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Abstract

We estimate a regime-switching DSGE model with a banking sector to explain

incomplete and asymmetric interest rate pass-through, especially in the presence of a

binding zero lower bound (ZLB) constraint. The model is estimated using Bayesian

techniques on US data between 1985 and 2016. The framework allows us to explain

the time-varying interest rate spreads and pass-through observed in the data. We

find that pass-through tends to be delayed in the short run, and incomplete in the

long run. All this impacts the dynamics of the other macroeconomic variables in the

model. In particular, we find monetary policy to be less effective under incomplete

pass-through. Furthermore, the behavior of pass-through in the loan rate is different

from that of the deposit rate shocks. This creates asymmetric dynamics at the zero

lower bound, and incomplete pass-through exacerbates that asymmetry.
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1 Introduction

Understanding the transmission mechanism is vitally important for gaining insight into

how monetary policy affects the macroeconomy. A key link in this chain is the translation

of central bank policy rates into the market interest rates faced by borrowers and savers.

Delayed and incomplete interest rate pass-through is a “bottleneck” that reduces the

impact/effectiveness of monetary policy on the rest of the economy. The problem is of

particular interest when the economy is operating in the vicinity of the zero lower bound

(ZLB) and there are questions of how much and how fast interest rate cuts will be passed

on. In this paper we investigate interest rate pass-through through the lens of a DSGE

model with a banking sector and an occasionally binding ZLB constraint.

Interest rate pass-through has been studied in econometric time series models (see for

instance de Bondt (2005), and Kok and Werner (2006) for single equation ECM/ARDL

models, Frisancho-Mariscal and Howells (2010), and Akosah (2015) for VECM mod-

els, Sander and Kleimeier (2004) for VAR model, and Fry-McKibbin and Zheng (2016),

de Haan and Poghosyan (2007), and Apergis and Cooray (2015) for various non-linear

econometric time series models). While these contributions are important, they abstract

from critical issues that would affect the measure of pass through itself. Those issues

pertain, for instance, to the endogeneity of the policy rate, which is usually assumed ex-

ogenous in the measure of interest rate pass through. That endogeneity naturally calls

for the measurement of pass-through in a structural framework. This is why more than

acknowledging the endogeneity of the policy rate, this paper proceeds to estimating pass-

through in a Dynamic Stochastic General Equilibrium (DSGE) model.

Little work has been done to seriously address the issue of interest rate pass-through in

DSGE models. The typical route taken by DSGE modelers, like Beneš and Lees (2010) and

Gerali et al. (2010), has been merely to match market interest rates by including various

frictions in the interest rate setting process, but without investigating the implications of

incomplete interest rate pass-through for policy and for the dynamics of macroeconomic

variables. The present study aims to fill that gap.

Our goal is to quantify incomplete pass-through, try to better understand some of

the factors that affect interest rate pass-through and investigate its implications for the

effectiveness of monetary policy in normal times but also at the zero lower bound. To

this end we embed the banking structure introduced by Gerali et al. (2010) into a simple
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regime-switching DSGE model, which we estimate using Bayesian techniques on US data

between 1985 and 2016. Our focus on structural DSGE models allows us to highlight

the economic channels through which shocks affect the economy, which is important in

assessing the transmission from interest rates to the economy. In particular, with such

a strategy we will be able to analyze the consequences of incomplete interest rate pass-

through for the economy and policy for a wide array of specific shocks.

The regime-switching strategy embedded in the approach adds further benefits. The

model we study allows for multiple steady states. In particular, we introduce regime

switching in the pricing decisions undertaken by banks in terms of loan and deposit rates.

Following a shock, those banks may choose to absorb some of the effects of the shocks

by changing their mark-up/mark-down strategies. This behavior will have consequences

on how much of the effect of the shock is passed along to the households. We also

introduce a switch in the policy process to account for the zero lower bound on interest

rates through a separate zero lower bound-monetary policy regime. A simple constant-

parameter linearized DSGE model would not account for the ZLB and possibly the change

in behavior on the part of commercial banks in the face of changing circumstances. Our

modeling strategy allows us to show that commercial banks do react to shocks above

and beyond what would be prescribed by a simple linearized DSGE model. Hence, in

contrast to standard DSGE/multivariate models, in which asymmetry, time variation and

non-linearities are killed by linearization, our modeling approach allows us to investigate

(i) how policy rates affect market rates, especially in the vicinity of the lower bound; (ii)

the impact of delayed and incomplete pass-through on the macroeconomy and for policy,

and finally, (iii) the cost of incomplete interest rate pass-through.

Having moved to a multivariate model, we need to redefine measures of pass-through.

We suggest two different approaches. Our first proposed measure reflects the endogenous

determination of both the policy and market interest rates and the variety of shocks that

can affect the policy interest rate.1 To do so we suggest to measure pass-through using the

impulse responses to all the structural shocks from a multivariate model. As a consequence

the degree of pass-through will depend on the shock hitting the economy. Similar methods

have been suggested by Shambaugh (2008) and Rincón-Castro and Rodŕıguez-Niño (2016)

1Note that while our measures of pass-through are implemented in the context of a DSGE model, they

can easily be applied to other multivariate models like VAR models for example, and used to measure

exchange rate pass-through as well.
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to investigate exchange rate pass-through in multivariate models. For comparison, we

also suggest a second method simulating artificial data from the multivariate model,

then estimating univariate measures of pass-through on the simulated data. Using this

approach we treat the model as a laboratory and test how different assumptions affect the

degree of pass-through. Moreover, we can calculate an aggregate measure of pass-through

using this method, something we cannot easily obtain using our first measure. We use this

strategy among other things also as a way to cross-check the other measure of incomplete

pass-through

Putting all those elements together, we are able to explain the time-varying interest

rate spreads and pass-through observed in the data. In particular, we find evidence

that pass-through tends to be delayed in the short run and incomplete in the long run.

The magnitude of pass-through also depends on the shocks that hit the economy: for

some shocks pass-through is fast but for some others pass-through is slow. For both

the deposit and loan rates, the lowest pass-through is observed for the cost-push shocks.

Furthermore, we find that retail banks tend to adjust their markups to absorb some of

the shocks. Finally, the behavior of pass-through in the loan rate is different from that of

the deposit rate shocks. This creates asymmetric dynamics at the zero lower bound, and

incomplete pass-through exacerbates that asymmetry.

The remainder of the paper is structured as follows. Section 2 describes a DSGE

model with a banking sector, while Section 3 defines two ways to measure interest rate

pass-through. Section 4 discusses estimation and parameterization, while we present the

main results in Section 5. We conclude in Section 6.

2 A model with banking

We develop a simple DSGE model with a banking sector. The need for a banking sector

arises through a loan-in-advance constraint on intermediate goods producers. More specif-

ically intermediate goods producers are required to finance a portion of their investment

goods purchases through a one-period loan. Our representation of the banking sector is

simple, avoiding the introduction of multiple types of agents as required by the Bernanke

et al. (1999), and Iacoviello (2005) frameworks. As a consequence we can focus on the

complex mechanisms involved in interest rate setting in the banking sector and interest
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rate pass-through. However, it also means the model does not have a financial accelerator,

which will likely affect interest rate pass-through. The setup of the rest of the model -

i.e. households, firms and the government sector - is standard. For this reason we only

focus on the banking sector and monetary policy in this section, and their relationship to

regime switching. A full derivation of the model can be found in Appendix A.

2.1 An Overview of the States

The aim of the paper is to analyse incomplete pass-through. Therefore the parameters

that are chosen to be switching are the ones related to the pricing decisions undertaken

by banks in terms of loan and deposit rates. We also introduce a switch in the policy

process to account for the ZLB. Thus, the model economy’s dynamics are conditional on

four discrete states of nature: At any given time the model economy can be in one of

two monetary policy states and one of two markup Markov processes. This is reflected

by introducing separate Markov chains for the monetary policy and markup states. The

monetary policy state determines whether policy is set according to a Taylor-type rule

which occurs in the normal state (N), or the economy is at the zero lower bound state

(Z) where policy follows an exogenous process, so that s1,t = N,Z. The monetary policy

state also affects the markups and markdowns charged by retail banks and the degree

of rigidity they face when adjusting market interest rates. The markup Markov process

determines whether markups and markdowns on market interest rates are high (H) or

low (L) and the degree of rigidity in adjusting market interest rates, when the economy

is away from the lower bound, so that s2,t = H,L. We introduce two regime-switching

parameters, z(s1,t) which identifies the monetary policy regime and m(s2,t) which identifies

the markup regime. We assume

z(Z) = 1 and z(N) = 0, (1)

with the states Z and N are governed by the following Markov transition matrix

QZ =

 1− pN,Z pN,Z

pZ,N 1− pZ,N

 , (2)

where pN,Z is the probability of moving from state N to state Z, 1−pN,Z is the probability

of remaining in state N , equally, pZ,N is the probability of moving from state Z to state
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N , and 1−pZ,N is the probability of remaining in state Z. We assume the regime-specific

markup parameter takes the values

m(H) = 1 and m(L) = 0. (3)

The states H and L are governed by the Markov transition matrix

Qm =

 1− qH,L qH,L

qL,H 1− qL,H

 . (4)

where qH,L is the probability of moving from state H to state L, 1−qH,L is the probability

of remaining in state H, equally, qL,H is the probability of moving from state L to state

H, and 1− qL,H is the probability of remaining in state L.

2.2 The Banking Sector

Following Gerali et al. (2010), the banking sector is divided into two types of banks,

wholesale banks and retail banks. Wholesale banks collect deposits from retail banks, and

produce loans using deposits and bank equity, which they in turn supply to retail banks.

The exact setup for this sector can be found in Appendix A. The retail banking sector is

comprised of loan-making and deposit-taking branches. As a means of representing retail

loan and deposit rates as a markup and markdown, respectively, over policy rates, Gerali

et al. (2010) treat intermediate loans and deposits issued by retail banks as differentiated.

As a consequence of this assumption, there is a continuum of loan-making and deposit-

taking banks, normalized to unit mass, each producing a differentiated loan or deposit.

We let z index retail banks.

The zth loan-making bank sets the interest rate on loans to maximize the sum of the

expected present value of its profits, subject to a quadratic cost of changing interest rates.

This can be represented by

ΨL,0(z) = Et


∞∑
t=0

M∗
0,t

(
P0

Pt

)RL,t(z)Lt(z)− exp (εL,t)RL,tLt(z)− . . .

