
2012  |  24

Oil price density forecasts: exploring the
linkages with stock markets

Working Paper
Norges Bank Research

Marco J. Lombardi and Francesco Ravazzolo



Working papers fra Norges Bank, fra 1992/1 til 2009/2 kan bestilles over e-post:
servicesenter@norges-bank.no

Fra 1999 og senere er publikasjonene tilgjengelige på www.norges-bank.no

Working papers inneholder forskningsarbeider og utredninger som vanligvis ikke har fått sin endelige form. 
Hensikten er blant annet at forfatteren kan motta kommentarer fra kolleger og andre interesserte. 
Synspunkter og konklusjoner i arbeidene står for forfatternes regning.

Working papers from Norges Bank, from 1992/1 to 2009/2 can be ordered by e-mail:
servicesenter@norges-bank.no

Working papers from 1999 onwards are available on www.norges-bank.no

Norges Bank’s working papers present research projects and reports (not usually in their final form)
and are intended inter alia to enable the author to benefit from the comments of colleagues and other interested 
parties. Views and conclusions expressed in working papers are the responsibility of the authors alone.

ISSN 1502-8143 (online)
ISBN 978-82-7553-713-1(online)



Oil price density forecasts: exploring the linkages with
stock markets∗

Marco J. Lombardi† Francesco Ravazzolo‡

December 5, 2012

Abstract

In the recent years several commentators hinted at an increase of the correlation

between equity and commodity prices, and blamed investment in commodity-related

products for this. First, this paper investigates such claims by looking at various

measures of correlation. Next, we assess to what extent correlations between oil

and equity prices can be exploited for asset allocation. We develop a time-varying

Bayesian Dynamic Conditional Correlation model for volatilities and correlations

and find that joint modelling of oil and equity prices produces more accurate point

and density forecasts for oil which lead to substantial benefits in portfolio wealth.
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1 Introduction

The past decade has witnessed a broad-based surge in commodity prices, with oil a fron-

trunner. The upward trend in prices has been ascribed to booming demand at the global

level, but fluctuations around it have been substantial, especially after the onset of the

Great Recession. Investing in commodities has generated hefty returns and has become

increasingly popular, in spite of the high risks associated to this type of investment due to

inherent volatility of commodity prices. Indeed, most fund managers have started advis-

ing their customers to devote a quota of their portfolios to commodity-related products

as part of long-term diversification strategy, due to the fact the commodity prices are

believed to possess lower correlation with other asset classes, most notably with stock

markets.

At the same time, substantial inflows into commodity-related investment products

have led many commentators to speculate on whether commodities are increasingly be-

having as an asset class. The empirical evidence on a lasting impact of financial investment

on commodity prices is, at best, scant (see Fattouh et al. [2012] for a recent survey). Yet,

financial investors in commodity futures markets may have less commodity-specific knowl-

edge and a different attitude compared to commercial players, and hence exit or enter

trades based on their overall macroeconomic risk perceptions rather than market-specific

factors. Such flows could, in principle, lead to higher correlation with equity prices.

In this paper, we try to shed some light on the issue. If one looks at the most

recent years, commodity and equity prices have appeared to be increasingly correlated,

being both extremely sensitive to news concerning the global macroeconomic environment

rather than to idiosyncratic and market-specific shocks. We first provide a complete

characterization of this phenomenon, by computing correlations using different model-

based and model-free methodologies and trying to identify relevant turning points. Our

results suggest that correlation, after having hovered around zero for more than a decade,
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has indeed increased markedly, starting in 2008.

The connection between equity and oil prices has already been examined in the liter-

ature: Kilian and Park [2009] report that the response of equity prices to oil price shocks

depends on their nature; Cassassus and Higuera [2011] show that oil price changes are

good predictors of equity prices; Chang et al. [2011] report evidence of volatility spillovers

between oil and equity prices. To the best of our knowledge, however, no studies have

examined the predictability of oil and equity prices in a density forecasting framework.

This raises to question of to what extent co-movements between oil and equity prices

could be exploited to improve forecasts in either direction. We use Bayesian constant

parameter univariate and bivariate models for oil and stock prices and derive a time-

varying Bayesian Dynamic Conditional Correlation (DCC) model which can account for

the changes in their relationship observed after 2008, see Della Corte et al. [2010]. We con-

duct a density forecasting exercise and find that the DCC provides statistically superior

density forecasts compared to a no-change random walk model.

