters for the relative

inconvenience yield depends on the value of convenience, η. A lower value of convenience, also

lowers the relative inconvenience yields on all assets.

3.3 Effects of transaction costs

We next show how a change in an asset’s transaction cost impacts the relative inconvenience

yields across the entire cross-section of assets in the economy.

Proposition 3 (Transaction costs). The relative inconvenience yield, of asset i, ψi, is in-

creasing in that asset’s transaction cost, τ i, i.e. ∂ψi

∂τ i
> 0, ∀i ∈ I ∪m. It is also increasing in

the transaction cost of any other asset, τk, i.e. ∂ψi

∂τk
> 0, for k ̸= i and i ∈ I ∪m. The impact

is higher, the higher is τ i, i.e. ∂2ψi

∂τ i2
> 0 and ∂2ψi

∂τk∂τ i
> 0, ∀i ∈ I ∪m.

Proof. See Appendix A.2.

Therefore, a change in an asset’s transaction cost not only impacts its own relative incon-

venience yield but also impacts the entire cross-section of asset returns. This spillover effect is

driven by a change in the value of convenience η. An increase in the transaction cost of any asset

increases the value of convenience, since the transaction cost expenditure of sellers increases,

decreasing risk-sharing opportunities. A higher value of convenience affects all assets and raises

all relative inconvenience yields, making the most liquid asset relatively more valuable. The

more illiquid an asset is in terms of its transaction cost, the more its corresponding relative

inconvenience yield is affected.

3.4 Effects of changes in asset supplies

We next show how changes to the composition and overall supply of safe assets affect the the

cross-section of asset returns. We first consider a compositional change in the supply of the
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risk-free assets due to an increase in the supply of one asset and an equivalent decrease in the

supply of another asset.

Proposition 4 (Purifying/polluting effects). Given a compositional change where dQl =

−dQk > 0 for two risk-free assets k and l, the relative inconvenience yield ψi for any asset

i ∈ I ∪m decreases strictly in response to this change, iff τ l < τk.

Proof. See Appendix.

Substituting more liquid for less liquid assets one-for-one can be interpreted as a “purifi-

cation” of the pool of safe assets by altering its composition. This decreases the value of

convenience and compresses relative inconvenience yields. We call this the “purifying/polluting

effect” of safe asset supply.

Next we show the asset pricing implications of changes in the overall supply of risk-free

assets, keeping the composition of risk-free assets fixed. In the Proposition below we first

assume that there is no risky asset in the economy, Qm = 0. In a second step we use the log

approximation from Section 2.3 to also discuss the case with Qm > 0. In that case the supply

of risk-free assets also impacts the equilibrium risk premium.

Proposition 5 (Total safe asset supply effect). Consider a change in Qf , keeping the

composition of risk-free assets fixed.

• If Qm = 0, then ∂ψi

∂Qf = 0 for all i ∈ I ∪m.

• If Qm > 0 and given the log-approximation of the investor’s portfolio problem and the risk

premium, then ∂ψi

∂Qf > 0, for all i ∈ I ∪m, iff (τm − τ̃)
(
µ− γσ2 − 1

)
> 0.

Proof. See Appendix.

If there are no risky assets, an increase in the aggregate supply of safe assets, holding their

composition fixed, does not affect inconvenience yields. This is a direct consequence of having

log inter-temporal preferences, and an elasticity of intertemporal substitution (EIS) of unity.

In that case, income and substitution effects from intertemporal price changes cancel out and

the investor saves a constant share of her wealth. In equilibrium, that leads to an equilibrium

value of the risk-free assets that is independent of asset supply. Consequently, the value of

convenience remains unchanged and so do relative inconvenience yields.

This conclusion changes once risky assets are present. In that case, there are relative reval-

uation effects between the risky asset and the risk-free assets. Let τm > τ̃ , so risk-free assets

are on average more liquid than the risky asset, which we view as the empirically-relevant case.
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Whenever a higher supply of risk-free assets lowers their value relative to risky assets, so that

in equilibrium investors’ portfolio weight w would tilt towards risky assets, then the transaction

cost expenditure of impatient investors would increase and, by Eq. (11), so would the value of

convenience. Consequently, the cross-section of relative inconvenience yields would also widen.

This type of revaluation takes place if the expected payoff of risky assets is sufficiently large

relative to the payoff variance and investors’ risk aversion, as given by the condition µ−γσ2 > 1.

Propositions 4 and 5 can be used to characterize the effect of a change in the supply of

a single risk-free asset on relative inconvenience yields. That effect is the combination of an

increase in the overall supply of risk-free assets and a number of compositional changes, since

an increase in the supply of a single risk-free asset increases its relative weight in the pool

of risk-free assets and decreases the relative weight of all other assets. For example, suppose

that Qm = 0 and there are two risk-free assets. In the simple case without risky assets, only

the compositional channel operates: convenience yields rise if the injected asset has higher

transaction costs compared to the average (a polluting effect); otherwise, they fall. In the

general case with risky assets, both channels are active. Convenience yields increase under the

same conditions as in Proposition 5, and, in addition, the injected asset must have transaction

costs above the average. Otherwise it is unclear which channel dominates.

3.5 Effects of payoff risk

Our model makes predictions of how changes in aggregate payoff risk during crisis and “flight to

safety” episodes impact the cross-section of safe asset returns. The following result characterizes

these effects through the lens of our model.

Proposition 6 (“Flight to safety” revaluation effects). Given the log-approximation of

the investor’s portfolio problem and the log risk premium, then, for all i ∈ I ∪m, ∂ψi

∂σ2 < 0, iff

τm > τ̃ , and ∂ψi

∂γ < 0, iff τm > τ̃ .

Proof. See Appendix.

An increase in the payoff variance σ2 or the risk aversion parameter γ increases the price

of the risk-free assets and decreases the price of the risky asset. This tilts the equilibrium

portfolio weight away from the risky asset and toward the risk-free assets. If safe assets are on

average more liquid than the risky asset – which we view as the empirically-relevant case – then

an increase in aggregate risk or risk aversion implies that this revaluation effect decreases the

total transaction cost expenditure. As a consequence, by Eq. (11), the value of convenience

decreases, and so do the relative inconvenience yields for the whole cross-section of safe assets.
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4 Welfare and optimal policy

In this section we show that the value of convenience is a measure of welfare in this economy,

since it summarizes the degree of liquidity risk-sharing among agents that is achieved in equi-

librium. If the value of convenience is greater than one, the decentralized equilibrium does

not reach the first-best level of liquidity risk-sharing. The reason for this sub-optimality is a

pecuniary externality, since asset prices enter the transaction cost expenditure of asset sellers,

which agents fail to internalize when forming their portfolios. In light of this result, we discuss

welfare-improving policies.

4.1 The value of convenience as a welfare measure

As already alluded to in Section 3.1, the value of convenience is a welfare measure for this

economy, with higher values of η implying lower aggregate welfare. To show this formally, we

characterize the welfare maximization problem of a utilitarian social planner that maximizes the

ex ante (t = 0) expected utility of an investor.12 Specifically, the planner maximizes aggregate

welfare, W = E [U0] , by solving

max
c1,S ,c1,S

log(Y0) + λ2 log(c1,S) + (1− λ)

[
log(c1,S) + log

((
E

[(
Qf + φm2 (z)Qm

)1−γ]) 1
(1−γ)

)]
s.t. λc1,S + (1− λ)c1,S = Y1,

where we have substituted for the t = 0 and t = 2 endowments. The optimal period t = 1

consumption allocation equalizes the marginal utilities of the patient and impatient investors,

and is thus given by c1,S = 2 Y1
(1+λ) , and c1,S = Y1

(1+λ) . Therefore, from Eq. (9), we have that

1 = 1
c1,S

/ 2
c1,S

= η. Moreover, we can express welfare W as a function of η, which is uniquely

maximized at η = 1 (full liquidity risk-sharing), with W monotonically decreasing in η, for

η ≥ 1.

Proposition 7 (Welfare). For η ≥ 1 welfare W is monotone decreasing in the value of con-

venience, η, ∂W
∂η < 0, and W is maximized for η = 1 (full liquidity risk sharing).

Proof. See Appendix.

Given the decentralized equilibrium value of η in this economy (Cf. Eq (10)), it follows

directly that with positive transaction costs, η > 1 and the competitive equilibrium does not

achieve the first-best level of risk-sharing and welfare. The reason for this inefficiency is a

pecuniary externality, which we discuss next.

12Since the planner cannot shift resources across periods it must be that c0 = Y0.
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4.2 Pecuniary externality

Consider a simplified version of our model economy with no payoff risk (no risky asset) and

only two risk-free assets. The first asset has zero transaction costs, while the second asset has a

transaction cost given by τ . Moreover, suppose that both assets have an equal supply of Qf/2.