. . .− φL(rt)

2
RL,tLt

[
RL,t(z)

RL,t−1(z)
− 1

]2

 , (5)

where M∗
t,t+1 is the real stochastic discount factor, Pt is the price level, RL,t(z) is the

interest rate charged for loans issued by the zth bank, Lt(z) is loans issued by the zth

bank, εL,t is a markup shock, RL,t is the aggregate interest rate on loans, Lt is aggregate
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loans and RL,t the wholesale interest rate charged on loans. Note that the degree of rigidity

φL(rt) is a function of the regime. The zth loan-making bank chooses the interest rate

on loans to maximize profits. Assuming a symmetric equilibrium leads to the following

behavioral rule for the aggregate loan interest rate(
υL(rt)

υL(rt)− 1

)
exp (εL,t)

RL,t

RL,t

− 1− φ̃L(rt)
RL,t

RL,t−1

[
RL,t

RL,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃L(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RL,t+1

RL,t

)2
Lt+1

Lt

[
RL,t+1

RL,t

− 1

]}
= 0. (6)

This resembles a New Keynesian Phillips curve for the interest rate on loans where the

marginal cost term is the interest rate charged on loans by the wholesale bank. The

reduced form persistence parameter, φ̃L(rt) ≡ φL(rt)
υL(rt)−1

, and elasticity of substitution be-

tween differentiated loans, υL(rt), are functions of the regime. We make this relationship

more explicit by assuming

φ̃L(rt) = z(s1,t)φ̃Z,L + (1− z(s1,t)) (m(s2,t)φ̃H,L + (1−m(s2,t)) φ̃L,L). (7)

The loan mark-up is determined according to

µL(rt) = z(s1,t)µZ,L + (1− z(s1,t))(m(s2,t)µH,L + (1−m(s2,t))µL,L), (8)

where the elasticity of substitution between differentiated loans is related to the markup

through

υL(rt) =
µL(rt)

µL(rt)− 1
. (9)

The zth deposit-taking bank sets interest rates to maximize its expected discounted

future stream of profits, subject to a quadratic adjustment cost on changing interest rates

so that

ΨD,0(z) = Et


∞∑
t=0

M∗
t,t+1

(
P0

Pt

)exp (εD,t)RD,tDt(z)−RD,t(z)Dt(z)− . . .

. . .− φD(rt)

2
RD,tDt

[
RD,t(z)

RD,t−1(z)
− 1

]2

 , (10)

where RD,t(z) is the deposit interest rate for loans issued by the zth bank, Dt(z) is deposits

issued by the zth bank, εD,t is a markup shock, RD,t is the aggregate deposit interest rate,

Dt is aggregate deposits and RD,t the wholesale interest rate charged on deposits. As

was the case for loan-making banks, φD(rt) is a function of the regime. The zth deposit-

taking bank chooses deposit interest rates to maximize their lifetime profits. Assuming a
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symmetric equilibrium leads to the following behavioral rule for aggregate deposit interest

rates

1−
(

υD(rt)

υD(rt)− 1

)
exp (εD,t)

RD,t

RD,t

− φ̃D(rt)
RD,t

RD,t−1

[
RD,t

RD,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃D(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RD,t+1

RD,t

)2
Dt+1

Dt

[
RD,t+1

RD,t

− 1

]}
= 0. (11)

Just as was the case for loan-making banks, the reduced form rigidity parameter, φ̃D(rt) ≡
φD(rt)
υD(rt)−1 , and the elasticity of substitution between differentiated deposits, υD(rt), are

functions of the regime. Furthermore we assume that

φ̃D(rt) = z(s1,t)φ̃Z,D + (1− z(s1,t)) (m(s2,t)φ̃H,D + (1−m(s2,t)) φ̃L,D), (12)

and the markdown on deposits is determined by

µD(rt) = z(s1,t)µZ,D + (1− z(s1,t))(m(s2,t)µH,D + (1−m(s2,t))µL,D), (13)

where the markdown is related to the elasticity of substitution through

υD(rt) =
µD(rt)

µD(rt)− 1
. (14)

2.3 Monetary Policy

The monetary authority sets interest rates Rt according to

Rt = max (RZLB,t, R
∗
t ) , (15)

where R∗t is the interest rate set during normal times, which is determined according to a

Taylor-type rule

R∗t = R∗ρRt−1

(
R∗
(πt
π

)κπ (
Ŷt

)κY )1−ρR
exp (εR,t) , (16)

where Ŷt is the output gap. RZLB,t is the interest rate set when the economy is at the

zero lower bound, which we assume evolves according to the exogenous process

RZLB,t = K + εZLB,t. (17)

K is a parameter set equal to the effective lower bound and εZLB,t is a small shock added

to avoid a stochastic singularity. In order to model the lower bound constraint on interest

rates using regime-switching, we follow Binning and Maih (2016) and replace equation

(15) with

Rt = z(s1,t)RZLB,t + (1− z(s1,t))R
∗
t . (18)

8



3 Measuring Pass Through

Measuring interest rate pass-through in single linear equation models is a trivial exer-

cise. In such models the policy interest rate is assumed to be exogenous and long-run

interest rate pass-through can be determined by inspecting the estimated coefficients of

the model. In multivariate models, however, the task is more complicated, as both the

policy interest rate and the market interest rate are usually assumed to be endogenous.

A simple approach to measuring pass-through could involve shocking the system with a

monetary policy shock and then calculating interest rate pass-through from the resulting

impulse response function. While this is a useful exercise in itself, it does not reflect the

data generating process as there are a multitude of shocks that can affect the variables in

the system.2

In this paper we propose two general methods of measuring interest rate pass-through

in multivariate models. Our measures reflect the endogenous determination of both the

policy and market interest rates and the variety of shocks that can affect the policy in-

terest rate. The nature of multivariate models means that we do not assign a causal

interpretation to our measures of pass-through, but instead treat pass-through as a cor-

relation. We investigate our measures of pass-through using a DSGE model, but we note

they can easily be applied to other multivariate models like VAR models for example, and

used to measure exchange rate pass-through as well.

Our first method measures pass-through using the impulse responses to all the struc-

tural shocks from a multivariate model. As a consequence the degree of pass-through

will depend on the shock hitting the economy.3 Similar methods have been suggested by

Shambaugh (2008) and Rincón-Castro and Rodŕıguez-Niño (2016) to investigate exchange

rate pass-through in multivariate models.

Our second method involves simulating artificial data from the multivariate model,

and then estimating univariate measures of pass-through on the simulated data. Using

this approach we treat the model as a laboratory and test how different assumptions affect

the degree of pass-through. Moreover, we can calculate an aggregate measure of pass-

2This is a point that has been made by Shambaugh (2008) and Rincón-Castro and Rodŕıguez-Niño (2016)

in the context of measuring exchange rate pass-through.
3In non-linear models, the size and sign of the shock could have an impact on the degree of interest rate

pass-through.

9



through using this method, something we cannot easily obtain using our first measure.

We describe these measures in more detail below.

3.1 An IRF Based Measure

Our first method measures pass-through using the impulse responses to all the struc-

tural shocks from a multivariate model. As a consequence,o the degree of pass-through

will depend on the shock hitting the economy. As discussed above, exchange rate pass-

through has been investigated by Shambaugh (2008) and Rincón-Castro and Rodŕıguez-

Niño (2016) in multivariate models. They recognize that the correlation between the

exchange rate and the price of imported goods is a function of not only the parameters of

the model, but also the types of shocks hitting the economy. Moreover it is not useful to

treat all movements in the exchange rate as exogenous, especially in a multivariate setting

where the exchange rate can respond to a number of different shocks and variables. In-

stead they look at exchange rate pass-through using the impulse responses for a number

of different structural shocks.

We adopt a similar approach to Shambaugh (2008) and Rincón-Castro and Rodŕıguez-

Niño (2016) when measuring interest rate pass-through, and evaluate it for a set of struc-

tural shocks using the impulse responses from the model. Our measure of pass-through τ

periods after the shock is given by

PTM,τ (±εj,t) =

τ∑
t=0

|R̂M,t (±εj,0) |

τ∑
t=0

|R̂t (±εj,0) |

where M = D,L

(19)

and where R̂M,t (±εj,t) is the impulse response for the market interest rate t periods after

the jth shock has hit the economy. R̂t (±εj,t) is the impulse response for the policy interest

rate t periods after the jth shock has hit the economy. Our IRF-based measure of interest

pass-through uses the absolute value of the impulse response functions as secondary cycles

in the impulse response function could switch sign. We also allow for differences in pass-

through depending on the sign of the shock. This is important if the model exhibits

asymmetric impulse response functions.
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3.2 Reduced Form Measures

Our second approach involves simulating artificial data from the DSGE model, treating

the policy interest rate as exogenous, and then estimating an autoregressive distributed

lag (ARDL) model on the simulated data. The ARDL model is chosen because the data

are stationary and it is a reasonably common model for estimating interest rate pass-

through in the literature. Our ARDL models of the market rate are estimated on 10 lags

of the market rate, the contemporaneous policy rate, and 10 lags of the policy rate.4 The

ARDL model we estimate takes the general form

∆RM,t (M, θ) =

p∑
i=1

αM,i∆RM,t−i (M, θ) +

p∑
j=0

αR,j∆Rt−i (M, θ) + ut (20)

where M refers to the the data being generated by a structural model, and θ represents

the parameter vector used to generate the data in the structural model.

Our reduced form single equation measure of pass-through is useful because we can

calculate an overall measure of interest rate pass-through. We can also produce a counter-

factual measure of interest pass-through by changing the parameterization of the DSGE

model, to better understand the factors that affect interest rate pass-through.

4 Model Solution and Parametrization

We solve our models using a perturbation method for regime switching rational expecta-

tions models. The model will then be estimated on US data using Bayesian methods, as

described in the sections below.

4.1 Model solution

The equilibrium conditions of the model form a nonlinear system of regime-switching

rational expectation equations that can be summarized as

Et

h∑
rt+1=1

prt,rt+1f (xt+1 (rt+1) , xt (rt) , xt−1, εt, θrt) = 0

where Et is the expectations operator, f (.) is a system of nonlinear functions representing

the equilibrium conditions, xt is the vector of endogenous variables, rt = 1, 2, ..., h and

4Note: because the model is non-linear and potentially asymmetric we could estimate nonlinear (threshold)

ARDL models, but we do not do so here, in the interest of simplicity.
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rt+1 = 1, 2, ..., h denote the regimes in periods t and t + 1 with h being the maximum

number of regimes, εt ∼ N (0, I) is the vector of stochastic shocks, θrt is the vector

collecting all the parameters of the model in regime rt, prt,rt+1 , an entry of the transition

matrix Qt, is the probability of going from regime rt in the current period to regime rt+1

in the next period.

In our model, h such systems have to be simultaneously solved for generic minimum-

state-variable (MSV) policy functions of the form

xt (rt) = Trt (xt−1, εt)

These policy functions are regime specific but take into account the behavior of the

economic system in all other regimes.

Unfortunately, in general, there is no analytical solution to the problem at hand,

which would enable us to find the exact functions Trt (.) that solve the problem. The

best we can do, therefore, is to find a suitable approximation. Several authors in the

literature have attacked this type of problems using projection methods, a technique that

proceeds by discretizing the space of the endogenous and exogenous state variables: Davig

(2004), Davig and Leeper (2007, 2008), Bi and Traum (2012, 2014), Davig et al. (2010,

2011), Richter et al. (2014). Projection methods, unfortunately, suffer from the curse

of dimensionality and would be essentially infeasible in the current context where the

number of state variables is significant.