We assess the economic value of such forecasting gains by considering an oil and eq-

uity prices asset-allocation framework. The use of a Bayesian framework in estimating

our models allows us to explicitly account for the fact that higher order moments and the

full predictive densities of oil and equity prices are uncertain which can result in subopti-

mal allocation. The estimated predictive densities depend on the data and the prior and

integrate estimation risk into the portfolio allocation, see Kandel and Stambaugh [1996],

Barberis [2000], Avramov [2002], Cremers [2002], Kan and Zhou [2007] and Jacquier and

Polson [2012]. Ravazzolo et al. [2007], Guidolin and Na [2007] and Pettenuzzo and Tim-

mermann [2011] extend the analysis to account for instability uncertainty. Della Corte

et al. [2011] and Della Corte et al. [2010] assess the economic value of volatility and cor-

relation timing respectively. We extend this literature by including in the asset allocation

problem a new class of assets, commodity prices and specifically oil prices. Our results
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highlight that a time-varying jointly modeling of oil and equity prices leads to economic

gains relative to passive strategies and constant parameter models, especially at times of

large swings.

The remainder of the paper is organized as follows. Section 2 describes the data and

documents changes in correlation over our sample. Section 3 presents bivariate models

for oil and stock prices, investigates their point and density forecast accuracy and applies

them to active asset investment strategies. Section 4 concludes.

2 Oil prices and stock markets

The idea that oil and stock prices should display a negative correlation finds root into

expressing stock prices as the discounted value of future dividends. In case of an increase in

energy prices, firms will see their profits shrink, and will therefore distribute less dividend.

In a sense, however, this hints at oil prices being driven exogenously. It is now widely

acknowledged that this is not the case. Oil price increases come on the back of booming

economic activity due to increases in demand. Therefore, the sign of the correlation

becomes less clear-cut: both stock and oil prices should increase when positive news on the

global macroeconomic outlook materialize. Kilian and Vega [2011] indeed investigate the

impact of various macroeconomic announcements on the oil price over a sample running

from 1983 to 2008 and fail to find a systematic relationship.

If one takes a long-run perspective, it appears that oil and stock prices at times moved

in the same direction and at times diverged. So it seems that their correlation pattern

has broadly varied over time. In this section, we will take a stance on this empirical

finding by gauging correlations between oil and stock prices using a number of different

methods. To start with, we collected weekly returns generated by next-month Brent

crude oil futures and the SP500 index, starting from April 1985 until September 2011,
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see Figure 1. Oil prices are substantially more volatile as Figure 2 indicates. Figure 3

reports sample correlations computed on moving windows of different length; this is indeed

what most commentators refer to when discussing comovements of oil and stock prices.

It emerges clearly that correlations have been positive and negative at times, but have

overall hovered around zero. The recent swarm of positive correlations appears instead to

have been stronger and more persistent compared to past ones: it started with the burst

of the financial crisis in 2008, and although correlations have been recently declining, they

are still positive. Of course, using different windows somehow alters the intensity of the

results, but the main pattern seems to remain.

Using rolling windows of sizeable length may spread over time the influence of ex-

treme episodes or periods of market turbulence. To avoid this, one can use model-based

approaches to estimating correlations. A popular model in this direction is to use Dynamic

Conditional Correlations (DCC) as proposed by Engle [2002]:

yt = Φ(L)yt−1 + vt

vt = H0.5
t εt, εt ∼ N(0, IN), Ht = DtRtDt

D2
t = diag{ωi}+ diag{κi}vt−1v

′
t−1 + diag{λi}D2

t−1, i = 1, ..., N

Qt = S(ıı
′ − A−B) + Aεt−1ε

′
t−1 +BQt−1

Rt = diag{Qt}−1Qtdiag{Qt}−1

(1)

where yt is a (N × 1) vector of dependent variables, S is the unconditional correlation

matrix of εt, A, B and S(ıı
′ − A − B) are positive semidefinite matrices; see Appendix

for model details. In a nutshell, the DCC is a multivariate GARCH model in which

correlations are time-varying according to an autoregressive specification. As such, the

DCC accounts for both the time-varying features of volatilities and correlations. The

DCC correlations are reported in Figure 4. Although correlations appear to be smaller

compared to those estimated using rolling windows, they still look persistently positive

5



towards the end of the sample.