Consider the period t = 1 portfolio choice of a patient investor. The asset holdings, Xi
2,S ,

for any of the safe assets satisfy the Euler equations13

1

c2,S
=

P i1
c1,S

, i ∈ {1, 2} , (13)

together with the period t = 1 and t = 2 budget constraints

c1,S +
∑

i∈{1,2}

P i1X
i
2,S = Y1 +

∑
i∈{1,2}

P i1X
i
1,

c2,S =
∑

i∈{1,2}

Xi
2,S .

The Euler equations and market clearing imply that, in equilibrium, period t = 1 asset holdings

Xi
2,S and asset prices P i1 are such that P 1

1 = P 2
1 = P f1 . Market clearing, in addition, implies

that Xi
2,S = Qf/2 (1− λ) , which from the period budget constraints pins down period 1 and

2 equilibrium consumption and the common price P f1 = c1,S/c2,S = (1− λ)Y1/
[
(1 + λ)Qf

]
.

Finally, from Proposition 1, the value of convenience η is η = 2
1+λY1/

(
2

1+λY1 − Ω
)
, where the

transaction cost expenditure is Ω = τP f1 Q
f/2.

Suppose that we distort the asset demand schedules of the patient investors away from the

privately optimal levels given by the above Euler equations and the period budget constraints

(possibly also distorting period 1 consumption). Specifically, suppose that we distort X1
2,S up

and X2
2,S down, as if asset 1 has a period 2 payoff of 1 + ρ > 1 and asset 2 has a period 2

payoff of 1 − ρ < 1, for some ρ > 0. Put differently, the distorted asset demand schedules

(and possibly distorted period 1 consumption) are such that they are at an interior value if the

following distorted Euler equations hold

1 + ρ

c2,S
=

P 1
1

c1,S
,

1− ρ

c2,S
=

P 2
1

c1,S
.

(14)

Essentially, for small values of ρ, such that the response of period 1 consumption is second

order, what this demand distortion does is to shift out the demand curve for asset 1 and shift

13The derivation of this equation follows the same steps as the more general case discussed in the next section.
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in the demand curve for asset 2.

How do these distorted demand schedules impact equilibrium asset prices? It will no longer

be the case that P 1
1 = P 2

1 . Since market clearing implies that equilibrium asset prices must be

such that the investors hold both assets in equilibrium, it follows that P 1
1 and P 2

1 must satisfy

the modified Euler equations

1

c2,S
=

P
i
1

c1,S
, i ∈ {1, 2} , (15)

where P
1
1 = P 1

1 / (1 + ρ) and P
2
1 = P 2

1 / (1− ρ). Therefore, P
1
1 = P

2
1 = P

f
1 , where from market

clearing and the modified Euler equation, P
f
1 = (1− λ)Y1/

[
(1 + λ)Qf

]
. Note that P

f
1 equals

P f1 in the undistorted economy. Intuitively, the symmetric distortion and equal asset supply

imply that only the relative prices of the two assets change, while the aggregate value of the

assets stays the same.

These equilibrium asset prices give a value of convenience of η̃ = 2
1+λY1/

(
2

1+λY1 − Ω̃
)
,

where the transaction cost expenditure is Ω̃ = P 2
1 τQ

2 = (1− ρ)P f1 τQ
f/2 < Ω. Therefore,

η̃ < η, and so, welfare in the economy with distorted asset demand is higher than welfare in the

undistorted economy.

The reason for why the distortion in investors’ asset demand away from their privately opti-

mal demand improves welfare is that the competitive equilibrium level of liquidity risk-sharing

is suboptimal. There is a pecuniary externality due to asset prices entering the transaction cost

bill. Patient agents, who purchase the assets in period t = 1 and act as price takers, fail to

internalize the impact of their portfolio choices on the transaction costs the selling impatient

agents pay. Since patient agents are not directly affected by the transaction costs, they treat all

assets as equally valuable. But higher transaction cost expenditures due to higher asset values

of the more illiquid assets increase the value of convenience η and decrease welfare. From a

social optimum perspective, the more liquid asset is more valuable as it carries a lower trans-

action cost. Therefore, the distortion in asset demand brings closer together the private and

social value of the two assets. As a result, the transaction cost bill decreases and the aggregate

welfare in the economy increases. In light of this pecuniary externality, we next discuss possible

welfare-improving policies.

4.3 Welfare-improving policies

Again, we assume there is no risky asset but extend our model, such that a risk-free asset i pays

a final payoff of δi > 0 instead of 1.14

14In addition, in an extension of our model in the Appendix, we allow for proportional buyer transaction costs
or subsidies, τ b

i (possibly zero), incurred by buyers at t = 1. There we show that a suitable set of buyer subsidies
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4.3.1 Asset payoff management

Building on the two-asset example above, we show that by increasing the payoff on the most

liquid risk-free asset, δ1, the policy maker can decrease the equilibrium value of convenience, η,

and increase welfare. We assume that the higher payoff is financed with a proportional tax on

the period t = 2 payoffs of all other safe assets. Therefore, all other safe assets have a payoff of

δ < 1, which satisfies revenue neutrality
∑

i δ
iQi = δ1Q1 + δ

∑
j ̸=1Q

j = Qf .

Proposition 8 (Payoff management). Consider the revenue-neutral set of payoff taxes and

subsidy described above. Then ∂η
∂δ1

< 0.

Proof. See Appendix.

To provide additional intuition for this result, note first that in the model, the period t = 1

equilibrium price of asset i is given by

P i1 = δi
1− λ

1 + λ

Y1
Qf

. (16)

This equation arises from the fact that in equilibrium all safe assets have an equal payoff-adjusted

t = 1 price. Consumption smoothing by the marginal buyer, combined with market clearing pins

down that payoff-adjusted common price. A higher period t = 2 payoff, δi, increases the relative

price of asset i, and hence, the equilibrium value of that asset. This valuation effect lowers the

transaction cost expenditure of impatient sellers, similar to the compositional changes from

Proposition 4 and the valuation effect from Proposition 6, where higher payoff risk decreases

the equilibrium value of the relatively illiquid risky asset and increases the equilibrium value

of the relatively more liquid risk-free assets. Therefore, an increase in the effective payoffs of

more liquid safe assets, for example, via preferential tax treatment of such assets, can improve

liquidity risk-sharing and decrease inconvenience yields in the economy.

4.3.2 Asset supply management

An alternative set of policies involves managing the quantities and composition of the different

risk-free assets. Following Proposition 4, a policy that replaces relatively less liquid with rel-

atively more liquid assets would reduce the equilibrium value of convenience η. Such a policy

can be broadly interpreted as conventional central bank liquidity provision or an unconventional

balance sheet policy, such as Operation Twist (Greenwood and Vayanos, 2010) or Quantitative

Easing (QE) programs (Krishnamurthy and Vissing-Jorgensen, 2011). An alternative interpre-

tation for such a policy is the Treasury managing the maturity structure of government debt by

can restore full efficiency.
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issuing relatively more shorter maturity government debt. Indeed, as shown by Bi et al. (Year),

Treasury maturity extension shocks that keep the total supply of Treasury debt fixed tend to

increase the AAA-Treasury spread, a common measure of convenience yields.

Since both policies involve substituting more liquid assets (i.e. central bank reserves or

Treasury bills) for less liquid assets, according to our simple theory, such interventions would

decrease relative inconvenience yields and the value of convenience in the economy. The U.S.

Treasury Buyback Program provides a recent, concrete example of a government debt policy

designed to withdraw illiquid assets from the market. By conducting buybacks, the Treasury

allows primary dealers to return less liquid off-the-run Treasuries. This alleviates balance sheet

strains and fosters liquidity in the secondary market (Zhou, 2025).

Nevertheless, these asset supply management results only pertain to liquidity effects and may

easily be overturned in a richer model. For example, if there are other reasons why investors

demand safety in addition to liquidity demand, for example, demand for longer duration assets

(e.g. Vayanos and Vila (2021)) or regulatory reasons (Corell et al., 2024). In that case, a central

bank that buys longer maturity Treasury notes and bonds and replaces them with very short

maturity, highly liquid central bank reserves or a Treasury that issues more Treasury bills and

less Treasury notes and bonds may actually end up worsening welfare for some investors in the

economy by exacerbating the scarcity of long-duration assets.15

5 Empirical evidence

In this section we use data from the US Treasury market to document a set of new stylized facts

that are consistent with and which we interpret through the lens of our theoretical model. We

use weekly data on Treasury yields and overnight indexed swap (OIS) rates for the period 2010-

2023. In different empirical tests we additionally use data on total outstanding US government

debt, the MOVE Index of implied bond volatility in the US Treasury market (Mallick et al.,

2017), as well as the VIX Index.16

We measure the relative convenience yield between two Treasuries as a relative spread.