Another strand of the literature addresses this type of problems by adding regime

switching to a linear or linearized constant-parameter system. Examples include Svensson

and Williams (2007), Farmer et al. (2011), Bianchi (2013), Cho (2016), Bianchi and Ilut

(2017), Bianchi and Melosi (2017). Relative to projection methods, a key advantage of

this approach is that the resulting conditionally linear rational expectations system can be

easily solved (exactly) and can handle large systems. One disadvantage is that economic

agents are not aware of the switching process prior to linearization. In other words, the

resulting policy functions, in general, are inconsistent with an original problem in which

economic agents make decisions taking into account the additional uncertainty brought

about by the fact that the regime prevailing next period is unknown in the current one.

Another drawback of this approach is that it forces a unique steady state to the system,

which is not appropriate for a model like ours in which the zero lower bound is treated as

a separate steady state.
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A solution approach that addresses the drawbacks listed above and in particular neatly

embeds the switching mechanism is called perturbation. Several perturbation algorithms

designed to solve regime-switching rational expectations can be found in the literature.

The algorithm by Foerster et al. (2016) imposes a unique steady state, which is not suit-

able for our purpose, while the one by Barthelemy and Marx (2017) is not implemented

in RISE, the toolbox we use for our computations. The perturbation algorithm we use is

Maih (2015), which allows the possibility of multiple steady states and endogenous transi-

tion probabilities. See Maih (2015) and Maih and Waggoner (2018)5. The approximated

policy function takes the form

xt (rt) ≈ x (rt) + Trt,z (zt − z (rt)) +
1

2!
Trt,zz (zt − z (rt))

⊗2 + ...+
1

p!
Trt,z(p) (zt − z (rt))

⊗p

where zt ≡
[
x′t−1, σ, ε

′
t

]′
is the vector of state variables and σ the perturbation parameter.

4.2 Model parameterization: Taking the model to the data

Taking the model to the data requires combining the policy function with a measurement

equation relating observable variables yt to unobservable variables xt. Such a measurement

equation can be expressed as

yt = mrt (xt, ηt)

where ηt is a vector of measurement errors.

We let vector yt comprise US data on per capita GDP growth (∆ log Yt), per capita

consumption growth (∆ logCt), per capita investment growth (∆ log It), price inflation

(πt), wage inflation (πW,t), the fed funds rate (Rt), the loan interest rate (RL,t) and the

deposit interest rate (RD,t). The model is made stationary by detrending or by dividing

the nonstationary variables by their underlying stochastic trend. Hence, there is no pre-

filtering of the data and the variables are included in levels and growth rates.

The combination of the policy functions and the measurement equations form the

regime-switching state-space model, which is used to compute the likelihood function.

We apply a modification of the Kim and Nelson (1999) filter to this state-space form

to compute the (approximate) likelihood of the data given a parameter vector θ, which

5The perturbation algorithms of Maih (2015), Foerster et al. (2016) and Maih and Waggoner (2018) are

all implemented in the RISE toolbox. See also Bjørnland et al. (2018) for the use of the RISE toolbox in

a different application.
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includes both the structural model parameters and the parameters pertaining to the

transition matrix6.

The likelihood is then combined with a prior distribution on the parameters to form the

posterior kernel, which we maximize to find the mode of the posterior distribution. Then

we take a sample of 200,000 draws from the posterior distribution using a standard Markov

Chain Monte Carlo (MCMC) technique, namely the Metropolis-Hastings algorithm. All

the computations carried out using the RISE toolbox.

The estimation sample runs from 1985Q1 to 2016Q3 and includes the Great Moder-

ation, the financial crisis and the ZLB period. We choose this period because the loan

rate does not go back much further although the regime-switching framework can handle

longer samples with the possible addition of extra regimes.

Table 2 in Appendix B provides a description of all the parameters in the model.

We calibrate a set of the parameters where we are unlikely to get good estimates from

the data. In particular, the elasticity of substitution between differentiated intermediate

goods (ε) and elasticity of substitution between differentiated labor (υ) are chosen to

ensure steady state mark-ups of 20% in the goods and labour markets. µZ,D, the gross

mark-down on deposit rates at the ZLB is fixed at 1, because at the ZLB deposit rates are

the same as the policy rate, i.e. we can’t mark them down lower than the ZLB. We set

ω to 0.5 so that banks distribute 50% of their profits as dividends and 50% is reinvested

in the business. We set the depreciation rate of bank capital (δb) to 0.1 which is in line

with Gerali et al. (2010). We set ψ = 1 which implies that all investment goods must be

bought using one period loans from the bank. Capital’s share of income is set to 0.35,

well within the standard range used in the literature. We refer to Table 3 in Appendix B

for the calibrated parameters.

We estimate the remaining parameters of the model using Bayesian methods (see Table

4 in Appendix B for details). For some of the parameters we use tight priors because we

had difficulty getting them to remain within reasonable ranges. In particular, we set

the prior for habit formation (χ) to be 0.7. The estimated value is quite close due to

the tight prior. The prior on the inverse of the Frisch elasticity of labor supply ( η) is

centered on 2, which is well within the range estimated in previous studies. However the

6The difference between the Kim and Nelson filter and the filtering algorithm used in this paper resides

in the collapsing rule. The latter algorithm is computationally more efficient but yields the same results

as the Kim and Nelson algorithm.
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distribution was truncated at 1 and the estimated distribution has conglomerated around

1. The prior on the inverse of the intertemporal elasticity of substitution (σ) is centered

on 2, a commonly used number in the literature. Estimation has moved the parameter

lower to a posterior mean of 1.8605. The prior for the time preference parameter β is

centered on 0.9988, which is consistent with the average interest rate over the estimation

period. Estimation pushes the parameter up a bit, although this is constrained by the

tight prior. Priors for φP and φW , the weights on the Rotemberg adjustment costs for

prices and wages, respectively are centered on 10, which is within the plausible range for

these parameters. Estimates of these parameters remain within plausible regions.

The prior for the weight on investment adjustment costs (φI) is centered on 3, this

is close to the number estimated by Christiano et al. (2005). The priors for ξP and ξW ,

the weights on indexation are centered on 0.5, estimation moves these parameters almost

all the way to zero, indicating that there is not a lot of persistence in wage and price

inflation, or that the model can generate enough endogenous persistence. The priors

for the markups/markdowns for the retail interest rates have been chosen to match the

average markups/markdowns observed in normal times and ZLB times in the US. The

priors are tight, so that we remain within reasonable ranges for these parameters.

We used triangular priors on the persistence parameters for the adjustment costs on

retail interest rates to ensure that the parameters are bounded from above. We center the

priors for both sets of transition probabilities on 0.125. This implies that the expected

duration in the normal and ZLB states is eight quarters and the expected duration in

the high and low interest rate mark-up states is also eight quarters. The posterior mean

estimate for the transition probability qH,L is 0.1064, which implies an expected duration

of nearly 10 quarters in the high interest mark-up state. The posterior mean estimate

for qL,H is 0.0653, which implies an expected duration of more than 15 quarters. The

posterior mean estimate of pN,Z is 0.0317, which implies the expected duration of the

normal state to be 31 quarters. The posterior mean of pZ,N is 0.3168, which implies the

expected duration of the ZLB state is three quarters.

The estimates for the transition probabilities to the ZLB state are similar to those in

Binning and Maih (2016). Finally, the priors for the Taylor rule coefficients, κπ and κy

are centered on 1.5 and 0.12. Estimation raises κπ to about 2 and κy to about 0.27. The

smoothing parameter has a tight prior centered on 0.7, as a consequence we do not move
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far from the prior.

5 Results/Policy analysis

We now present in Section 5.1 results using our two methods of measuring interest rate

pass-through in multivariate models. Examining impulse responses to all the structural

shocks from a multivariate model, and estimating ARDL models on simulated data. We

examine overall pass-through and also the corresponding shocks specific measures of in-

terest rate pass-through. Finally, we examine to what extent interest rate pass-through

also depends on the key monetary policy parameters. Section 5.2 then performs some

simulations, where we examine interest rate pass through at the zero lower bound on the

policy rate. Finally, in Section 5.3 we examine the loss of incomplete pass-through.

5.1 Incomplete and nonlinear pass through

We start by graphing the state probabilities in Figure 1. The upper panel shows when

the U.S. economy is in a high markup state, while the lower panel shows when the policy

is at the ZLB. From the upper panel we see that the U.S. economy seems to be in

high markup states until each recession comes along. Then when a recession occurs the

economy switches to a low markup state. The lower panel emphasise that the change in

the probability of being in the ZLB state occurs when very sharp interest cuts were made

in the second part of 2008, sending the nominal interest rate to its effective lower bound.

By the end of the sample (fall 2016) the probability of being in the ZLB falls sharply as

interest rate are finally increased in this period.

Figure 2 shows the impulse responses to a contractionary monetary policy shock. The

figure shows the difference between the dynamics of the model implied by the estimated

degree of pass-through and a scenario in which pass-through is lower. —More specifically,

we set the reduced form persistence parameters for loans and deposits to, respectively,

φ̃L(rt) = 10 and φ̃D(rt) = 10, where we recall that φ̃L(rt) ≡ φL(rt)
υL(rt)−1

and φ̃D(rt) ≡ φD(rt)
υD(rt)−1

(see equations (7) and (12) above).

It can be seen that for the same size of the monetary policy shock, the response of

the variables is smaller in the lower-pass-through model than in the estimated model (c.f.

Figure 2). This is in particular evident for consumption and output. This also implies
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Figure 1. State probabilities. The top panel is the probability of being in a high mark up state, while

the lower panel is the probability of being at the zero lower bound (ZLB). Grey vertical bars represent

periods of NBER dated recessions.

that in the lower-pass-through scenario, policy would have to do more in order to achieve

the type of adjustment implied by the estimated model. Hence, policy is less effective

under incomplete or low interest rate pass-through.

Figure 3 plots the overall pass-through for the deposit rate (left frame) and the loan

rate (right frame) using the ARDL measure, discussed in Section 3, alongside their 95%

probability bands. In this exercise, the simulations used to estimate ARDL models are

done using all the shocks in the DSGE model. We note that for both rates, pass-through

is incomplete both in the short term and the long term. Furthermore, in the short term,

pass through for the loan rate is smaller than for the deposit rate, while in the long run,

the opposite holds, i.e. in the long run pass-through is smaller for deposit rate than for

loan rate.