Finally, we also tried to exploit ultra-high-frequency intradaily data to construct a

model-free instantaneous measure of realized correlation, as proposed by Barndorff-Nielsen

and Shephard [2004],1 employing hourly data from October 2002. The sample is shorter,

correlations are more volatile and erratic, see Figure 5, but one can still see that, after

mid-2008, they have tended to cluster in positive territory.

3 Forecasting oil prices using stock prices

3.1 Point and density forecasts

The debate on the predictability of stock prices is still an open issue in empirical research,

see for example Welch and Goyal [2008]. Market efficiency theories imply not predictabil-

ity, whether market friction theories imply predictability. Evidence of predictability of

oil prices has, on contrary, been subject to a break in recent years: from middle of 90’s

research evidence suggests not predictability where future prices contain all the relevant

information and alternative models cannot improve forecast accuracy. However, very re-

cent studies such as Baumeister and Kilian [2012] find that several (Bayesian) reduced

form Vector Autoregressive models outperform forecasts based on future prices in real-

time analysis. Baumeister and Kilian’s models apply macroeconomic data to forecast oil

prices, but do not explore the linkage with stock prices. Furthermore, their analysis refers

mainly to point forecasting. Kandel and Stambaugh [1996] and Barberis [2000], among

others, discuss the role of parameter uncertainty and Bayesian analysis as tool to cope

with for return predictability and for asset allocation.

We produce weekly point and density forecasts for oil and stock returns over the

sample from 2005W1 to 2011W40 for a total of 353 weeks. We compute h = 1, 2, ..., 24

1See Bicchetti and Maystre [2012] for a high-frequency intradaily analysis of other energy markets.
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steps ahead forecast for each vintage using a bivariate Bayesian Vector Autoregressive

model with Minnesota type prior (VAR), see Clark and Ravazzolo [2012] for details, and

a bivariate Bayesian DCC model (DCC), see Appendix for details and Della Corte et al.

[2010] for an application to assess the economic value of time-varying correlation timing.

We compare these forecasts to random walk (RW) and Bayesian autoregressive (AR)

forecasts. Bayesian inference on the listed models allows to derive complete predictive

densities which we evaluate in density forecasting exercise, the main research question of

this paper, and to take into account higher moments, key ingredients in portfolio decisions,

in the asset allocation exercise. In particular, to shed light on the predictive ability of

individual models, we consider several evaluation statistics for point and density forecasts

previously proposed in the literature, see Billio et al. [2012] for a recent application. We

evaluate oil and stock forecasts separately in this section and use marginal densities from

bivariate models.

We compare point forecasts in terms of Mean Square Prediction Errors (MSPE)

MSPEk =
1

t∗

t∑
t=t

e2k,t+1

where t∗ = t− t+ 1 and e2k,t+1 is the square prediction error of model k. We evaluate the

predictive densities using two relative measures. Firstly, we consider a Kullback Leibler

Information Criterion (KLIC) based measure; see for example Kitamura [2002], Mitchell

and Hall [2005], Hall and Mitchell [2007], Amisano and Giacomini [2007], Kascha and

Ravazzolo [2010]. The KLIC distance between the true density p(yt+1|y1:t) of a random

variable yt+1 and some candidate density p(ỹk,t+1|y1:t) obtained from model k is defined
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as

KLICk,t+1 =

∫
p(yt+1|y1:t) ln

p(yt+1|y1:t)
p(ỹk,t+1|y1:t)

dyt+1,

= Et[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t))]. (2)

where Et(·) = E(·|Ft) is the conditional expectation given information set Ft at time t.

An estimate can be obtained from the average of the sample information, yt+1, . . . , yt+1,

on p(yt+1|y1:t) and p(ỹk,t+1|y1:t):

KLICk+1 =
1

t∗

t∑
t=t

[ln p(yt+1|y1:t)− ln p(ỹk,t+1|y1:t)]. (3)

The KLIC chooses the model which on average gives higher probability to events that

have actually occurred. In reality we do not know the true density, but for the comparison

of two competing models, it is sufficient to consider the Logarithmic Score (LS), which

corresponds to the latter term in the above sum,

LSk = − 1

t∗

t∑
t=t

ln p(ỹk,t+1|y1:t), (4)

for all k and to choose the model for which the expression in (4) is minimal, or as we

report in our tables, the opposite of the expression in (4) is maximal.