First, we compute the spreads or basis of maturity-matched Treasuries and Overnight Indexed

Swap (OIS) at different maturities. Second, we take the difference between a specific Treasury-

OIS spread and the 3-months Treasury-OIS spread (i.e. a double difference). Formally, for a

Treasury-OIS spread of maturity M we denote this relative spread as Relative SpreadM−3m.

As discussed in the related literature, the Treasury-OIS spread is widely used as a proxy for

15In addition, the discussion above abstracts completely from the costs associated with the central bank
assuming payoff risk or the Treasury getting more exposed to rollover risk.

16We list the various data sources in the Appendix, while Table B.2 presents summary statistics.
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the convenience yield on Treasuries.17 From this perspective, the double-differenced relative

spread naturally provides a measure of the relative convenience yield on Treasuries of different

maturities.

The advantage of using the Treasury-OIS spread is that we effectively transform Treasuries

of different maturities to instruments with similar duration characteristics – approximately

one day. This occurs because the OIS component exchanges fixed rates for floating overnight

rates, effectively eliminating the inherent price risk from interest rate changes in longer-dated

Treasuries. With this similar duration profile across tenors, our Treasury-OIS relative spread

measure compares safe assets with the same interest rate risk exposure.

However, the longer the maturity of the Treasury component, the higher is the probability

that the position must be liquidated before it matures with additional costs of reversing the

position in the OIS. The liquidation of a Treasury bond combined with an OIS position entails

significantly higher transaction costs compared to simply rolling over short-term Treasury secu-

rities. Unwinding such structured positions involves various types of expenses: bid-ask spreads

on the OIS (that typically widen during market volatility), potential termination fees when

closing the swap prior to maturity, counterparty valuation adjustments that may not favor the

liquidating party, and execution complexity requiring specialized expertise. Additionally, the

mark-to-market calculation for the OIS component introduces pricing opacity that can further

disadvantage the position holder. In contrast, rolling short-term Treasury securities benefits

from highly liquid markets with narrow bid-ask spreads, transparent pricing mechanisms, min-

imal execution complexity, and lower operational costs. Despite both approaches achieving

similar duration profiles, the transaction cost differential remains substantial.

5.1 Stylized facts

Fact 1: Treasury-OIS relative spread term structure. Figure 1 presents the Treasury-

OIS relative spread for several maturities, ranging from 1 to 10 years. There is a striking term

structure in the Treasury-OIS relative spread – a monotone effect of Treasury maturity. The

effects are also sizable, on the order of around 30 to 40 basis points on average. In addition,

whenever the relative spread increases, it increases more for longer maturities. To the extent that

longer-maturity safe assets have higher transaction costs (either direct or effective transaction

costs – see Section 2.4), this pattern is directly consistent with our theory (Cf. Proposition 2).

Fact 2: Treasury supply effects and the Treasury-OIS relative spread. The second

stylized fact is that decreases in the supply of Treasuries tend to comove negatively with the

17Figure B.1 in the Appendix plots the Treasury-OIS spreads for different maturities.
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relative inconvenience yield. To illustrate this, we use debt ceiling dates to generate variation

in the supply of Treasuries.18 We identify all periods, in which the daily total outstanding

government debt did not grow over a period of at least five weeks (i.e., debt ceilings were in

place).19 Figure 2 plots the evolution of total outstanding US government debt, together with

the identified “debt ceiling” episodes. In Table 1, we show that Treasury growth is about 0.17

percentage points higher outside of debt ceiling episodes (column 1).

Figure 2: Outstanding government debt and debt ceiling episodes

Notes: This figure shows the daily total outstanding US government debt. All episodes where the debt

growth was constant for at least five weeks are marked. Source: Bloomberg and authors calculations.

During debt ceiling episodes, relative spreads decrease by 1.5 basis points on average across

maturities (column 2).20 Through the lens of our model, a decrease in the total supply of safe

assets can induce a decrease in relative inconvenience yields for all safe assets if risky assets are

relatively more illiquid than risk-free assets and their expected payoff is sufficiently high (Cf.

Proposition 5).21

Fact 3: The MOVE and VIX indices comove with the Treasury-OIS relative spread.

We regress the Treasury-OIS relative spread for different maturities on the MOVE and VIX

18See Cashin et al. (2017) for a study of how debt ceilings affect Treasury yields.
19No growth is defined if the total outstanding debt did not change by more than 10 billion USD on a daily

basis.
20The coefficient estimates from Table 1 imply that a one percentage point increase in the growth of outstanding

government debt, instrumented by the debt ceiling dates, is associated with an increase in relative spreads of 7
basis points on average across maturities.

21There are a number of effects in place during debt ceiling periods. For example, another effect is that
maturing short term debt might not be replaced. This effect is small in magnitude, however. The overall share of
short term debt (measured by the outstanding amount of bills to total outstanding debt) decreases on average by
half a percentage point during debt ceiling periods. Figure B.2 in the Appendix shows that total bills outstanding
are a small fraction of total debt and grow comparatively slowly.
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Table 1: Impact of supply fluctuations (measured by
debt ceilings)

Debt growth Relative SpreadM−3m

Debt ceiling dates -0.1727*** -1.5468***
(0.012) (0.405)

N 3485 16708
Adj. R2 0.071 0.476

Notes: The outcome variable in column (1) is debt growth. In
column (2) the outcome variable consists of the relative spread
Relative SpreadM−3m of maturity M ∈ {1y, 2y, 5y, 7y, 10y}. The
explanatory variable is in both columns an indicator for any weeks
on which daily debt growth was constant for at least five weeks.
We include a constant in the first regression and in addition ma-
turity fixed effects in the second. The time horizon is 2010 to mid-
May 2023. The frequency is weekly for the first and daily for the
second regression. Standard errors are heteroscedasticity robust.
*** indicates significance at the 1% level. ** indicates significance
at the 5% level. * indicates significance at the 10% level.

indices. To account for effects of the level of interest rates on convenience yields (Nagel (2016),

Diamond and Van Tassel (2021)), in some specifications we also control for the level of interest

rates by including the effective federal funds rate. We also examine heterogeneous effects of the

MOVE and VIX for shorter (1 and 2 years) vs. longer maturities. Table 2 reports the estimated

co-movements.

The Treasury-OIS relative spread correlates positively with the MOVE Index and negatively

with the VIX Index. A 1 percentage point higher value of the MOVE Index (VIX Index) is

associated with an increase (decrease) in the average relative spread of around 10 (8-9) basis

points (columns 1 and 2). The effects are, however, much weaker for shorter maturity Treasuries

(columns 3-4).
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Table 2: Impact of the MOVE Index and the VIX Index

(1) (2) (3) (4)

ln(MOVE) 8.9292*** 8.0620*** 14.9371*** 14.0441***

(1.491) (1.384) (1.914) (1.833)

D{1y or 2y}×ln(MOVE) -14.7981*** -14.6978***

(1.615) (1.629)

ln(VIX) -8.2040*** -7.8005*** -13.0780*** -12.6975***

(1.255) (1.282) (1.708) (1.734)

D{1y or 2y}× ln(VIX) 11.9644*** 12.0007***

(1.347) (1.346)

Fed Funds Rate 0.7743* 0.7603*

(0.428) (0.426)

N 3368 3368 3368 3368

Adj. R2 0.503 0.505 0.520 0.522

Notes: The outcome variable consists of the relative spread Relative SpreadM−3m of ma-

turity M ∈ {1y, 2y, 5y, 7y, 10y}. The explanatory variables are the MOVE Index and

the VIX Index. In Columns (2) and (4), we additionally control for the Effective Federal

Funds Rate. D{1y or 2y} is an indicator for the relative spread at 1 or 2 years. In all re-

gressions, we include maturity fixed effects. The frequency is weekly and the time period

is 2010 to mid-May 2023. Standard errors are heteroscedasticity and autocorrelation ro-

bust (HAC) using 6 lags and without small sample correction. *** indicates significance

at the 1% level. ** indicates significance at the 5% level. * indicates significance at the

10% level.