In Figures 4 and 5 we graph the corresponding shocks specific measures of interest

rate pass-through for the deposit rate and the loan rate respectively. In both figures, we
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Figure 2. Impulse responses to a monetary policy shock. The figure compares the responses of the

estimated model to the responses from a parameterization of the model with lower pass-through, i.e.,

φ̃L(rt) = 10 and φ̃D(rt) = 10 (see the main text for additional details).

plot in the left frame the pass-through from each shock in turn assuming all the other

shocks are zero. In the right frame, we do the opposite exercise. That is, we turn off each

shock in turn, letting all the others be active.

Starting with the left frame in Figure 4, we see that for all shocks displayed, pass-

through is incomplete. Of these, government spending and loan rate markup shocks

show the highest degree of pass-through, followed by labor preference, monetary policy

and neutral technology, which have roughly the same pass-through, and then investment-

specific technology shocks. Finally, the lowest pass-through is observed for the cost-push

shocks.7

The right frame, which analyzes the effect of turning off one shock at the time, confirms

7Note that we were unable to estimate an ARDL model with the consumption shock, because the corre-

lation between the policy rate and market rate was too high (approx 0.99), implying complete or near

complete pass-through on impact for that shock.
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Figure 3. Overall interest pass-through for the deposit rate (left frame) and the loan rate (right frame)

using the autoregressive distributed lag (ARDL) measure, discussed in section 3, alongside their 95%

probability bands.

the picture from above. All shocks contribute to reducing pass-through. Still, interest

pas-through is lower in the absence of investment specific shocks, and marginally higher

in the absence of cost-push shocks.

Turning to the loan rate, the left frame in Figure 5 suggests that government spending

and technology shocks show the highest pass-through, followed by deposit rate, neutral

technology, labor preferences and monetary policy shocks. The lowest pass-through is

observed for the cost push shocks, as was also the case for the deposit rate. Finally, the

right frame shows that interest pass-through is lower in the absence of investment specific

shocks, and higher in the absence of cost-specific shocks.

Taken together, Figures 4 and 5 suggest that the degree of interest rate pass-through

crucially depends on the shock. The figures also suggest that the pass-through behavior

of the loan rate is different from that of the deposit rate.

The pass through measures computed using the ARDL technique where one shock is

active at a time turn out to be remarkably similar to those generated using our other

pass-through measure based on a more direct computation of the impulse responses. This

can be seen in Figure 11 and Figure 12 in Appendix C for the deposit rate pass-through

and the loan rate pass-through, respectively.
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Figure 4. Deposit rate pass-through, given different shocks. Left frame displays the pass-through from

each shock in turn assuming all the other shocks are zero. Right frame displays the opposite exercise.

That is we turn off each shock in turn letting all the others be active.
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Figure 5. Loan rate pass-through, given different shocks. Left frame displays the pass-through from

each shock in turn assuming all the other shocks are zero. Right frame displays the opposite exercise.

That is, we turn off each shock in turn, letting all the others be active.
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Figure 6. Loan Rate Pass-Through: Varying Monetary Policy Parameters

We now turn to analyzing how pass-through is affected by key monetary policy pa-

rameters. To that end, we measure the long run interest rate pass-through on a grid over

the reaction of the policy rate to the output gap (κy), the reaction to inflation (κπ) and

the interest rate smoothing (ρR). We plot the results for the loan rate in Figure 6 and for

the deposit rate in Figure 7.

The message that can be read from the two figures is that everything else equal, the

degree of interest rate pass-through is a highly nonlinear function of the policy parameters:

changing the value of the interest rate smoothing dramatically changes the profile of the

interest rate pass-through with respect to the other policy parameters. Here too, it is

seen that the pass-through behavior for the deposit rate is different from that of the loan

rate.
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Figure 7. Deposit Rate Pass-Through: Varying Monetary Policy Parameters

Another way to look at the relationship between policy parameters and the degree

of pass through is to look at each parameter separately. This is what Figure 8 does.

The figure plots various policy parameters (weights on inflation, output and interest rate

smoothing) against the degree of interest rate pass-through to loans (upper panels) and

to deposits (lower panels). While there is a fair amount of uncertainty in the relationship

between pass-through and the weights on inflation and output, the relationship between

pass-through and interest rate smoothing is more precise and highly nonlinear for the

loan rate pass-through. We can now more clearly see the important role of the smoothing

parameter. For the deposit rate (lower panels), pass through tends to increase with the

degree of interest rate smoothing. The higher the smoothing parameter, the higher the

pass-through. This behavior is quite different for the pass through to the loan rate (upper

panel). Originally the degree of pass through increases with the smoothing parameter.

But at some point, interest rate pass through starts decreasing just to change course again

as the smoothing parameter approaches unity.
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Figure 8. Loan rate Rate Pass-Through: Varying Monetary Policy Parameters

Summing up, we have seen that the degree of interest rate pass-through crucially

depends on the shocks hitting the economy. Furthermore, the analysis suggest that the

pass-through behavior of the loan rate is different from that of the deposit rate, and finally,

that the pass-through is affected by key monetary policy parameters. In particular, the

degree of interest rate pass-through is a highly nonlinear function of the policy parameters.

Also here, the pass-through behavior for the deposit rate is different from that of the loan

rate.

5.2 Dynamics at the zero-lower bound

So far we have analysed interest rate pass through without any reference to the lower

bound on the policy rate. With the zero-lower bound (ZLB) one should expect the

dynamics of the system to change. To address this, we will compare the dynamics induced

by positive and negative shocks at the ZLB. However, before examining the implications

of the ZLB, it is important to see how well our model represents the data over the ZLB

period.

Figure 9 compares simulations from the model to actual data and shows that the model
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Figure 9. Dynamics at the ZLB: Actual vs Simulated Data

replicates the data remarkably well. In particular, the figure presents in its top panels

the simulated series on interest rates (left panel) and on spreads (right panel). The figure

also plots in its lower panels the actual counterparts of those variables zooming in on the

period in which the ZLB was active. As can be seen from the figure, the simulated data

compare well with the actual series both in terms of patterns and in terms of magnitudes.

In particular, we capture well the time-varying interest rates and spreads observed in the

data.

To gain more insight into the workings of the model, we now compare the dynamics

induced by one sequence of adverse cost-push shocks and the exact same sequence of

shocks but with opposite signs in Figure 10. The figure shows that with the ZLB, the

dynamics of the system becomes asymmetric. In particular, the adjustment in consump-

tion, investment, output and inflation is smaller in the ZLB scenario than in the opposite

scenario, that is, where the interest rate increases. Hence, policy would be less effective

under the ZLB.

The combination of this result with the insights from Figure 2, where we examined the

impulse responses to a monetary policy shock under different parametrizations, suggests
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Figure 10. Asymmetric effects of cost-push shocks at the ZLB. The model compares the dynamics

induced by one sequence of adverse cost-push shocks and the exact same sequence of shocks but with

opposite signs

that with lower pass-through the responses of the different variables would be even smaller.

Conversely, complete pass through would assuage the effects induced by the ZLB.

5.3 The cost of incomplete pass-through

To better understand and quantify the costs of incomplete interest rate pass-through and

the effectiveness of monetary policy, we compare the loss calculated from an ad hoc loss

function from a series of simulations, both factual and counterfactual. That is, the factual

simulations are simulations from the estimated model while the counterfactual simulations

are the ones simulated while modifying some parameters. We then calculate how means

and variances of inflation, output and changes in the policy rate change when we go from

imperfect to perfect pass-through. In particular, we simulate the model for 1000 periods

under both the estimated parameterization of the model (with incomplete pass-through),

and a counterfactual parameterizations of complete pass-through. In the latter we are

switching off the Rotemberg rigidities in the deposit and lending interest rate setting
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equations and removing the markup/markdown on deposit and lending interest rates so

that retail interest rates are set equal to the policy rate in the steady state. We use the

same sequence of shocks for both the simulations. Figure 13 in the Appendix C compares

the responses to simulation of cost push shocks, using the estimated model and a model

with full pass-through.

To calculate the loss, we adopt the following ad hoc loss function

L0 = E0

{
∞∑
t=0

βt
[
π̂2
t + γY Ŷ

2
t + γR

(
∆R̂t

)2]}

where γY = 0.5 and γR = 0.5. We report the losses from each simulation in Table 1.

Table 1. The cost of incomplete pass-through

Simulation Loss

Estimated/incomplete pass-through 1.0234

Complete Pass-through 1.0000

Comparing the relative losses, we find the loss to be higher in the models with incom-

plete pass-through compared to the model without rigidities and without markups/markdowns.

This is consistent with the results we have reported so far.

6 Conclusion

We use a medium scale regime-switching DSGE model with a banking sector to analyze

the effects of incomplete and asymmetric interest rate pass-through on the macroeconomy.

The model is estimated using Bayesian techniques on US data between 1985 and 2016.

We find interest rate pass-through to be mostly incomplete, but with the magnitude of

the pass through depending on the shocks that hit the economy. Shocks also create asym-

metric dynamics at the ZLB and incomplete pass-through exacerbates that asymmetry.

We further note that pass-through is nonlinear with respect to policy parameters. In

particular, the value of the interest rate smoothing dramatically changes the profile of the

interest rate pass-through with respect to the other policy parameters. In all cases, we

find the behavior of pass-through in the loan rate to be different from that of the deposit

rate. Putting all this together, we show that policy is less effective under incomplete

pass-through.
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Beneš, J. and K. Lees (2010). Multi-period fixed-rate loans, housing and monetary pol-

icy in small open economies. Reserve Bank of New Zealand Discussion Paper Series

DP2010/03, Reserve Bank of New Zealand.

Bernanke, B. S., M. Gertler, and S. Gilchrist (1999). The financial accelerator in a

quantitative business cycle framework, Volume 1 of Handbook of Macroeconomics, pp.

1341–1393. Elsevier.

Bi, H. and N. Traum (2012). Estimating Sovereign Default Risk. American Economic

Review 102 (3), 161–166.

Bi, H. and N. Traum (2014). Estimating Fiscal Limits: The Case Of Greece. Journal of

Applied Econometrics 29 (7), 1053–1072.

Bianchi, F. (2013). Regime Switches, Agents’ Beliefs, and Post-World War II U.S. Macroe-

conomic Dynamics. Review of Economic Studies 80 (2), 463–490.

Bianchi, F. and C. Ilut (2017, October). Monetary/Fiscal Policy Mix and Agent’s Beliefs.

Review of Economic Dynamics 26, 113–139.

Bianchi, F. and L. Melosi (2017). Escaping the Great Recession. American Economic

Review 107 (4), 1030–1058.

Binning, A. and J. Maih (2016). Implementing the zero lower bound in an estimated

regime-switching DSGE model. Working paper 03/2016, Norges Bank.

27



Bjørnland, H. C., V. H. Larsen, and J. Maih (2018). Oil and macroeconomic (in) stability.

American Economic Journal: Macroeconomics 10 (4), 128–51.