Secondly, we also evaluate density forecasts based on the continuous rank probability

score (CRPS). The CRPS for the model k measures the average absolute distance between

the empirical cumulative distribution function (CDF) of yt+h, which is simply a step

function in yt+h, and the empirical CDF that is associated with model k’s predictive
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density:

CRPSk,t+1 =
∫

(F (z)− I{yt+1 ≤ z})2 dz (5)

= Et|Ỹt+1,k − yt+1| − 1
2
Et|Ỹt+1,k − Y ′t+1,k|, (6)

where F is the CDF from the predictive density p(ỹk,t+1|y1:t) of model k, I(.) takes a value 1

if yt+1 5 z and equals 0 otherwise, and Ỹt+1,k and Ỹ ′t+1,k are independent random variables

with common sampling density equal to the posterior predictive density p(ỹk,t+1|y1:t). The

CRPS circumvents some of the drawbacks of the LS, as the latter does not reward values

from the predictive density that are close but not equal to the realization (see, e.g.,

Gneiting and Raftery [2007]) and it is sensitive to outliers; see Gneiting and Ranjan

[2011], Groen et al. [2012] and Ravazzolo and Vahey [2012]. Smaller CRPS implies higher

precisions.

Since the distribution properties of a statistical test to compare density accuracy

performances, both measured in terms of LS and CRPS, are not derived when working

with nested models and expanding data window for parameter updating, as is our case, we

follow Groen et al. [2012] and test the null of equal finite sample forecast accuracy, based

on either a LS and CRPS measures, versus the alternative that a model outperformed the

RW benchmark using the Harvey et al. [1997] small sample correction of the Diebold and

Mariano [1995] and West [1996] statistic to standard normal critical values.2 Following

evidence in Clark and McCracken [2012] for point forecasting, we apply the same test to

investigate superiority in square prediction errors.

Table 1 reports point and density forecast results. Absolute predictability for oil

prices is substantially lower than absolute predictability for stock returns: MSPEs are

higher, LS lower and CRPS higher for all horizons. Data characteristics discussed in

2We use the left tail p-values for the CRPS based test since we minimize CRPS and right tail for the
LS based test since we maximize LS.
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section 2 can explain the result. However, the evidence is somewhat different for relative

predictability. The VAR and DCC models give lower MSPE and CRPS and higher LS

for most of the horizons in forecasting oil prices, but not in forecasting stock returns.

Therefore, stock prices seem to contain relevant information to forecast oil prices, whether

the opposite is not supported by our analysis. Ferraro et al. [2012] find opposite evidence

when investigating exchange rate and oil price predictability: oil prices forecast exchange

rates, but exchange rates do not forecast oil prices. Improvements are, however, often

very small.

Moreover, the DCC model gives more accurate forecasts relative to the RW bench-

mark for all the horizons up to 24 weeks and improvements in density forecasting are in

several cases statistically significant. A time-varying covariance matrix which can model

instability in volatility and correlations between the two variables discussed in section 2

is an important ingredient to predict higher moments of the joint oil and stock predictive

density.

3.2 Economic gain analysis

Investors are mainly interested in the economic value of a forecasting model; the marginally

higher statistical accuracy documented in the previous section can indeed give rise to

substantial economic gains. To assess this, we develop an active short-term investment

exercise. The investor’s portfolio consists of the stock index, of the Brent oil index and

risk free bonds only.3

At the end of each week t, the investor decides upon the fraction αs,t+h of her portfolio

to be held in stocks, αo,t+h in the oil and the remaining part in the risk free asset for

the period t+ h, based on the forecast of the oil and stock returns. We constrain αs,t+h,