We interpret these comovements as follows. First, the MOVE Index measures the yield

volatility of Treasuries, which is closely correlated with illiquidity and transaction costs in

the Treasury market (Duffie et al., 2023).22 Higher values of the MOVE Index can thus be

interpreted as higher transaction costs. Therefore, the comovements of the Treasury-OIS relative

spread with the MOVE Index are consistent with Proposition 3, namely that an increase in the

transaction costs of any of the assets increases the relative inconvenience yields for all safe

assets. Moreover, the effect is stronger for assets with higher transaction costs, consistent

with the estimated interaction effect from Table 2. Regarding the comovements with the VIX

Index, since the VIX measures risk sentiment in the economy, the estimated comovements are

consistent with our Proposition 6, which shows that an increase in payoff risk or risk aversion

22In our model we interpret transaction costs broader than bid-ask spreads. Therefore we consider the MOVE
Index as an appropriate proxy measure for these illiquidity costs.
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reduces the relative inconvenience yields for all safe assets.

6 Conclusion

The interaction of liquidity self-insurance and transaction cost heterogeneity has important

asset pricing and welfare implications. Central to that interaction is the value of convenience,

an equilibrium pricing factor, which is also a summary statistic for agents’ welfare. By shedding

light on this interaction and the inefficiencies that arise in the competitive equilibrium, our

theoretical framework puts in focus the importance of policies that promote and facilitate market

liquidity and proper market functioning (Duffie, 2023).

Beyond these structural policies, our analysis also points to side-effects of central bank bal-

ance sheet policies, via the level of central bank reserves in the system and the asset composition

of the central bank’s balance sheet. Our theoretical framework suggests that the long-run vol-

ume of central bank reserves in the system may affect aggregate welfare via its influence on

liquidity conditions in the economy. It also hints at potentially important aggregate liquidity

effects of the maturity structure as well as the taxation regime of government debt. Never-

theless, our simple theory includes only one channel through which these policy tools impact

aggregate welfare. Understanding the full set of complex trade-offs and the resulting optimal

policy mix is an important avenue for future research on this topic.
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A Theory Appendix

A.1 Additional results

A.1.1 Buyer transaction subsidies

A suitable set of buyer subsidies for different assets can restore full efficiency in the competitive

equilibrium. We assume that the expenditure is financed with period t = 1 lump-sum taxes.

Also, to streamline the exposition, we assume that the transaction costs are sufficiently small,

so that it is feasible to implement the full set of buyer subsidies that can restore optimality.

Specifically, we can show the following result.

Proposition 9 (Buyer subsidization). Suppose that τ ib = −τ i, ∀i. Then the economy

achieves full liquidity risk-sharing, with η = 1 in equilibrium.

Proof. See Appendix.

The intuition for this result is as follows. Given perfectly competitive asset markets at

t = 1 and perfectly elastic asset demands by buyers, any subsidy that a buyer receives when

purchasing a specific asset is fully passed through into the t = 1 asset price for that asset.

Therefore, the buyer does not benefit from the subsidy in equilibrium, as she only bids up the

asset price. This increase in the asset price, however, compensates the seller for incurring the

transaction cost when selling that asset. By setting the buyer subsidy appropriately, one can

manipulate the equilibrium asset prices in a way that negates the effect of the seller transaction

costs, thus achieving the first-best level of liquidity risk-sharing in the competitive equilibrium.

A.2 Omitted proofs

A.2.1 Proof of Lemma 1

Proof. We describe and solve the optimization problems in the second and third period.

t = 1 problem of patient investors For the problem of the patient investor in period

1, we split the problem into a portfolio choice problem and a consumption-saving problem.

Specifically, we conjecture that in equilibrium she only increases her position in each asset. We

then split her problem into two: a consumption-saving decision (problem 1) given by

V1,S = max
c1,S ,A2,S

log(c1,S) + log(V2(A2,S))

s.t.

c1,S +A2,S = Y1 +A1,

1



where A2,S denotes savings into t = 2, and a portfolio choice problem (problem 2), given by

V2(A2,S) = max
Xf

2,S ,X
m
2,S

(
E
[
c2,S (z)

(1−γ)
])1/(1−γ)

s.t.

P f1 X
f
2,S + Pm1 X

m
2,S = A2,S

c2,S (z) = Xf
2,S + φm (z)Xm

2,S , ∀z.

To write down the portfolio choice problem we used P f1 = P i1. We demonstrate in Lemma 3

below.

Note that the solution to this problem can be fully summarized by the portfolio share

invested in the risky asset, namely w ≡
Pm
1 Xm

2,S

A2,S
. In equilibrium, that portfolio share will satisfy

0 ≤ w ≤ 1. Therefore, the portfolio problem can equivalently be written as

V2(A2,S) = max
w

(
E
[
c2,S (z)

(1−γ)
])1/(1−γ)

s.t.

c2,S (z) =

[
(1− w)

1

P f1
+ w

φm (z)

Pm1

]
A2,S , ∀z.

One can then compute the asset allocations as P f1 X
f
2,S = (1− w)A2,S , and P

m
1 X

m
2,S = wA2,S .

Given homothetic preferences, Lemma 4 below shows that that the value function V2(A2,S) is

linear in savings, i.e.

V2(A2,S) = RCE2 A2,S .

and the optimal value of w satisfies

E

[ 1

P f1
+

(
φm (z)

Pm1
− 1

P f1

)
w

]−γ (
φm (z)

Pm1
− 1

P f1

) = 0. (A.1)

The period t = 1 consumption-saving problem becomes

V1,S = max
c1,S ,A2,S

log(c1,S) + log(RCE2 A2,S)

s.t.

c1,S +A2,S = Y1 +A1.

With log utility, we then have A2,S = Y1+A1
2 and c1,S = Y1+A1

2 . We insert the optimal values

into the period t = 1 utility function U1,S and derive the period t = 1 value function, V1,S ,

which is given by V1,S = logRCE2

(
Y1+A1

2

)2
.
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t = 1 problem of impatient investors The problem of the impatient investor in period 1 is

trivial as she sells all her asset holdings and consumes all available resources at t = 1. Therefore

Xi
2,S

= 0 ∀i

Xm
2,S

= 0

and we have c1,S = Y1 +A1 −
∑

i τ
i
1P

f
1 Q

i − τmPm1 Q
m, where A1 ≡

∑
i P

f
1 Q

i + Pm1 Q
m denotes

the investor’s financial wealth at t = 1.

Market clearing at t = 1 At t = 1 the patient and impatient investors trade assets with

one another. Taking into account the respective mass of each type of investor and their asset

holding decisions, market clearing conditions are given by

(1− λ)Xi
2,S = Qi, ∀i ∈ I

(1− λ)Xm
2,S = Qm.

Therefore, patient investors hold all the assets at the end of t = 1. From these market clearing

conditions we can derive the period 1 prices, as well as equilibrium value of period t = 1 financial

wealth and consumption. Using the market clearing condition Xm
2,S = 1

(1−λ)Q
m, A2,S = Y1+A1

2

from the consumption-saving decision and the optimal portfolio weight w on the risky asset, we

end up with the following equation for the risky asset

1

(1− λ)
Pm1 Q

m = w
Y1 +A1

2
. (A.2)

and
1

(1− λ)
P f1 Q

f = (1− w)
Y1 +A1

2
(A.3)

for the risk-free assets. Summing these two equations yields

1

(1− λ)
Pm1 Q

m +
1

(1− λ)
P f1 Q

f =
A1

1− λ
=
Y1 +A1

2
,

which further yields the equilibrium value of period t = 1 asset holdings of

A1 =
(1− λ)

(1 + λ)
Y1. (A.4)

Substituting for A1 into Eqs. (A.5) and (A.6), we arrive at the equilibrium pricing equations

Pm1 Q
m = w

(1− λ)

(1 + λ)
Y1, (A.5)

and

P f1 Q
f = (1− w)

(1− λ)

(1 + λ)
Y1. (A.6)

Lastly, the budget constraints in combination with the optimal asset holdings yield the
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consumption choices in all periods:

c1,S =
2

1 + λ
Y1 −

∑
i

τ iP f1 Q
i − τmPm1 Q

m

c1,S =
1

1 + λ
Y1.

A.2.2 Proof of Lemma 2

Proof. We describe and solve the first period optimization problem.

t = 0 problem of investors The period t = 0 problem of the representative investor is given,

recursively, by

V0 = max
c0,{Xi

1}i∈I,X
m
1

log(c0) + λV1,S + (1− λ)V1,S

s.t.

c0 = Y0 +
∑
i∈I

P i0(Q
i −Xi

1) + Pm0 (Qm −Xm
1 ),

where V1,S = 2 log(c1,S), with c1,S = Y1 + A1 −
∑

i∈I τ
iP i1X

i
1 − τmPm1 X

m
1 and V1,S =

logRCE2

(
Y1+A1

2

)2
. The Euler equation for holdings of asset i ∈ I ∪ {m} is

∂U0

∂c0
= Es

[
∂V1,s
∂A1

P i1
P i0

(1− Is=Sτ
i)

]
,

or
∂U0

∂c0
= λ

∂U1,S

∂c1,S

P i1
P i0

(1− τ i) + (1− λ)
∂U1,S

∂c1,S

P i1
P i0
,

where we have used the fact that at t = 1, by the Envelope theorem for the agent’s t = 1

problem,
∂V1,s
∂A1

=
∂U1,s

∂c1,s
. Therefore, at the optimum, the marginal utility of consumption today

equals the expected marginal utility of consumption tomorrow, where the expectation is taken

over the realisation of the idiosyncratic investor’s state s and the transaction cost incurred in

the impatient state is taken into account.