Cho, S. (2016). Sufficient Conditions for Determinacy in a Class of Markov-Switching

Rational Expectations Models. Review of Economic Dynamics 21, 182–200.

Christiano, L. J., M. Eichenbaum, and C. L. Evans (2005). Nominal rigidities and the

dynamic effects of a shock to monetary policy. Journal of Political Economy 113 (1),

1–45.

Davig, T. (2004, May). Regime-switching debt and taxation. Journal of Monetary Eco-

nomics 51 (4), 837–859.

Davig, T. and E. M. Leeper (2007, October). Fluctuating Macro Policies and the Fiscal

Theory. In NBER Macroeconomics Annual 2006, Volume 21, NBER Chapters, pp.

247–316. National Bureau of Economic Research, Inc.

Davig, T. and E. M. Leeper (2008). Endogenous Monetary Policy Regime Change. In

NBER International Seminar on Macroeconomics 2006, NBER Chapters, pp. 345–391.

National Bureau of Economic Research, Inc.

Davig, T., E. M. Leeper, and T. B. Walker (2010). ”Unfunded liabilities” and uncertain

fiscal financing. Journal of Monetary Economics 57 (5), 600–619.

Davig, T., E. M. Leeper, and T. B. Walker (2011). Inflation and the fiscal limit. European

Economic Review 55 (1), 31–47.

de Bondt, G. J. (2005). Interest Rate Pass-Through: Empirical Results for the Euro Area.

German Economic Review 6 (1), 37–78.

de Haan, J. and T. Poghosyan (2007). Interest Rate Linkages in EMU Countries: A

Rolling Threshold Vector Error-Correction Approach. CESifo Working Paper Series

2060, CESifo Group Munich.

Edwards, S. and C. A. Vegh (1997). Banks and macroeconomic disturbances under pre-

determined exchange rates. Journal of Monetary Economics 40 (2), 239–278.

28



Farmer, R. E., D. F. Waggoner, and T. Zha (2011). Minimal state variable solutions to

Markov-switching rational expectations models. Journal of Economic Dynamics and

Control 35 (12), 2150–2166.

Foerster, A., J. F. Rubio-Ramı́rez, D. F. Waggoner, and T. Zha (2016). Perturbation

methods for Markov-switching dynamic stochastic general equilibrium models. Quan-

titative Economics 7 (2), 637–669.

Frisancho-Mariscal, I. B. and P. Howells (2010). Interest rate pass-through and risk. Work-

ing Papers 1016, Department of Accounting, Economics and Finance, Bristol Business

School, University of the West of England, Bristol.

Fry-McKibbin, R. and J. Zheng (2016). Effects of US Monetary Policy Shocks During

Financial Crises - A Threshold Vector Autoregression Approach. CAMA Working

Papers 2016-25, Centre for Applied Macroeconomic Analysis, Crawford School of Public

Policy, The Australian National University.

Gerali, A., S. Neri, L. Sessa, and F. M. Signoretti (2010). Credit and Banking in a DSGE

Model of the Euro Area. Journal of Money, Credit and Banking 42 (s1), 107–141.

Iacoviello, M. (2005). House Prices, Borrowing Constraints, and Monetary Policy in the

Business Cycle. American Economic Review 95 (3), 739–764.

Kim, C. and C. Nelson (1999). State-space Models with Regime Switching: Classical and

Gibbs-sampling Approaches with Applications. MIT Press.

Kok, C. and T. Werner (2006). Bank interest rate pass-through in the euro area: a cross

country comparison. Working Paper Series 0580, European Central Bank.

Maih, J. (2015). Efficient perturbation methods for solving regime-switching DSGE mod-

els. Working Paper 2015/01, Norges Bank.

Maih, J. and D. F. Waggoner (2018). Perturbation Methods for DSGE Models with

Time-Varying Coefficients and Transition Matrices. Mimeograph, Norges Bank.

Primiceri, G. and A. Justiniano (2009). Potential and natural output. 2009 Meeting

Papers 25, Society for Economic Dynamics.

29



Richter, A., N. Throckmorton, and T. Walker (2014). Accuracy, Speed and Robustness

of Policy Function Iteration. Computational Economics 44 (4), 445–476.
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Appendices

Appendix A Model

In this section we describe the model economy we use to investigate interest rate pass-

through. Our setup is reasonably standard. The model is comprised of households,

firms, banks, a fiscal authority and a monetary authority. Household consume the final

good, supply their own variety of labor in return for labor income and receives dividends

from firms and banks, which they own. Households hold deposits with a retail bank.

Labor is differentiated which gives each household a degree of market power and the

ability to choose wages, subject to quadratic adjustment costs, to minimize their disutility

of working. Firms produce a differentiated intermediate good using a common neutral

technology, labor and capital which they own. They choose quantities of labor, capital,

investment and prices to maximize the expected present value of their profits, subject

to quadratic adjustment costs on changing investment and prices and a loan-in-advance

constraint. Final goods are produced by a perfectly competitive “packing” firm that

aggregates intermediate goods according to a CES production technology.

In the absence of any frictions or imperfections, conventional DSGE models do not

require a banking sector. Following Edwards and Vegh (1997) and Christiano et al. (2005)

we introduce a banking sector via a loan-in-advance (LIA) constraint. More specifically

firms have to take out a loan at the beginning of the period to pay for a fixed fraction

of their investment good purchases each period. Firms repay the loan at the end of

the period. Following Gerali et al. (2010), the banking sector is divided into retail and

wholesale banks, where retail banks are further divided into deposit-taking and loan-

making banks. Gerali et al. (2010) introduces differentiated deposits and loans as a

means of introducing markups (and markdowns) of the loan and deposit interest rates

over the policy rate.

In the baseline model, loan and deposit taking banks choose loan and deposit interest

rates to maximize the present value of their profits, subject to a quadratic adjustment

cost on changing interest rates. This results in interest rate setting rules that resemble

the Rotemberg Philips curves for price and wage setting.

Final loans and deposits are produced by a perfectly competitive aggregator firm
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that aggregates loans and deposits from the retail banks according to a CES production

technology.

A.1 Households

The economy is populated by a continuum of households, normalized to unit mass. Each

household derives positive utility from consumption, relative to the previous periods level

of aggregate consumption, and disutility from working. Utility for the ith household takes

the form

Ut = Et

{
∞∑
t=0

βt

(
t∏

j=0

dt+j

)[
At

(Ct/ZY,t)1−σ

1− σ
− κNt(i)

1+η

1 + η

]}
,

where

logAt = ρA logAt−1 + εA,t,

is a consumption preference-shifter, Ct = Ct − χC̄t−1 is a consumption index, Ct is

consumption, ZY,t is a composite technology process that grows at the same rate as

consumption on the balanced growth path, and Nt(i) is the labor variety supplied by

the ith household. dt+j is a preference shifter term where we assume d0 = 1. The ith

household faces the following budget constraint

Ct+Dt =
Dt−1RD,t−1

πt
+
Wt(i)

Pt
Nt(i)−

φW
2

Wt

Pt
Nt

[
Wt(i)

Wt−1(i)
− π̃W,t

]2
+(1− ω)

Jt−1
πt

+Tt+Ψt+Φt,

(A.1)

where Dt is deposits, RD,t is the interest rate paid on deposits, Wt is the nominal wage,

Pt is the price level for final goods, πW,t is wage inflation, Jt−1 is total profits from the

banking sector, Tt is lump sum taxes, Ψt is profits from intermediate goods producers and

Φt is the price, wage and interest rate adjustment costs that are rebated to households.

The term π̃W,t ≡ πξWWt
π1−ξW
W captures wage indexation behavior from wage setters. Perfect

competition and cost minimization by the labor packing or aggregating firm leads to the

following demand schedule for the ith household’s variety of labor

Nt(i) =

(
Wt(i)

Wt

)−ε
Nt. (A.2)

Households choose allocations of date t consumption, deposits and wages to maximize the

sum of their current and expected discounted stream of future period utilities, subject to
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the budget constraint (equation A.1). Setting this up as the Lagrangean:

Lt = Et


∞∑
t=0

βt

(
t∏

j=0

dt+j

)


At
(Ct/ZY,t)1−σ

1− σ
− κNt(i)

1+η

1 + η
−

−λt


Ct +Dt −

Dt−1RD,t−1

πt
− Wt(i)

Pt
Nt(i) + . . .

. . .+ φW
2

Wt

Pt
Nt

[
Wt(i)
Wt−1(i)

− π̃W,t
]2
− (1− ω) Jt−1

πt
− . . .

. . .− Tt −Ψt − Φt






.

(A.3)

Substituting A.2 into A.3 gives

Lt = Et



∞∑
t=0

βt

(
t∏

j=0

dt+j

)


At
(Ct/ZY,t)1−σ

1− σ
− κ

((
Wt(i)
Wt

)−υ
Nt

)1+η

1 + η
−

−λt


Ct +Dt −

Dt−1RD,t−1

πt
− Wt(i)

1−υW υ
t

Pt
Nt + . . .

. . .+ φW
2

Wt

Pt
Nt

[
Wt(i)
Wt−1(i)

− π̃W,t
]2
− (1− ω) Jt−1

πt
− . . .

. . .− Tt −Ψt − Φt






.

Optimization results in the following first-order conditions. The first-order condition for

consumption:
∂Lt

∂Ct
= At (Ct − χCt−1)−σ Zσ−1Y,t − λt = 0. (A.4)

The first-order condition for deposits:

∂Lt

∂Dt

= −λt + Et

{
βdt+1

λt+1RD,t

πt+1

}
= 0. (A.5)

The first-order condition for wages:

∂Lt

∂Wt(i)
= υκ

Nt(i)
1+η

Wt(i)
+ λt (1− υ)

Nt(i)

Pt
− λtφW

WtNt

PtWt−1(i)

[
Wt(i)

Wt−1(i)
− π̃W,t

]
+ . . .

. . .+ Et

{
βdt+1λt+1φW

Wt+1(i)Wt+1Nt+1

Pt+1Wt(i)2

[
Wt+1(i)

Wt(i)
− π̃W,t+1

]}
= 0. (A.6)

From A.4 we get the marginal utility of consumption:

λt = At (Ct − χCt−1)−σ Zσ−1Y,t . (A.7)

From A.5 we get the consumption Euler equation:

λt = Et

{
βdt+1

λt+1RD,t

πt+1

}
, (A.8)
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which we use to construct the real stochastic discount factor:

Mt,t+1 = Et

{
βdt+1

λt+1

λt

}
. (A.9)

Finally we obtain the wage Phillips curve from equation A.6:(
υ

υ − 1

)
κ
Nη
t Pt

λtWt

− 1−
(

φW
υ − 1

)
πW,t [πW,t − π̃W,t] + . . .

. . .+ Et

{
βdt+1

λt+1

λt

(
φW
υ − 1

)
π2
W,t+1

πt+1

(
Nt+1

Nt

)
[πW,t+1 − π̃W,t+1]

}
= 0, (A.10)

where we have assumed a symmetric equilibrium with Wt(i) = Wt and Nt(i) = Nt.