3The risk free asset is approximated by using the weekly federal fund rate. We collect the federal fund
rate from the Fred database at the Federal Reserve Bank of St Louis.
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αo,t+h to be in the [0, 1] interval and to sum maximum to 1, therefore not allowing for

short-sales or leveraging (see Barberis [2000]).4 We assume that the investor maximize a

power utility function:

u(Rt+h) =
R1−γ
t+h

1− γ
, γ > 1, (7)

where γ is the coefficient of relative risk aversion and Rt+h is the wealth at time t + h,

which is equal to

Rt+h = Rt ((1− αs,t+h − αo,t+h) exp(yf,t+h) + αt+h exp(yf,t+h + ỹt+h)), (8)

where Rt denotes initial wealth, αt+h = (αs,t+h, αo,t+h), yf,t+h the h-step ahead risk free

rate and ỹt+h the h-step ahead bivariate forecast of the oil and stock returns in excess of

the risk free made at time t. Our investor does not rebalance the portfolios in the period

from t to t+ h, but keeps positions on the three assets constant.5

When the initial wealth is set equal to one, i.e. R0 = 1, the investor solves the following

problem:

max
αt+h∈[0,1]2

∑
αt+h≤1

Et
(

((1− αs,t+h − αo,t+h) exp(yf,t+h) + αt+h exp(yf,t+h + ỹt+h))
1−γ

1− γ

)
,

The expectation Et() depends on the predictive density for the oil and stock excess returns,

ỹt+h and the problem can be rewritten as:

max
αt+h∈[0,1]2

∑
αt+h≤1

∫
u(Rt+h)p(ỹt+h|y1:t)dỹt+h. (9)

4We have also investigated exercises with αo,t+h restricted in the [0,0.3] and [0,0.5] intervals. Results
are qualitatively similar, economic gains are marginally lower.

5In the case of dynamic asset allocation the long-run investor is allowed to rebalance her portfolio dur-
ing the investment period, adjusting the portfolio weights to reflect new information that arrives. Solving
the resulting dynamic programming problem is complicated due to the large number of state variables
that enter the problem in a highly nonlinear way, see Barberis [2000] and Guidolin and Timmermann
[2007].
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where p(ỹt+h|y1:t) is the predictive density for oil and stock excess returns. We approxi-

mate the integral in (9) by generating G independent draws from the predictive density

p(ỹt+h|y1:t), and then use a numerical optimization method to find:

max
αt+h∈[0,1]

1

G

G∑
g=1

(
((1− αt+h) exp(yf,t+h) + αt+h exp(yf,t+h + ỹgt+h))

1−γ

1− γ

)
(10)

We consider an investor who can choose between different forecast densities of the (excess)

oil and stock returns yt+h to solve the optimal allocation problem described above. We

include three cases in the empirical analysis below and assume the investor uses alterna-

tively the density from the RW and AR univariate models for each series, the bivariate

BVAR and the bivariate BVAR-DCC. Moreover, since the portfolio weights in the active

investment strategies change every period, we include transaction costs of c = 0.05%, 5

basis points.

We evaluate the different investment strategies for a risk investor with γ = 2 by com-

puting the ex post annualized mean portfolio return, the annualized standard deviation

and the Sharpe ratio. Results are qualitatively similar for γ = 2, 6. We compare the

wealth provided at time t+h by two resulting portfolios by determining the value of mul-

tiplication factor of wealth ∆ which equates their average utilities. For example, suppose

we compare two strategies A and B.

t∑
t=t

u(RA,t+h) =
t∑
t=t

u(RB,t+h/ exp(r)). (11)

where u(RA,t+h) and u(RB,t+h) are the wealth provided at time T +h by the two resulting

portfolios A and B, respectively. Following West et al. [1993], we interpret ∆ as the

maximum performance fee the investor would be willing to pay to switch from strategy A

to strategy B.6 We infer the added value of strategies based on individual models and the

6See, for example, Fleming et al. [2001] for an application with stock returns.
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combination scheme by computing ∆ with respect to three static benchmark strategies:

holding only stock (rs), holding only oil (ro), and holding only free risk bond (rf ).

Finally we compute the certainty equivalent return (CER) for each strategy, in formula:

CERt+h = u−1(Et(u(Rt+h))) (12)

where u1− is the inverse of the power utility function defined in (7). Strategy with

maximum CER is preferred. We do not report the final value as for other alternative

measures, but plot how cumulative difference between any strategy A and investing 100%

of the portfolio in the stock market:

CERDk,t+1 =
t∑
s=t

(CERA,t+h − CERs,t+h), (13)

where k = RW, AR, ..., FRR. If CERDk,t+h increases at observation t+ h, this indicates

that the strategy k gives higher CER than the benchmark strategy.