Market clearing and consumption at t = 0 Market clearing at t = 0 is given by

Xi
1 = Qi, ∀i

Xm
1 = Qm.

Substituting into the period budget constraint, we in turn have c0 = Y0.

Additionally, we show the following two Lemmas, which constitute parts of the proof of

Lemma 1.

Lemma 3 (Second period prices). P i1 = P f1 ,∀i ∈ I.
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Proof. The Lagrangian of the portfolio choice problem of the patient investor in period 1 is

given by

L =

∫
z

[
(Rf2X

f
2,S +Rm2 (z)Xm

2,S)
(1−γ)

]
d(z)

 1
(1−γ)

+ µ

[
A2,S −

∑
i

P i1X
i
2,S − Pm1 X

m
2,S

]
.

The first order conditions with respect to the risk-free assets (given an interior solution) are:

1

(1− γ)

∫
z

[
(Rf2X

f
2,S +Rm2 (z)Xm

2,S)
(1−γ)

]
dF (z)

 1
(1−γ)

−1

=
µP i1

(1− γ)Rf2

[∫
z
(Rf2X

f
2,S +Rm2 (z)Xm

2,S)
(−γ)dF (z)

]

for all i ∈ I. It follows that P i1 is the same for all i ∈ I. We denote this price by P f1 .

Lemma 4 (Third period utility). V2(A2,S) = RCE2 A2,S , and w satisfies

E

[ 1

P f1
+

(
φm (z)

Pm1
− 1

P f1

)
w

]−γ (
φm (z)

Pm1
− 1

P f1

) = 0. (A.7)

Proof. Using P 1
i = P 1

f , for all i, the portfolio choice problem of the patient investor in period 1

can be rewritten as

max
w

∫
z

[
1

P f1
A2,S +

(
φm (z)

Pm1
− 1

P f1

)
wA2,S

](1−γ)

dF (z)


1

(1−γ)

.

The first order condition for w is given by

[
V2(A2,S)

]γ ∫
z

[
1

P f1
A2,S +

(
φm (z)

Pm1
− 1

P f1

)
wA2,S

]−γ [(
φm (z)

Pm1
− 1

P f1

)
A2,S

]
dF (z) = 0.

We can re-write as

[
V2(A2,S)

]γ
A1−γ

2,S

∫
z

[
1

P f1
+

(
φm (z)

Pm1
− 1

P f1

)
w

]−γ (
φm (z)

Pm1
− 1

P f1

)
dF (z) = 0.

Note that this condition holds for any value of A2,S . Therefore, the first-order condition for w

simplifies to ∫
z

[
1

P f1
+

(
φm (z)

Pm1
− 1

P f1

)
w

]−γ (
φm (z)

Pm1
− 1

P f1

)
dF (z) = 0, (A.8)
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so that the optimal choice of w is independent of the value of A2,S . We can, therefore, write

V2(A2,S) = RCE2 A2,S ,

where

RCE2 ≡

∫
z

[
1

P f1
+

(
φm (z)

Pm1
− 1

P f1

)
w

](1−γ)

dF (z)


1

(1−γ)

,

where w solves the first-order condition, Eq. (A.8).

Proof of Proposition 2

Proof. We know that the first order conditions of the period t = 0 problem for all assets are

1

c0
= Es

(
∂U1,s

∂c1,s

P f1 (1− Is=Sτ i)
P i0

)

for all i ∈ I ∪ m. Let us define Ri1,s ≡ P f
1 (1−Is=Sτ

i)

P i
0

, R1
1 ≡ P f

1

P 1
0
, and m1,s ≡

∂U1,s
∂c1,s
∂U0
∂c0

. Then

∂U0
∂c0

= Es

(
∂U1,s

∂c1,s
Ri1,s

)
for all i. This means that also ∂U0

∂c0
= R1

1Es

(
∂U1,s

∂c1,s

)
must hold. We

rearrange the general formula as follows:

0 = Es

(
∂U1,s

∂c1,s
Ri1,s −

∂U0

∂c0

)
0 = Es

(
∂U1,s

∂c1,s

(
Ri1,s −R1

1

))
0 = Es

(
∂U1,s

∂c1,s

)
Es
(
Ri1,s −R1

1

)
+ COV

(
∂U1,s

∂c1,s
,
(
Ri1,s −R1

1

))

−
COV

(
∂U1,s

∂c1,s
,
(
Ri1,s −R1

1

))
Es

(
∂U1,s

∂c1,s

) = Es
(
Ri1,s

)
−R1

1

−COV
(
m1,s,

(
Ri1,s −R1

1

))
R1

1 = Es
(
Ri1,s

)
−R1

1

−COV
(
m1,s, R

i
1,s

)
=
Es
(
Ri1,s

)
R1

1

− 1.
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We define the relative inconvenience yield ψi ≡ Ri
1

R1
1
with Ri1 ≡ P f

1

P i
0
. We insert for Ri1,s and

rearrange:

Es

(
P f
1 (1−Is=Sτ

i)

P i
0

)
R1

1

− 1 = −COV

(
m1,s,

P f1 (1− Is=Sτ i)
P i0

)
P f
1

P i
0

R1
1

(1− λτ i)− 1 = −
P f
1

P i
0

R1
1

COV
(
m1,s, (1− Is=Sτ

i)
)
R1

1

ψi =
1

(1− λτ i)− COV
(
m1,s, Is=Sτ i

)
R1

1

.

We then rearrange the covariance term:

COV
(
m1,s, Is=Sτ

i
)
= λτ im1,S − Es (m1,s)λτ

i

COV
(
m1,s, Is=Sτ

i
)
= λτ i

(
m1,S − 1

R1
1

)
.

We insert it into our main term of interest:

ψi =
1

1− λτ im1,SR
1
1

ψi =
1

1− λτ im1,S
1

Es(m1,s)

ψi =
1

1− τ i
λm1,S

λm1,S+(1−λ)m1,S

.

Therefore the relative inconvenience yield is given by

ψi =
1

1− τ i λ
λ+(1−λ)/η

where η ≡ m1,S

m1,S
is the relative kernel, which we later call the value of convenience.

Proof of Proposition 3

Proof. We analyse the impact of the fees on the relative inconvenience yields. The derivatives

are given by

∂ψi

∂τ i
= −

(
ψi
)2 λ

λ+ (1− λ)/η

(
(1− λ)τ i

λ+ (1− λ)/η

∂(1/η)

∂τ i
− 1

)
> 0

and
∂ψi

∂τk
=

∂ψi

∂(1/η)

∂(1/η)

∂τk
> 0 for all i ̸= k,
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where ∂ψi

∂(1/η) = −
(
ψi
)2 τ iλ(1−λ)

(λ+(1−λ)/η)2 < 0, ∂(1/η)
∂τ i

=
−P i

1Q
i

2
1+λ

Y1
< 0, and ∂(1/η)

∂τk
=

−Pk
1 Q

k

2
1+λ

Y1
< 0 and i and

k ∈ I ∪m. In addition it follows that

∂2ψi

∂τ i2
=− 2ψi

∂ψi

∂τ i
λ

λ+ (1− λ)/η

(
(1− λ)τ i

λ+ (1− λ)/η

∂(1/η)

∂τ i
− 1

)
−
(
ψi
)2 λ

λ+ (1− λ)/η

(
(1− λ)

λ+ (1− λ)/η

∂(1/η)

∂τ i
− 1

)
> 0

∂2ψi

∂τk∂τ i
=−

(
2ψj

∂ψi

∂τ i
τ iλ(1− λ)

(λ+ (1− λ)/η)2
+
(
ψi
)2 λ(1− λ)

(λ+ (1− λ)/η)2

)
∂(1/η)

∂τk
> 0.