A.2 Investment Goods Producers

A continuum of perfectly competitive investment goods producers produce an identical

final investment good. We drop the firms’ subscripts and consider a representative final

investment goods producer. Final investment goods (It) are produced using a production

process that combines investment specific (embodied) technology with raw investment

goods (Xt, which comes from final goods producers) according to the production function

It = ZI,tXt,

where embodied (investment specific) technology evolves according to the following pro-

cess

ZI,t = ZI,0 exp (gZI · t+ AZI ,t) , AZI ,t = ρAZIAZI ,t−1 + εZI ,t. (A.11)

Producers of final investment goods maximize their period profits by choosing the quantity

of raw investment goods to use in production, where period profits are given by:

ΨI,t = PI,tIt − PtXt,

= PI,tZI,tXt − PtXt.

We obtain the first-order condition for the investment goods producer

∂ΨI,t

∂Xt

= PI,tZI,t − Pt = 0,

which implies
PI,t
Pt

=
1

ZI,t
, and PI,tIt = PtXt.
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A.3 Intermediate Goods Producers

Differentiated intermediate goods are produced by a continuum of firms, normalized to

unit mass. The hth firm produces intermediate goods by combining capital and labor

inputs with a common (neutral) technology according to the Cobb-Douglas production

technology

Yt(h) = ZtKt−1(h)αNt(h)1−α. (A.12)

The common neutral technology evolves according to the process

Zt = Z0 exp (gZ · t+ AZ,t) , AZ,t = ρAZAZ,t−1 + εZ,t. (A.13)

Dixit-Stiglitz aggregration and cost minimization by the perfectly competitive final goods

producer implies producers of the hth intermediate good face the following demand sched-

ule

Yt(h) =

(
Pt(h)

Pt

)−ε
Yt. (A.14)

Intermediate goods producers own the capital they use in the production process. Firm

h’s capital stock evolves according to the process

Kt(h) = It(h)

(
1− φI

2

(
It(h)

It−1(h)
− µI

)2
)
− (1− δ)Kt−1(h). (A.15)

Each intermediate goods producer is subject to a loan-in-advance (LIA) constraint when

purchasing investment goods. As a consequence each firm must fund a portion of their

investment goods through a one period loan. Firm h’s LIA constraint can be summarized

as follows

Lt(h) ≥ ψ
PI,t
Pt

It(h). (A.16)

Firms maximize their expected discounted stream of period profits by choosing allocations

of date t investment, capital, labor, loans and date t prices, subject to constraints A.12,

A.15 and A.16 and and a quadratic cost on adjusting prices.8 This can be represented by

8Note that we assume all constraints bind with equality in equilibrium.
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the Lagrangean:

Ψ0(h) = E0



∞∑
t=0

M∗
0,t



exp (Pt) Pt(h)
Pt

Yt(h)− Wt

Pt
Nt(h)− PI,t

Pt
It(h) + Lt(h)− dt RL,t−1Lt−1(h)

πt
− . . .

. . .− φP
2
Yt

[
Pt(h)
Pt−1(h)

− π̃t
]2
− . . .

. . .−Qt(h)

Kt(h)− It(h)

(
1− φI

2

(
It(h)

It−1(h)
− µI

)2
)
− . . .

. . .− (1− δ)Kt−1(h)

− . . .
. . .− Φt(h) [Yt(h)− ZtKt−1(h)αNt(h)1−α]− . . .

. . .−ΥL,t(h)
[
Lt(h)− ψ PI,t

Pt
It(h)

]





.

(A.17)

Where π̃t = πξt−1π
1−ξ is the inflation index firms index prices to when adjusting prices and

M∗
t,t+1 = Et

{
β λt+1

λt

}
is the modified real stochastic discount factor. We use this stochas-

tic discount factor in place of the household’s stochastic discount because the household’s

stochastic discount factor causes implausibly large swings in investment and capital when

we switch between the normal and ZLB (steady-) states. To ensure a degree of symmetry

between the household’s consumption Euler equation and the firm’s intertemporal bor-

rowing decision, we augment the firm’s repayment decision with the preference shifter

term dt so that the first-order condition resembles what we would observe if the firm were

using the household’s stochastic discount factor. This also prevents implausibly large

swings in the price of new capital goods when switches between the normal and ZLB

(steady-) states.

Substituting A.14 into A.17 gives:

Ψ0(h) = E0



∞∑
t=0

M∗
0,t



exp (Pt)
(
Pt(h)
Pt

)1−ε
Yt − Wt

Pt
Nt(h)− PI,t

Pt
It(h) + Lt(h)− dt RL,t−1Lt−1(h)

πt
− . . .

. . .− φP
2
Yt

[
Pt(h)
Pt−1(h)

− π̃t
]2
− . . .

. . .−Qt(h)

Kt(h)− It(h)

(
1− φI

2

(
It(h)

It−1(h)
− µI

)2
)
− . . .

. . .− (1− δ)Kt−1(h)

− . . .
. . .− Φt(h)

[(
Pt(h)
Pt

)−ε
Yt − ZtKt−1(h)αNt(h)1−α

]
− . . .

. . .−ΥL,t(h)
[
Lt(h)− ψ PI,t

Pt
It(h)

]





.

Optimization by the firm results in the following set of first-order conditions. The first-
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order conditions for investment:

∂Ψt(h)

∂It(h)
= −PI,t

Pt
+Qt(h)

[
1− φI

2

(
It(h)

It−1(h)
− µI

)2

− φI
(

It(h)

It−1(h)
− µI

)
It(h)

It−1(h)

]
+ . . .

. . .+ ψΥL,t(h)
PI,t
Pt

+ Et

{
M∗

t,t+1φIQt+1(h)

(
It+1(h)

It(h)
− µI

)(
It+1(h)

It(h)

)2
}

= 0. (A.18)

capital

∂Ψt(h)

∂Kt(h)
= −Qt(h) + Et

{
M∗

t,t+1

(
αΦt+1(h)

Yt+1(h)

Kt(h)
+ (1− δ)Qt+1(h)

)}
= 0. (A.19)

hours worked
∂Ψt(h)

∂Nt(h)
= −Wt

Pt
+ (1− α) Φt(h)

Yt(h)

Nt(h)
= 0. (A.20)

loans
∂Ψt(h)

∂Lt(h)
= 1−ΥL,t(h)− Et

{
M∗

t,t+1dt+1
RL,t

πt+1

}
= 0. (A.21)

and prices

∂Ψt(h)

∂Pt(h)
= (1− ε) exp (Pt)

Yt(h)

Pt
+ εΦt(h)

Yt(h)

Pt(h)
− φP

Yt
Pt−1(h)

[
Pt(h)

Pt−1(h)
− π̃t

]
+ . . .

. . .+ Et

{
φPM

∗
t,t+1Yt+1

Pt+1

Pt(h)2

[
Pt+1(h)

Pt(h)
− π̃t+1

]}
= 0. (A.22)

Rearranging A.18 gives:

PI,t
Pt

= Qt

[
1− φI

2

(
It
It−1
− µI

)2

− φI
(

It
It−1
− µI

)
It
It−1

]
+ ψΥL,t

PI,t
Pt

+ . . .

. . .+ Et

{
M∗

t,t+1φIQt+1

(
It+1

It
− µI

)(
It+1

It

)2
}

= 0.

From equation (A.19) we get the standard Tobin’s Q relationship:

Qt = Et

{
M∗

t,t+1

(
αΦt+1

Yt+1

Kt

+ (1− δ)Qt+1

)}
.

From A.20 we get the firm’s demand for labor

Wt

Pt
= (1− α) Φt

Yt
Nt

.

From A.21 we get the firm’s demand for loans

1−ΥL,t = Et

{
M∗

t,t+1dt+1
RL,t

πt+1

}
.

From A.22 we get the Price Phillips curve(
ε

ε− 1

)
Φt − exp (Pt)−

(
φP
ε− 1

)
πt [πt − π̃t] + . . .

. . .+ Et

{(
φP
ε− 1

)
M∗

t,t+1

Yt+1

Yt
πt+1 [πt+1 − π̃t+1]

}
= 0.

where we assume a symmetric equilibrium so that Pt(i) = Pt and Yt(i) = Yt.
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A.4 Monetary Policy and Markup Regimes

We assume the model economy’s dynamics are conditional on four discrete states of nature.

At any given time the model economy can be in one of two monetary policy states and

one of two markup states. This is reflected by introducing separate Markov chains for

the monetary policy and markup states. The monetary policy state determines whether

policy is set according to a Taylor-type rule which occurs in the normal state (N), or the

economy is at the zero lower bound state (Z) where policy follows an exogenous process,

so that s1,t = N,Z. The monetary policy state also affects the markups and markdowns

charged by retail banks and the degree of rigidity they face when adjusting market interest

rates. The markup state affects whether markups and markdowns on market interest rates

are high (H) or low (L) and the degree of rigidity in adjusting market interest rates, when

the economy is away from the lower bound, so that s2,t = H,L. We introduce two regime-

switching parameters, z(s1,t) which is conditional on the monetary policy regime and

m(s2,t) which is conditional on the markup regime. We assume

z(Z) = 1 and z(N) = 0, (A.23)

with the states Z and N are governed by the following Markov transition matrix

QZ =

 1− pN,Z pN,Z

pZ,N 1− pZ,N

 . (A.24)

We assume the regime-specific markup parameter takes the values

m(H) = 1 and m(L) = 0. (A.25)

The states H and L are governed by the Markov transition matrix

Qm =

 1− qH,L qH,L

qL,H 1− qL,H

 . (A.26)

A.5 The Banking Sector

Following Gerali et al. (2010), the banking sector is divided into three different types of

banks: wholesale banks, deposit-taking banks and loan-making banks. Wholesale banks

take deposits from deposit-taking banks and combine them with bank equity to supply

loans to loan-making banks. Deposit-taking banks supply deposits to aggregators, who

in turn supply them to households. Loan-making banks supply deposits to aggregators,

who in turn bundle them and supply them to intermediate goods producers.
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A.5.1 Loan and Deposit Demand

Deposits

There is a continuum of deposit-taking banks normalized to unit mass. Each bank

supplies a differentiated stock of deposits. Deposits supplied to the ith household are

bundled by an aggregator according to the CES technology

Dt(i) =

[∫ 1

0

Dt (i, z)
1− 1

υD(rt) dz

] υD(rt)

υD(rt)−1

.

Cost minimization by the perfectly competitive aggregator implies the following demand

for deposits by the ith household for deposits from the zth bank

Dt(i, z) =

(
RD,t(z)

RD,t

)−υD(rt)

Dt(i).