Results in Table 2 strength the evidence reported in the section on point and density

forecasting. The VAR and DCC models give higher SR than the RW and have positive

fees relative to passive strategies for all the horizons. Gains are robust to reasonable

transaction costs. The DCC provides the highest gains for horizons longer than two

weeks and, in particular, they are substantial compared to alternative models for our

middle horizons.

Our analysis shows that a joint oil and stock returns model with time-varying volatility

can produce statistical and economic gains. To shed light how such gains are made, Figure

6 plots CERD relative to a passive strategy of investing 100% of the portfolio in stock

prices over the sample period. For all the six investment horizons we consider, the gains

are mainly in the second part of 2008 during the most turbulent time of the recent financial

crisis. The joint strategies give lower CER before the crisis and at beginning of 2009, and
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similar CERs to the ones of the passive strategies from the second semester of 2009. Plots

also confirm that the DCC has the highest CER for horizons from 4 to 12 weeks ahead.

4 Concluding remarks

We have investigated the use of stock prices to predict oil prices. The analysis shows

that the correlation between the two series has substantially increases after the beginning

of recent financial crisis in the second semester of 2008. A bivariate Bayesian Dynamic

Conditional Correlation model which can model such time variation produces statistically

more accurate density forecasts and gives large economic gains in an asset allocation

exercise relative to the benchmark random walk model. The value of an active strategy

based on the DCC forecasts is substantially large compared to passive strategies during

turbulent times.

The research question can be extended in several directions. The variable set in the

DCC model could be extended by using interest rates and global demand index such as

in Kilian [2009]. The accuracy of the model could be tested using other loss functions,

such as risk measures for policy analysis.
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Appendix

DCC: a Bayesian algorithm

The DCC model for the (N × 1) vector yt is formulated as:

yt = Φ(L)yt−1 + vt

vt = H0.5
t εt, εt ∼ N(0, IN), Ht = DtRtDt

D2
t = diag{ωi}+ diag{κi}vt−1v

′
t−1 + diag{λi}D2

t−1, i = 1, ..., N

Qt = S(ıı
′ − A−B) + Aεt−1ε

′
t−1 +BQt−1

Rt = diag{Qt}−1Qtdiag{Qt}−1

(14)

where S is the unconditional correlation matrix of εt, A, B and S(ıı
′−A−B) are positive

semidefinite matrices. In our exercise N = 2, therefore the parameters A and B reduce

to scalar and above conditions to A > 0, B > 0, A + B < 1. Following Engle [2002], the

log likelihood can be expressed as:

lnL = −1

2

T∑
t=1

(N ln(2π) + 2 ln |Dt|+ v
′

tD
−1
t D−1t vt − εtε

′

t + ln |Rt|+ ε
′

t−1R
−1
t εt−1) (15)

We estimate the DCC model using a Metropolis-Hastings algorithm. Define the vector

αi = (Φ0, ...,ΦL, ωi, κi, λi, A,B)
′
, with Φ(L) = (Φ0, ...,ΦL), i = 1, .., N , and αj the j-th

element of it. The sampling scheme consists of the following iterative steps.

Step 1: At iteration s, generate a point α∗j from the random walk kernel

α∗j = αi−1j + εj, ε ∼ N(0, Q), (16)

where Q is a diagonal matrix and σ2
j is its j-th diagonal element, and αs−1j is the (s −

1)th iterate of αj. Therefore, we draw row elements of Φ0, ...,ΦL and ωi, κi, λi, A,B

20



independently. Then accept α∗j as αsj with probability p = min
[
1, f(α∗j )/f(αs−1j )

]
, where

f() is the likelihood of model (14) times priors. Otherwise, set α∗j = αs−1j . The elements

of Q are tuned by monitoring the acceptance rate to lie between 25% and 50%.

Step 2: After M iterations, we apply the following independent kernel MH algorithm.

Generate α∗j from

α∗j = µi−1αj
+ εj, ε ∼ N(0, Qαj

), (17)

where µαj
and Qαj

are, respectively, the sample mean and the sample covariance of the

first M iterates for αj. Then accept α∗j as αij with probability

p = min

[
1,
f(α∗j )g(αs−1j )

f(αs−1j )g(α∗j )

]
, (18)

where g() is a Gaussian proposal density (17).