Proof of Propositon 4

Proof. We study the impact on the relative inconvenience yields due to a compositional change

in the supply of the risk-free assets. Suppose dQl = −dQk for any l and k in ∈ I. Then

dψi

dQl
=

∂ψi

∂(1/η)

d(1/η)

dQl

where ∂ψi

∂(1/η) = −
(
ψi
)2 τ iλ(1−λ)

(λ+(1−λ)/η)2 < 0, d(1/η)
dQl = ∂(1/η)

∂Ql + ∂(1/η)
∂Qk

dQk

dQl =
(
τk − τ l

)
1

2
1+λ

Y1
for all

i ∈ I ∪m.

Proof of Proposition 5

Proof. We analyse the effect of increasing Qf for two cases: The case where there is no risky

asset in the economy, i.e. Qm = 0 and where there is, i.e. Qm > 0. Specifically we look at the

comparative static
∂ψi

∂Qf
=

∂ψi

∂(1/η)

∂(1/η)

∂Qf

where ∂ψi

∂(1/η) = −
(
ψi
)2 τ iλ(1−λ)

(λ+(1−λ)/η)2 < 0 for all i ∈ I ∪m.

If Qm = 0, then by Eq. (12), the value of convenience η is given by η = 1
1−(1−λ)τ̃/2 and so

∂(1/η)
∂Qf = (1−λ)

2
1
Qf

(
1− ∂Qi

∂Qf
Qf

Qi

)
τ̃ = 0. This shows the first part of the proposition.

Next, consider the case of Qm > 0. In this case, by equation (11), we have

∂(1/η)

∂Qf
= −1− λ

2
(τm − τ̃)

1

γσ2
∂w

∂Qf
= −1− λ

2
(τm − τ̃)

1

γσ2
∂π

∂Qf
.

To find the derivative of the log risk premium with respect to Qf , given the log-

approximation from Section 2.3, we can find a closed form solution for the log risk premium, as

we show in the following Lemma:

Lemma 5 (Log risk premium). Under the log approximation of the investor’s portfolio prob-

lem and log risk premium the period t = 1 log risk premium is given by

π =
µ− 1− q +

√
(µ− 1− q)2 + 4γσ2q

2
,
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where q = Qm/Qf .

Proof. First, from the approximation from Section 2.3, the log risk premium on the risky asset

is approximately

π ≈ logE[φm(z)] +
P f1 − Pm1
Pm1

= µ− 1 +
P f1
Pm1

.

Combining this equation for the log risk premium with the equations period t = 1 equilibrium

asset prices from Lemma 1 and the equation for the optimal portfolio share w from Eq. (6), we

find that

π = µ− 1 +

(
γσ2

π
− 1

)
Qm

Qf
.

Therefore, we have a quadratic equation for the log risk premium of the form

π2 − (µ− 1− q)π − γσ2q = 0,

where q = Qm/Qf is the ratio of the supply of risky to risk-free assets. Notice that since the

third term of the quadratic equation is negative, it follows that the equation has one positive

and one negative root. Only the positive root is relevant in our case. Therefore,

π =
µ− 1− q +

√
(µ− 1− q)2 + 4γσ2q

2
.

Differentiating with respect to q, we find that

∂π

∂q
=

1

2

−1 +
q − µ− 1 + 2γσ2√
(µ− 1− q)2 + 4γσ2q

 .

Consider the sign of the term in parentheses and notice that

(µ− 1− q)2 + 4γσ2q −
(
q − µ− 1 + 2γσ2

)2
= 4γσ2

(
µ− 1− γσ2

)
.

Therefore, if µ− 1 > γσ2, then

(µ− 1− q)2 + 4γσ2q >
(
q − µ− 1 + 2γσ2

)2
,

and so the sign of the term in parenthesis is negative, or ∂π/∂q < 0. Similarly, if µ−1 ≤ γσ2, we

can conclude that ∂π/∂q ≥ 0. Since ∂q/∂Qf < 0, it follows that ∂π/∂Qf > 0, iff µ− 1 > γσ2.

Therefore, ∂(1/η)/∂Qf < 0, iff (τm − τ̃) ∂π
∂Qf > 0, or using the condition for the sign of

∂π/∂Qf > 0, ∂(1/η)/∂Qf < 0, iff (τm−τ̃)
(
µ− γσ2 − 1

)
> 0. The second part of the proposition

follows directly from combining this partial derivative with the comparative static for ψi with

respect to η above.
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Proof of Proposition 6

Proof. Consider the derivative ∂ψi/∂σ2, for any i ∈ I ∪ m. We have that

∂ψi

∂σ2
=

∂ψi

∂(1/η)

∂(1/η)

∂σ2
,

where ∂ψi

∂(1/η) = −
(
ψi
)2 τ iλ(1−λ)

(λ+(1−λ)/η)2 < 0. Furthermore, by Eq. (11), we have that

∂(1/η)

∂σ2
= −1− λ

2
(τm − τ̃)

∂w

∂σ2
=

1− λ

2
(τm − τ̃)

1

γσ2

(
π

σ2
− ∂π

∂σ2

)
.

Note first that
∂π

∂σ2
=

γq√
(µ− 1− q)2 + 4γσ2q

> 0

Next, note that

π

σ2
− ∂π

∂σ2
=

(µ− 1− q)
√

(µ− 1− q)2 + 4γσ2q + (µ− 1− q)2 + 2γσ2q

2

Suppose that µ− 1− q ≥ 0. In that case it clearly follows that the right-hand side is positive.

Suppose instead that µ− 1− q ≤ 0. In that case, note that

(µ− 1− q)

√
(µ− 1− q)2 + 4γσ2q + (µ− 1− q)2 + 2γσ2q >

−
(µ− 1− q)2 +

(√
(µ− 1− q)2 + 4γσ2q

)2

2
+ (µ− 1− q)2 + 2γσ2q =

(µ− 1− q)2 −
(√

(µ− 1− q)2 + 4γσ2q

)2

2
+ 2γσ2q =

−2γσ2q + 2γσ2q = 0.

Therefore, we have that
π

σ2
− ∂π

∂σ2
> 0,

and so the sign of ∂(1/η)
∂σ2 depends on the sign of τm − τ̃ .

The derivation of the comparative statics with respect to risk aversion γ is analogous.

Proof of Proposition 7

Proof. We can express c1,S as a function of η: c1,S = Y1
2λη+(1−λ) . We insert it in the constraints

and the constraints into the objective function of the social planner. This implies:

W ≡ log (Y0) + 2λ log

(
1

λ

)
+ 2λ log

(
Y1 − (1− λ)

Y1
2λη + (1− λ)

)
+ (1− λ) log

(
Y1

2λη + (1− λ)

)
+ (1− λ) log

((
E

[(
Qf + φm2 (z)Qm

)1−γ])1/(1−γ)
)
.
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We want to analyze the impact of η on W . Taking the respective first-order condition we have

∂W

∂η
=

(
1

η
(1− λ)− (1− λ)

)
2λ

2λη + (1− λ)
.

It follows that ∂W
∂η = 0 iff η = 1. We observe that for η ≥ 11 welfare is monotone decreasing in

the value of convenience, i.e. ∂W
∂η < 0.

Proof of Proposition 8

Proof. We first modify Lemmas 1 and 2 to allow for the more general period t = 2 asset payoffs as

well as buyer transaction costs/subsidies. The maximization problem of the impatient investor

in period t = 1 is trivial – it is optimal for her to sell all her asset holdings and consume.

Therefore, for that investor we have

V1,S = 2 log(c1,S),

where c1,S = Y1 +
∑

i∈I(1− τ i)P i1X
i
1, with X

i
1 = Qi in equilibrium.

The maximization problem of the patient investor, who buys all assets in equilibrium at

t = 1, in the absence of t = 2 payoff risk, is now given by

V1,S = max
c1,S ,c2,S ,

{
Xi

2,S

}
i

log(c1,S) + log(c2,S)

s.t.

c1,S +
∑
i∈I

P i1X
i
2,S = Y1 +

∑
i∈I

P i1X
i
1 −

∑
i∈I

τ ibP
i
1(X

i
2,S −Xi

1),

c2,S =
∑
i∈I

δiXi
2,S .

Assuming an interior solution for each asset i (which will be the case in equilibrium), the Euler

equation for asset i is given by

1

c2,S
=

P
i
1

c1,S
, (A.9)

where P
i
1 ≡ (1+τ ib)

δi
P i1. Since these first-order conditions have to hold for each asset i in equi-

librium, this implies that P
i
1 must be equalized across assets i. We therefore define P

f
1 ≡ P

i
1.

Since Xi
1 = Qi in equilibrium, market clearing implies that Xi

2,S = 1
(1−λ)Q

i, which we insert

into the budget constraints. This yields

c1,S = Y1 −
λ

(1− λ)

∑
i∈I

P
i
1Q

i
,

c2,S =
1

(1− λ)

∑
i∈I

Q
i
,

where

Q
i ≡ δiQi

1It is possible for the social planner to set η < 1 but in our model this is not a possible equilibrium outcome.
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can be thought of as a payoff-adjusted effective supply for asset i.