Aggregating over households

Dt =

∫ 1

0

Dt(i)di =

∫ 1

0

[∫ 1

0

Dt (i, z)
1− 1

υD(rt) dz

] υD(rt)

υD(rt)−1

di =

[∫ 1

0

Dt (z)
1− 1

υD(rt) dz

] υD(rt)

υD(rt)−1

,

which implies the aggregate demand function for deposits from the zth bank

Dt(z) =

(
RD,t(z)

RD,t

)−υD(rt)

Dt.

Loans

There is also a continuum of banks, each supplying a differentiated loan product,

normalized to unit mass. Loans supplied to the hth firm are produced according the CES

aggregation technology

Lt(h) =

[∫ 1

0

Lt (h, z)
1− 1

υL(rt) dz

] υL(rt)

υL(rt)−1

.

Cost minimization by the perfectly competitive loan aggregators implies the demand

schedule for the hth intermediated goods producer for loans produced by the zth retail

bank

Lt(h, z) =

(
RL,t(z)

RL,t

)−υL(rt)
Lt(h).

Aggregating over firms

Lt =

∫ 1

0

Lt(h)dh =

∫ 1

0

[∫ 1

0

Lt (h, z)
1− 1

υL(rt) dz

] υL(rt)

υL(rt)−1

dh =

[∫ 1

0

Lt (z)
1− 1

υL(rt) dz

] υL(rt)

υL(rt)−1

,

which also leads to the aggregate demand function for loans from the zth retail bank

Lt(z) =

(
RL,t(z)

RL,t

)−υL(rt)
Lt.
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A.5.2 Wholesale Banks

Wholesale banks are constrained to obey the following balance sheet identity

Lt(w) = Dt(w) +KB,t(w),

so that the wth bank must fund its loans (Lt(w)) through deposits (Dt(w)) or bank equity

(KB,t(w)). Bank equity expands and contracts according to the following process

KB,t(w) = (1− δB)KB,t−1(w) + ωJt−1(w).

The wth wholesale bank maximizes the expected present value of their future profit

streams by choosing the quantity of deposits and loans, subject to the balance sheet

identity9

Ψ0(w) = E0


∞∑
t=0

M∗
0,t

(
P0

Pt

) RL,tLt(w)− RD,tDt(w)−KB,t(w)− . . .

. . .−Θt [Lt(w)−Dt(w)−KB,t(w)]

 ,

from the wholesaler’s first-order conditions we get the following relationships between

loan rates, deposit rates and the policy rate

RL,t = Rt,

RD,t = Rt.

A.5.3 Retail Banks

Retail banks produce differentiated loans and deposits. They are also subject to frictions

that prevent them from adjusting retail interest rates one for one with wholesale interest

rates. We consider two types of interest rate-setting frictions. Following Gerali et al.

(2010), we assume that retail banks are subject to quadratic costs of adjustment.

A.5.4 Interest Rate-Setting Frictions: Rotemberg Adjustment Costs

Loan Branch

9Note that we have dropped the quadratic adjustment cost on changing loans that is present in the Gerali

et al. (2010) model because it only had a very minimal impact of the dynamics of loans and lending rates

in our model.
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The zth loan-making bank sets the interest rate on loans to maximize the sum of the

expected present value of their profits, subject to a quadratic cost of changing interest

rates.

ΨL,0(z) = Et


∞∑
t=0

M∗
0,t

(
P0

Pt

)RL,t(z)Lt(z)− exp (εL,t)RL,tLt(z)− . . .

. . .− φL(rt)

2
RL,tLt

[
RL,t(z)

RL,t−1(z)
− 1

]2

 .

Substituting in the demand for loans

ΨL,0(z) = Et


∞∑
t=0

M∗
0,t

(
P0

Pt

)


RL,t(z)1−υL(rt)R
υL(rt)
L,t Lt − . . .

. . .− exp (εL,t)RL,tRL,t(z)−υL(rt)R
−υL(rt)
L,t Lt − . . .

. . .− φL(rt)

2
RL,tLt

[
RL,t(z)

RL,t−1(z)
− 1

]2



.

The first-order condition for the zth loan-making bank

∂ΨL,t(z)

∂RL,t(z)
= (1− υL(rt))Lt(z) + υL(rt) exp (εL,t)

RL,t

RL,t(z)
Lt(z)− . . .

. . .− φL(rt)
RL,tLt
RL,t−1(z)

[
RL,t(z)

RL,t−1(z)
− 1

]
+ . . .

. . .+ Et

{
φL(rt+1)M

∗
t,t+1

RL,t+1RL,t+1(z)Lt+1

πt+1RL,t(z)2

[
RL,t+1(z)

RL,t(z)
− 1

]}
= 0.

Which gives the following Phillips curve relationship for interest rate setting(
υL(rt)

υL(rt)− 1

)
exp (εL,t)

RL,t

RL,t

− 1−
(

φL(rt)

υL(rt)− 1

)
RL,t

RL,t−1

[
RL,t

RL,t−1
− 1

]
+ . . .

. . .+ Et

{(
φL(rt+1)

υL(rt)− 1

)
M∗

t,t+1

(
1

πt+1

)(
RL,t+1

RL,t

)2
Lt+1

Lt

[
RL,t+1

RL,t

− 1

]}
= 0, (A.27)

where we assume a symmetric equilibrium so that RL,t(z) = RL,t and Lt(z) = Lt. We

further simplify this as follows(
υL(rt)

υL(rt)− 1

)
exp (εL,t)

RL,t

RL,t

− 1− φ̃L(rt)
RL,t

RL,t−1

[
RL,t

RL,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃L(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RL,t+1

RL,t

)2
Lt+1

Lt

[
RL,t+1

RL,t

− 1

]}
= 0. (A.28)

where φ̃L(rt) = φL(rt)
υL(rt)−1

and

φ̃L(rt) = z(s1,t)φ̃ZLB,L + (1− z(s1,t)) (m(s2,t)φ̃H,L + (1−m(s2,t)) φ̃L,L). (A.29)

Likewise, the markup on loans and the markdown on deposits are determined by

µL(rt) = z(s1,t)µZLB,L + (1− z(s1,t))(m(s2,t)µH,L + (1−m(s2,t))µL,L), (A.30)
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where the markup is related to the elasticity of substitution through

υL(rt) =
µL(rt)

µL(rt)− 1
. (A.31)

Deposit Branch

The zth deposit taking bank sets interest rates to maximize their expected discounted

future stream of profits, subject to a quadratic adjustment cost on changing interest rates

ΨD,0(z) = Et


∞∑
t=0

M∗
t,t+1

(
P0

Pt

)exp (εD,t)RD,tDt(z)−RD,t(z)Dt(z)− . . .

. . .− φD(rt)

2
RD,tDt

[
RD,t(z)

RD,t−1(z)
− 1

]2

 .

Substituting in the demand function for deposits

ΨD,0(z) = Et


∞∑
t=0

M∗
t,t+1

(
P0

Pt

)


exp (εD,t)RD,tRD,t(z)−υD(rt)R
υD(rt)
D,t Dt − . . .

. . .−RD,t(z)1−υD(rt)R
υD(rt+1)
D,t Dt − . . .

. . .− φD(rt)

2
RD,tDt

[
RD,t(z)

RD,t−1(z)
− 1

]2



.

The first-order condition for deposits

∂ΨD,t(z)

∂RD,t(z)
= −υD(rt) exp (εD,t)

RD,t

RD,t(z)
Dt(z)− (1− υD(rt))Dt(z)− . . .

. . .− φD(rt)
RD,tDt

RD,t−1(z)

[
RD,t(z)

RD,t−1(z)
− 1

]
+ . . .

. . .+ Et

{
φD(rt+1)M

∗
t,t+1

RD,t+1RD,t+1(z)Dt+1

πt+1RD,t(z)2

[
RD,t+1(z)

RD,t(z)
− 1

]}
= 0,

which gives the following Phillips curve-type relationship for interest rates set by deposit-

taking banks

1−
(

υD(rt)

υD(rt)− 1

)
exp (εD,t)

RD,t

RD,t

−
(

φD(rt)

υD(rt)− 1

)
RD,t

RD,t−1

[
RD,t

RD,t−1
− 1

]
+ . . .

. . .+ Et

{(
φD(rt+1)

υD(rt)− 1

)
M∗

t,t+1

(
1

πt+1

)(
RD,t+1

RD,t

)2
Dt+1

Dt

[
RD,t+1

RD,t

− 1

]}
= 0, (A.32)

where we assume a symmetric equilibrium so that RD,t(z) = RD,t and Dt(z) = Dt. We

further simplify this as follows

1−
(

υD(rt)

υD(rt)− 1

)
exp (εD,t)

RD,t

RD,t

− φ̃D(rt)
RD,t

RD,t−1

[
RD,t

RD,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃D(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RD,t+1

RD,t

)2
Dt+1

Dt

[
RD,t+1

RD,t

− 1

]}
= 0. (A.33)
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where φ̃D(rt) = φL(rt)
υL(rt)−1

and

φ̃D(rt) = z(s1,t)φ̃ZLB,D + (1− z(s1,t)) (m(s2,t)φ̃H,D + (1−m(s2,t)) φ̃L,D). (A.34)

Likewise, the markup on loans and the markdown on deposits are determined by

µD(rt) = z(s1,t)µZLB,D + (1− z(s1,t))(m(s2,t)µH,D + (1−m(s2,t))µL,D), (A.35)

where the markdown is related to the elasticity of substitution through

υD(rt) =
µD(rt)

µD(rt)− 1
. (A.36)

A.6 Monetary Policy

The monetary authority sets policy according according to

Rt = max (RZLB,t, R
∗
t ) , (A.37)

where R∗t is the interest rate set in normal times according to the Taylor-type rule

R∗t = R∗ρRt−1

(
R∗
(πt
π

)κπ (
Ŷt

)κY )1−ρR
exp (εR,t) , (A.38)

where Ŷt is the output gap. We use a measure of the output gap in the Taylor-type rule

because growth measures of GDP do not result in a negative shadow interest rate when

at the lower bound. We use the CBO’s output gap as the measure that policy responds

to because Primiceri and Justiniano (2009) show that measures of potential output from

a flex-price DSGE model closely resemble official measures like the CBO’s output gap.

We assume that the CBO output gap can be described by the following process

Ŷt = κP

(
Yt
Y P
t

)
exp (Ft) , (A.39)

where Y P
t is potential output and Ft is an exogenous process with the following law of

motion

Ft = ρFFt−1 + εF,t. (A.40)

We set the priors on ρF and σF to ensure that Ft only plays a limited role in explaining

the output gap. We define potential output as the level of output in an economy without

pricing, wage and interest rate frictions, without the monopolist competition in the goods,

labor and banking markets and without the loan-in-advance constraint. In other words,
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potential output is the level that would apply in the real business cycle representation of

a frictionless economy. When the economy is at the lower bound, interest rates evolve

according to

RZLB,t = K + εZLB,t, (A.41)

where K is the effective lower bound on interest rates and εZLB is a small shock that

prevents a stochastic singularity at the lower bound. which in the regime-switching setup

we replace (A.37) with

Rt = z(s1,t)RZLB,t + (1− z(s1,t))R
∗
t , (A.42)

A.7 Fiscal Policy

Government spending follows a very simple autoregressive process

Gt

ZY,t
=

(
Gt−1

ZY,t−1

)ρG ( G

ZY

)1−ρG
exp (εG,t) ,

while the government runs balanced budgets, setting lump sum taxes equal to government

expenditures

Tt = Gt.