Priors

We set normal priors for Φ(L) with mean and variance equal to OLS estimates. The

priors for ωi, κi, λi, A,B are uniform distributed and satisfy the restrictions ωi > 0, κi >

0, λi >, κi + λi < 1, A > 0, B > 0, A + B < 1. We note that different priors for the

coefficients A and B of the correlation matrix should be considered if the dimension of

the model is larger than two, see discussion in, e.g., Tokuda et al. [2012].
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Table 1: Oil and stock return forecast accuracy

Oil return
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
MSPE 15.628 0.996 0.954 0.956 15.525 1.040 0.986 0.987 15.447 1.044 1.002 0.993

LS -2.794 0.999 0.987 0.978∗ -2.792 1.007 0.995 0.968∗∗ -2.790 1.007 0.997 0.985∗∗

CRPS 2.087 1.001 0.986 0.978∗ 2.085 1.015 0.998 0.985 2.075 1.020 1.003 0.991
h=8 h=12 h=24

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
MSPE 15.503 1.026 0.986 0.981 15.560 0.993 0.998 0.992 15.564 1.006 1.004 1.004

LS -2.794 1.004 0.996 0.980∗ -2.793 1.001 1.001 0.986∗ -2.795 1.004 1.003 1.007
CRPS 2.083 1.011 0.992 0.982∗ 2.079 0.997 0.998 0.989∗∗ 2.072 1.004 1.001 0.999

Stock return
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
MSPE 8.054 1.025 1.038 1.043 8.095 1.009 1.032 1.033 8.084 1.024 1.042 1.045

LS -2.505 1.005 1.012 1.028 -2.496 1.010 1.015 1.009 -2.495 1.015 1.021 1.077
CRPS 1.451 1.020 1.025 1.000 1.454 1.016 1.022 1.006 1.456 1.018 1.027 1.018

h=8 h=12 h=24
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

MSPE 8.218 1.007 1.016 1.011 8.289 0.997 1.002 1.000 8.497 1.001 1.000 0.999
LS -2.511 1.010 1.016 1.164 -2.518 1.009 1.012 1.104 -2.534 1.020 1.022 1.203

CRPS 1.466 1.005 1.007 1.008 1.472 0.996 0.999 1.001 1.491 1.003 1.001 1.017

Notes: RW , AR, V AR, DCC: individual models defined in Section 3. MSPE: Mean Square Prediction

Error. LS: average Logarithmic Score. CRPS: cumulative rank probability score. Absolute statistics for

the columns RW; relative statistics to the RW for the other models. One ∗ and two ∗∗ represent rejections

of the null hypothesis of equal predictability following the Harvey et al. [1997] type of test at 10% and

5% respectively.
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Table 2: Economic value

h=1 h=2 h=4
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

Mean Ret 5.09 13.12 30.23 20.32 2.46 7.45 19.04 16.45 0.91 2.43 8.17 9.89
St dev 18.03 20.96 23.00 20.65 18.31 18.97 20.52 18.65 18.65 22.58 20.04 20.57
SR 0.16 0.54 1.26 0.91 0.01 0.28 0.85 0.79 -0.08 0.01 0.30 0.38
∆s -2.87 101.61 274.18 174.78 -46.94 -24.71 161.82 164.76 -95.37 -136.03 24.57 134.36
∆o 140.35 244.84 417.40 318.01 166.28 188.52 375.05 377.99 189.27 148.62 309.22 419.00
∆f 66.85 171.34 343.90 244.51 64.02 86.26 272.79 275.73 54.13 13.47 174.07 283.85

h=8 h=12 h=24
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

Mean Ret 1.06 0.34 5.35 7.32 1.49 0.27 4.12 5.04 2.59 3.22 3.69 3.33
St dev 19.37 24.58 20.36 20.47 20.68 27.00 22.48 20.24 23.32 26.30 26.14 22.38
SR -0.07 -0.08 0.15 0.25 -0.04 -0.08 0.08 0.14 0.01 0.03 0.05 0.05
∆s -89.91 -276.56 30.88 191.74 4.70 -213.90 98.18 237.01 207.29 220.95 263.16 271.83
∆o 270.13 83.47 390.91 551.78 331.10 112.50 424.59 563.42 449.07 462.72 504.93 513.60
∆f 73.50 -113.16 194.28 355.15 105.77 -112.83 199.25 338.08 159.18 172.83 215.04 223.71