Substituting for the period 1 and 2 equilibrium consumption in the Euler equation, Eq.

(A.9), and solving for the common adjusted price P
f
1 , we obtain

P
f
1 =

1− λ

1 + λ

Y1∑
i∈IQ

i
. (A.10)

Next, we characterize the t = 0 maximization problem of an investor:

V0 = max
{Xi

1}i∈I

log(c0) + λV1,S + (1− λ)V1,S

s.t. c0 = Y0 +
N∑
i=1

P i0(Q
i −Xi

1).

Taking first-order conditions, and using the Envelope theorem for the period t = 1 marginal

values, we obtain the period t = 0 Euler equations

∂U0

∂c0
= λ

∂U1,S

∂c1,S

P i1
P i0

(1− τ i) + (1− λ)
∂U1,S

∂c1,S

P i1
P i0

(1 + τ ib).

Next, we derive the equilibrium value of convenience, η. Recall that η =
m1,S

m1,S
=

∂U1,S

∂c1,S
/
∂U1,S

∂c1,S
.

We know that

∂U1,S

∂c1,S
=

2

c1,S
,

=
2

Y1 +
∑
i∈I

(1− τ i)P i1X
i
1

,

=
2

Y1 +
∑
i∈I

(1−τ i)
(1+τ ib)

P
f
1Q

i
,

=
2

Y1 +

[∑
i∈I

(1−τ i)
(1+τ ib)

Q
i
]

(1−λ)
(1+λ)

Y1∑
i∈I
Q

i

and

∂U1,S

∂c1,S
=

1

c1,S
,

=
1

Y1 − λ
(1−λ)

∑
i∈I
P
i
1Q

i
,

=
(1 + λ)

Y1
.

Therefore

η =
2

1 + λ+ (1− λ)
∑
i∈I

Q
i∑

i∈IQ
i
(1−τ i)
(1+τ ib)

, (A.11)

which we can further simplify to

12



η =
1

1− (1−λ)
2

∑
i∈I

Q
i∑

i∈IQ
i

τ i+τ ib
(1+τ ib)

. (A.12)

Recall that Q
i
= δiQi, ∀i, so that Eq. (A.12) simplifies to equation (12) for τ ib = 0 and

δi = 1, ∀i.
Suppose that τ ib = 0,∀i. In that case, Eq. (A.12) simplifies to

η =
1

1− (1−λ)
2

∑
i∈I

Q
i∑

i∈IQ
i τ i

. (A.13)

Note that this expression is identical to Eq. (12), apart from the different weighting of the

transaction costs, τ i. Therefore, by increasing δ1, the payoff on the most liquid asset, and at

the same time decreasing the payoffs δ of the other assets, to ensure budget balance, one can

decrease the value of η. This gives us the result that ∂η
∂δ1

< 0.

Proof of Proposition 9

Proof. Inspecting, Eq. (A.12), we see that if τ ib = −τ i, ∀i, then η = 1.

Relating transaction costs and maturity – microfoundations

Summary In this section we provide two micro-founded examples for higher transaction costs

on longer maturity assets. For both examples we adapt our framework by assuming, for sim-

plicity, that there are only two risk-free assets. We further modify the framework slightly by

assuming that one asset matures in period t = 1, while the other matures in t = 2, which

introduces a term structure into our model.

In the first example we additionally assume that if the two-period asset has to be resold

at t = 1, the investor has to pay a fee, which can be thought of as a market access fee. Our

results show that the long maturity asset is less convenient and therefore may be associated

with higher transaction costs. Unlike the short maturity asset, which pays off precisely when

an investor has liquidity needs, the long maturity asset has to be liquidated, while incurring a

cost to do so.

In the second example we do not assume that agents incur any transaction costs when selling

assets. In contrast, we focus on the impact of aggregate uncertainty on the convenience of assets

with different maturities. As a concrete example (which we later generalise) we assume that

the endowment in t = 1 is stochastic. There is a news shock about the aggregate endowment

realised in t = 1, so that at t = 0 agents do not know if their endowment will be high or

low in the second period. Our results reveal that the price, and hence the return, of the long

maturity asset in period t = 1 covaries negatively with the marginal utility of consumption. In

comparison, the short maturity asset matures in t = 1 and therefore its payoff is not correlated

with endowment uncertainty. The negative covariance between the future return and future

marginal utility (and therefore also with the aggregate value of convenience) is another reason

why the long maturity asset is less convenient to be held at t = 0 and trades at a discount
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relative to the short maturity asset.

We also generalise these examples, by deriving a general expression for the relative inconve-

nience yield within our specialised set-up with two assets with different maturities. We assume

both market fees and aggregate uncertainty, thus combining the two examples. Compared to

the second example we further assume that the aggregate uncertainty can be with respect to any

exogenous variable, for example payoffs. Additionally, we assume an isoelastic utility function

instead of a log utility function to generalise further. We also assume that the third period is

discounted with a discount factor which is possibly smaller than one (to allow for aggregate

uncertainty on the discount factor). We show that the expression for the relative inconvenience

yield nests our two examples from beforehand, and that the drivers are the same. With respect

to the influence of aggregate uncertainty it depends on the specific kind of uncertainty if the

long or the short maturity asset are more convenient.

Preliminaries We use our original model and make the following adjustment to explicitly

account for short and long maturity assets: We assume (for simplicity) that there are only two

risk-free assets with payoff 1 in the economy. One matures after one period and the other after

two periods. We denote the short maturity asset by l (“low”) and the long maturity asset by h

(“high”). We will give two examples of why the long maturity asset is less convenient relative

to the short maturity asset.

Example 1

First we assume that if an asset is sold before maturing, the agents incur a fee. As this can

only happen for the long maturity asset, the fee is denoted by τh. We start by describing

the optimal behaviour in period 1. As in our standard model, the liquidity constrained agent

will liquidate all assets in period 1 and therefore X l
2,S

= Xh
2,S

= 0. The other kind of agent

solves maxXh
2,S
log(Y1 + A1 − P h1X

h
2,S) + log(Xh

2,S), where A1 ≡ X l
1 + P h1X

h
1 . The first order

condition is given by
Ph
1

Y1+A1−Ph
1 X

h
2,S

= 1
Xh

2,S

, or P h1X
h
2,S = Y1+A1

2 . Market clearing implies

λ(Xh
2,S

− Xh
1 ) + (1 − λ)(Xh

2,S − Xh
1 ) = 0, or Xh

2,S =
Xh

1
(1−λ) . In period 0 the agents solve the

following maximisation problem:

max
c0,Xl

1,X
h
1

log(c0) + λχV1,S + (1− λ)V1,S

s.t.

Y0 = c0 + P l0(Q
l −X l

1) + P h0 (Q
h −Xh

1 )

where V1,S = log(Y1 +A1 − τhP h1X
h
1 ) and V1,S = log

(
Y1 +A1 −

Ph
1 X

h
1

1−λ

)
+ log

(
Xh

1
1−λ

)
, or V1,S =

log
[
Y1 +A1 − Y1+A1

2

]
+ log

[
Y1+A1

2

]
. The first order conditions are given by

1

Y0 + P l0(Q
l −X l

1) + P h0 (Q
h −Xh

1 )
= λ

(
χ

Y1 +A1 − τhXh
1

1

P l0

)
+ (1− λ)

(
2

Y1 +A1

1

P l0

)

14



and

1

Y0 + P l0(Q
l −X l

1) + P h0 (Q
h −Xh

1 )
= λ

(
χ

Y1 +A1 − τhXh
1

P h1
P h0

(1− τh)

)
+(1−λ)

(
2

Y1 +A1

P h1
P h0

)
.