Transaction costs
h=1 h=2 h=4

RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC
Mean Ret 2.54 8.11 25.76 15.86 1.45 5.48 17.03 14.64 0.53 1.61 7.44 9.15
St dev 18.01 21.02 23.04 20.65 18.31 18.94 20.54 18.62 18.65 22.59 20.05 20.55
SR 0.01 0.29 1.06 0.68 -0.05 0.17 0.74 0.69 -0.10 -0.03 0.27 0.35
∆s -39.52 29.55 210.03 110.67 -67.23 -64.60 121.02 128.09 -106.38 -159.72 3.67 113.36
∆o 103.70 172.77 353.26 253.90 146.00 148.63 334.24 341.32 178.26 124.92 288.31 398.00
∆f 30.20 99.27 279.76 180.40 43.74 46.37 231.99 239.06 43.12 -10.23 153.16 262.85

h=8 h=12 h=24
RW AR VAR DCC RW AR VAR DCC RW AR VAR DCC

Mean Ret 0.92 0.09 5.12 7.07 1.41 0.16 4.01 4.90 2.56 3.19 3.65 3.28
St dev 19.37 24.58 20.37 20.47 20.68 26.99 22.48 20.23 23.32 26.30 26.14 22.38
SR -0.08 -0.09 0.14 0.24 -0.05 -0.08 0.08 0.13 0.01 0.03 0.05 0.07
Delta s -95.68 -286.88 21.54 181.51 0.80 -219.40 92.57 230.23 205.31 218.50 260.85 268.72
Delta b 264.36 73.15 381.57 541.55 327.20 107.00 418.97 556.63 447.08 460.27 502.63 510.49
Delta f 67.73 -123.47 184.94 344.92 101.87 -118.33 193.64 331.30 157.19 170.38 212.73 220.60

Note: RW , AR, V AR, DCC: individual models defined in Section 3. Mean Ret: annualized mean

portfolio return. St dev: annualized standard deviation. SR: Sharpe ratio. ∆s, ∆o, ∆f : performance fee

from switching from an active strategy to passive strategies holding only stock (rs), holding only oil (ro),

and only free risk bond (rb).
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Figure 2: Oil and stock volatilities
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Note: This Figure shows 1-year moving window standard deviations for oil and stock returns.
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Figure 3: Oil and stock correlation
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Note: This Figure shows sample correlations computed on moving windows of different length: 1 month

(1M); 3-months (3M); 6 months (6M); and 1-year (1Y).
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Figure 4: DCC correlation

-0,4 

-0,3 

-0,2 

-0,1 

0,0 

0,1 

0,2 

0,3 

0
3

.0
5

.1
9

8
5

 

0
3

.0
5

.1
9

8
6

 

0
3

.0
5

.1
9

8
7

 

0
3

.0
5

.1
9

8
8

 

0
3

.0
5

.1
9

8
9

 

0
3

.0
5

.1
9

9
0

 

0
3

.0
5

.1
9

9
1

 

0
3

.0
5

.1
9

9
2

 

0
3

.0
5

.1
9

9
3

 

0
3

.0
5

.1
9

9
4

 

0
3

.0
5

.1
9

9
5

 

0
3

.0
5

.1
9

9
6

 

0
3

.0
5

.1
9

9
7

 

0
3

.0
5

.1
9

9
8

 

0
3

.0
5

.1
9

9
9

 

0
3

.0
5

.2
0

0
0

 

0
3

.0
5

.2
0

0
1

 

0
3

.0
5

.2
0

0
2

 

0
3

.0
5

.2
0

0
3

 

0
3

.0
5

.2
0

0
4

 

0
3

.0
5

.2
0

0
5

 

0
3

.0
5

.2
0

0
6

 

0
3

.0
5

.2
0

0
7

 

0
3

.0
5

.2
0

0
8

 

0
3

.0
5

.2
0

0
9

 

0
3

.0
5

.2
0

1
0

 

0
3

.0
5

.2
0

1
1

 

Note: This Figure shows correlation estimated using a Dynamic Conditional Correlation model.
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Figure 5: Weekly realized correlation
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Note: This Figure shows weakly realized correlation using hourly data.
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Figure 6: CER Differentials
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Note: Certainty Equivalent Return (CER) Differentials versus the CER of the passive strategy holding

only stock with transaction costs c = 0.05%.
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