Market clearing in period 0 implies that X l
1 = Ql and Xh

1 = Qh. From combining the first order

condition of the liquidity unconstrained agent in period 1 and market clearing it follows that

P h1 = 1
2

(1−λ)
−1

Y1+Ql

Qh . From now on we assume that χ = 2 (as in the main body). In addition we

define Rh1 ≡ Ph
1

Ph
0

and Rl1 ≡ 1
P l
0
. Note that

∂V1,s
∂A1

=
∂U1,s

∂c1,s
and rewriting the first of the two first

order conditions implies 1
Rl

1
= Es

(
∂U1,s
∂c1,s
∂U1
∂c0

)
. As a next step we combine the first order conditions

in period 1. To rearrange we use Es

(
∂U1,s

∂c1,s

)
≡ λ

(
∂U1,S

∂c1,S

)
+ (1− λ)

(
∂U1,S

∂c1,S

)
. Rearranging yields

0 = λ
2

Y1 +A1

[
Rl1 −Rh1 +Rh1τ

h
]
+ (1− λ)

[
2

Y1 +A1
(Rl1 −Rh1)

]
0 = Es

{
∂U1,s

∂c1,s

[
1− Rh1

Rl1
(1 + Is=Sτ

h)

]}
0 = COV

[
∂U1,s

∂c1,s
, Is=Sτ

h

]
Rh1
Rl1

+ Es

[
∂U1,s

∂c1,s

] [
1− Rh1

Rl1
(1− λτh)

]
0 = COV

[
m1,s, Is=Sτ

h
] Rh1
Rl1

+ Es [m1,s]

[
1− Rh1

Rl1
(1− λτh)

]
0 =

1

Rl1
+
[
COV

[
m1,s, Is=Sτ

h
]
− Es [m1,s] (1− λτh)

] Rh1
Rl1

.

Further rearranging yields

Rh1
Rl1

=
1

Rl1

1{
Es [m1,s] (1− λτh)− COV

[
m1,s, Is=Sτh

]} .
We know that COV

[
m1,s, Is=Sτh

]
= λτhm1,S − Es [m1,s]λτ

h. Therefore

Rh1
Rl1

=
1

1− λτh − λτh
[
m1,S − Es [m1,s]

]
Rl1

> 0

Rh1
Rl1

=
1

1− λτh − λτh(1− λ)(η − 1)m1,SRl1
> 0

or rewritten

Rh1
Rl1

=
1

1− λτh − λτh(1− λ)Y0

[
2

Y1+A1−τhPh
1 Q

h − 2
Y1+A1

]
Rl1

> 0.

The long maturity asset is less convenient. The short maturity asset carries a convenience

premium when being compared to the long maturity asset. The reason is that the long maturity

asset has a lower probability to mature at the moment the liquidity is needed.
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Example 2

Second, we assume that there is an aggregate uncertainty in t = 1. We assume that the

endowment will be high or low in the first period. In period 0, the value of the endowment,

denoted by Y k
1 , is unknown, but the agents know the distribution. We use this explicit example

for illustrative purposes and later generalise the microfoundation. In the general version, the

uncertainty can be about any exogenous variable.

Analogous to above and adjusted to the current example, the first order conditions are given

by
1

Y0 + P l0(Q
l −X l

1) + P h0 (Q
h −Xh

1 )
= E

(
2

Y k
1 +A1

1

P l0

)
and

1

Y0 + P l0(Q
l −X l

1) + P h0 (Q
h −Xh

1 )
= E

(
2

Y k
1 +A1

P h1
P h0

)
.

We combine the first order conditions. Note that
∂U1,S

∂A1
=

∂U1,S

∂A1
and m1,S = m1,S . We will use

1
Rl

1
= E

(
∂U1,S
∂A1
∂U1
∂c0

)
. Therefore

0 =E

[
2

Y k
1 +A1

(
Rl1 −Rh1

)]
0 =E

[
∂U1,S

∂c1,S

(
1− Rh1

Rl1

)]
0 =E

[
m1,S

(
1− Rh1

Rl1

)]
0 =

1

Rl1
− E

(
m1,S

Rh1
Rl1

)
0 =

1

Rl1
− COV

(
Rh1
Rl1

,m1,S

)
− E

(
Rh1
Rl1

)
E
(
m1,S

)
.

Further rearranging yields

E

(
Rh1
Rl1

)
=

1
Rl

1
− COV

(
m1,S ,

Rh
1

Rl
1

)
E
(
m1,S

)
E

(
Rh1
Rl1

)
=1− COV

(
m1,S , R

h
1

)
E

(
Rh1
Rl1

)
=1− COV

(
m1,S

η
,Rh1

)
E

(
Rh1
Rl1

)
=1− 2 COV

(
Y0

Y k
1 +A1

, Rh1

)
.

From P h1 = 1
2

1−λ
−1

Y k
1 +Ql

Qh it follows that
∂Ph

1

∂Y k
1
> 0. Therefore COV

[
Y0

Y k
1 +A1

, Rh1

]
< 0. It follows

that

E

(
Rh1
Rl1

)
> 1.
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The long maturity asset is on average less convenient because in period t = 1 the asset has a

high price, or return when the marginal utility is low.

Generalisation

Finally, we can derive (following the same steps as in the examples above) a more general

function that incorporates both channels, transaction costs and aggregate uncertainty, and

further generalises the latter. First, we generalise by using an isoelastic utility function instead

of a log utility function. Second, we allow agents to discount the second period with the factor

β ≤ 1. Third, we now leave open which variable xi is affected by an aggregate uncertainty in

period 0 that is revealed in period 1. For example, we could introduce the payoff risk as an

aggregate risk or an uncertainty in the discount factor β. The aggregate uncertainty in the

endowment was just an example.

The result that the covariance and not any volatility implies the effect of aggregate un-

certainty on the relative convenience return is more general. We derive a general function for

the relative inconvenience yields (which nests the relative inconvenience yields of the above

examples):

E

(
Rh1
Rl1

)
=

1 + COV
[
COV

[
m1,s, Is=Sτh

]
− Es [m1,s] (1− λτh), Rh1

]
1− λτh − E

{
COV

[
m1,s, Is=Sτh

]
Rl1
} ,

or

E

(
Rh1
Rl1

)
=

1 + COV
[
λτhm1,S − Es [m1,s] , R

h
1

]
1− λτh − λτhE

[
m1,S − Es [m1,s]

]
Rl1

E

(
Rh1
Rl1

)
=

1 + COV
[[
λ(τh − 1)η − (1− λ)

]
m1,S , R

h
1

]
1− λτh − λτhE

[
(1− λ)(η − 1)m1,S

]
Rl1

.
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B Data Appendix

B.1 Data sources and summary statistics

We obtain government security yields and OIS rates from Bloomberg (see table B.1). We use

it to calculate the Treasury-OIS spreads. The maturities we use are 3 months, 1 year, 2 years,

5 years, 7 years and 10 years. The frequency is daily, which we aggregate to weekly. Data on

total outstanding debt of the US government and outstanding bills are obtained from Bloomberg

(tickers: PUBLDEBT Index and DEBPBILL Index). The frequency is daily for the former and

monthly for the latter. The MOVE Index also comes from Bloomberg (ticker: MOVE Index),

and the VIX Index is obtained from FRED. The frequency is daily, which we aggregate to

weekly. Lastly, we obtain the Effective Federal Funds Rate from FRED. The frequency is daily,

which we aggregate to weekly. This following table gives an overview over the Bloomberg tickers

of the used data series for the Treasury yields and OIS rates.1

Table B.1: Data sources

Data Maturity Source Ticker

Treasury 3m Bloomberg USGG3M Index

1y Bloomberg USGG1Y Index

2y Bloomberg USGG2Y Index

5y Bloomberg USGG5Y Index

7y Bloomberg USGG7Y Index

10y Bloomberg USGG10Y Index

OIS 3m Bloomberg USSOC Curncy

1y Bloomberg USSO1 Curncy

2y Bloomberg USSO2 Curncy

5y Bloomberg USSO5 Curncy

7y Bloomberg USSO7 Curncy

10y Bloomberg USOSFR10 Curncy

1When we change the frequency of the data to weekly for the regressions, we use the last available day during
each week. When we adjust the frequency of the time series plotted in the figures, we use the average instead of
the last available day, as this gives a more accurate overview and is uncritical to do, as no different time series
are matched. The only exception is Figure B.2, where we use the last day because we are comparing two series.
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Table B.2: Summary statistics US

Data Maturity Mean Median St. Dev.

Treasury-OIS 1y 6.65 6.15 6.75

spread in bp 2y 12.83 12.19 8.34

5y 22.95 19.10 13.10

7y 32.55 24.54 15.28

10y 36.26 31.81 14.32

Debt

growth in % 0.14 0.05 0.28

MOVE Index 75.05 70.00 23.41

VIX Index 18.51 16.77 7.10

Effective Fed Funds

Rate in % 0.76 0.16 1.09

Notes: The time horizon used for the summary statistics is 2010 to mid May 2023. If the frequency is
not weekly, we change it to weekly and use the last value of the week.

B.2 Additional figures

Figure B.1: Treasury-OIS spread

Notes: This figure shows the US Treasury-OIS spread across different maturities. Source: Bloomberg

and authors calculations.
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Figure B.2: Total outstanding US government debt and bills

Notes: This figure shows the monthly total outstanding US government debt and total oustanding US

government bills. Source: Bloomberg and authors calculations.
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