A.8 Market Clearing and Equilibrium

We assume a symmetric equilibrium so that: Nt =
∫ 1

0
Nt(i)di, Yt =

∫ 1

0
Yt(h)dh, Dt =∫ 1

0
Dt(z)dz, Lt =

∫ 1

0
Lt(z)dz, Jt =

∫ 1

0
Jt(z)dz. Substituting the profit and cost functions

into the budget constraint gives:

Ct +
PI,t
Pt

It +Gt +Dt =
Dt−1RD,t−1

πt
+ Lt −

Lt−1RL,t−1

πt
+ Yt + (1− ω)

Jt−1
πt

. (A.43)

A.9 Potential Output

The following set of equations describe the frictionless economy:

Y P
t = CP

t + IPt +GP
t , (A.44)

KP
t = IPt

(
1− φI

2

(
IPt
IPt−1
− µI

)2
)

+ (1− δ)KP
t−1, (A.45)
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1 = QP
t

[
1− φI

2

(
IPt
IPt−1
− µI

)2

− φI
(
IPt
IPt−1
− µI

)
IPt
IPt−1

]
+ . . .

. . .+ Et

{
MP

t,t+1φIQ
P
t+1

(
IPt+1

IPt
− µI

)(
IPt+1

IPt

)2
}
, (A.46)

QP
t = Et

{
MP

t,t+1

(
α
Y P
t+1

KP
t

+ (1− δ)QP
t+1

)}
, (A.47)

(1− α)
Y P
t

NP
t

= κP,t

(
NP
t

)η
λPt

, (A.48)

λPt = At
(
CP
t − χCP

t−1
)−σ

, (A.49)

MP
t,t+1 = Et

{
β
λPt+1

λPt

}
, (A.50)

Y P
t = Zt

(
KP
t−1
)α (

NP
t

)1−α
, (A.51)

W P
t = (1− α)

Y P
t

NP
t

. (A.52)

A.10 Trends

The Cobb-Douglas production functions in the intermediate goods and investment goods

producing sectors imply the following composite technology processes. The effective in-

vestment technology

ZI,t = ZI,tZY,t, (A.53)

where ZY,t is the as yet unknown composite technology for intermediate goods. The

intermediate investment production function implies the following relationship for the

effective technology in that sector

ZY,t = Zt (ZI,tZY,t)α , (A.54)

ZY,t = Z
1

1−α
t Z

α
1−α
I,t . (A.55)

Combining A.53 and A.55 allows us to write the effective investment technology in terms

of neutral and investment specific technology

ZI,t = Z
1

1−α
t Z

1
1−α
I,t . (A.56)
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A.11 Model Equations

For the set of model variables: Ct, It, Kt, Qt, PI,t/Pt, Dt, RD,t, πt, Wt/Pt, πW,t, Nt, λt,

ΥL,t, Φt M
∗
t,t+1, RL,t, Yt, RD,t, RL,t, Lt, KB,t, Jt, Rt, At Zt ZI,t ZI,t, ZY,t, AZ,t, AZI ,t, π̃t,

π̃W,t, N̂t,R
∗
t , RZLB,t, G̃t, ∆ log Yt, ∆ logCt, ∆ log It, Ŷt, Ft, N

P
t , QP

t , Y P
t , KP

t , IPt , CP
t ,

W P
t , MP

t , λPt , κt, and Pt, the model is described by the following set of equations:

Ct +
PI,t
Pt

It +Gt +Dt =
Dt−1RD,t−1

πt
+ Lt −

Lt−1RL,t−1

πt
+ Yt + (1− ω)

Jt−1
πt

, (A.57)

ψIt = Lt, (A.58)

Kt = It

(
1− φI

2

(
It
It−1
− µI

)2
)

+ (1− δ)Kt−1, (A.59)

PI,t
Pt

= Qt

[
1− φI

2

(
It
It−1
− µI

)2

− φI
(

It
It−1
− µI

)
It
It−1

]
+ ψΥL,t

PI,t
Pt

+ . . .

. . .+ Et

{
M∗

t,t+1φIQt+1

(
It+1

It
− µI

)(
It+1

It

)2
}
, (A.60)

Qt = Et

{
M∗

t,t+1

(
αΦt+1

Yt+1

Kt

+ (1− δ)Qt+1

)}
, (A.61)

(
φW
υ − 1

)
πW,t [πW,t − π̃W,t] =

(
υ

υ − 1

)
κ
Nη
t Pt

λtWt

− 1 + . . .

. . .+ Et

{(
φW
υ − 1

)
M∗

t,t+1

π2
W,t+1

πt+1

(
Nt+1

Nt

)
[πW,t+1 − π̃W,t+1]

}
, (A.62)

Wt

Pt
=
πW,tWt−1

πtPt−1
, (A.63)

λt = At (Ct − χCt−1)−σ Zσ−1Y,t , (A.64)

λt = Et

{
βdt+1

λt+1RD,t

πt+1

}
, (A.65)

1−ΥL,t = Et

{
M∗

t,t+1dt+1
RL,t

πt+1

}
, (A.66)
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M∗
t,t+1 = Et

{
β
λt+1

λt

}
, (A.67)

(
φP
ε− 1

)
πt [πt − π̃t] =

(
ε

ε− 1

)
Φt − exp (Pt) + . . .

. . .+ Et

{(
φP
ε− 1

)
M∗

t,t+1

Yt+1

Yt
πt+1 [πt+1 − π̃t+1]

}
, (A.68)

KB,t = (1− δB)KB,t−1 + ωJt−1, (A.69)

Jt = RL,tLt −RD,tDt −RtKB,t, (A.70)

Lt = Dt +KB,t, (A.71)

RD,t = Rt, (A.72)

RL,t = Rt, (A.73)

Yt = ZtK
α
t−1N

1−α
t , (A.74)

Wt

Pt
= (1− α) Φt

Yt
Nt

, (A.75)

R∗t = R∗ρRt−1

(
R∗
(πt
π

)κπ (
Ŷt

)κY )1−ρR
exp (εR,t) , (A.76)

Ŷt = κP

(
Yt
Y P
t

)
exp (Ft) , (A.77)

Ft = ρFFt−1 + εF,t, (A.78)

RZLB,t = K + εZLB,t, (A.79)
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Rt = z(s1,t)RZLB,t + (1− z(s1,t))R
∗
t , (A.80)

Gt

ZY,t
=

(
Gt−1

ZY,t−1

)ρG ( G

ZY

)1−ρG
exp (εG,t) , (A.81)

PI,t
Pt

=
1

ZI,t
, (A.82)

logAt = ρA logAt−1 + εA,t, (A.83)

Zt = Z0 exp(gZt+ AZ,t), (A.84)

ZI,t = ZI,0 exp(gZI t+ AZI ,t), (A.85)

(
υL(rt)

υL(rt)− 1

)
exp(εL,t)

RL,t

RL,t

− 1− φ̃L(rt)
RL,t

RL,t−1

[
RL,t

RL,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃L(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RL,t+1

RL,t

)2
Lt+1

Lt

[
RL,t+1

RL,t

− 1

]}
= 0, (A.86)

1−
(

υD(rt)

υD(rt)− 1

)
exp(εD,t)

RD,t

RD,t

− φ̃D(rt)
RD,t

RD,t−1

[
RD,t

RD,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃D(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RD,t+1

RD,t

)2
Dt+1

Dt

[
RD,t+1

RD,t

− 1

]}
= 0, (A.87)

Y P
t = CP

t + IPt +GP
t , (A.88)

KP
t = IPt

(
1− φI

2

(
IPt
IPt−1
− µI

)2
)

+ (1− δ)KP
t−1, (A.89)

1 = QP
t

[
1− φI

2

(
IPt
IPt−1
− µI

)2

− φI
(
IPt
IPt−1
− µI

)
IPt
IPt−1

]
+ . . .

. . .+ Et

{
MP

t,t+1φIQ
P
t+1

(
IPt+1

IPt
− µI

)(
IPt+1

IPt

)2
}
, (A.90)
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QP
t = Et

{
MP

t,t+1

(
α
Y P
t+1

KP
t

+ (1− δ)QP
t+1

)}
, (A.91)

(1− α)
Y P
t

NP
t

= κP,t

(
NP
t

)η
λPt

, (A.92)

λPt = At
(
CP
t − χCP

t−1
)−σ

, (A.93)

MP
t,t+1 = Et

{
β
λPt+1

λPt

}
, (A.94)

Y P
t = Zt

(
KP
t−1
)α (

NP
t

)1−α
, (A.95)

W P
t = (1− α)

Y P
t

NP
t

, (A.96)

Pt = ρPPt−1 + εP,t, (A.97)

κt = ρκκt−1 + εκ,t, (A.98)

π̃t = πξt−1π
1−ξ, (A.99)

π̃W,t = πξWt−1π
1−ξW , (A.100)

N̂t =
Nt

N
exp (εN,t) , (A.101)

∆ log Yt = log Yt − log Yt−1, (A.102)

∆ logCt = logCt − logCt−1, (A.103)

∆ log It = log It − log It−1, (A.104)
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AZ,t = ρAZAZ,t + εZ,t, (A.105)

AZI ,t = ρAZIAZI ,t + εZI ,t, (A.106)

ZY,t = Z
1

1−α
t Z

α
1−α
I,t , (A.107)

ZI,t = Z
1

1−α
t Z

1
1−α
I,t . (A.108)

A.12 Stochastically Detrended Model

The model is non-stationary. To make the model stationary we rewrite the set of model

equations in terms of the following stochastically detrended variables: C̃t = Ct/ZY,t,

Ĩt = It/ZI,t, K̃t = Kt/ZI,t, Q̃t = QtZI,t, D̃t = Dt/ZY,t, RD,t, πt, W̃t = Wt

PtZY,t
, πW,t, Nt,

λ̃t = λtZY,t, ΥL,t, Φt M
∗
t,t+1, RL,t, Ỹt = Yt/ZY,t, RD,t, RL,t, L̃t = Lt/ZY,t, K̃b,t = Kb,t/ZY,t,

J̃t = Jt/ZY,t, Q̃P
t = QP

t ZI,t, Ỹ P
t = Y P

t /ZY,t, K̃P
t = KP

t /ZI,t, ĨPt = IPt /ZI,t, C̃P
t = CP

t /ZY,t,

W̃ P
t = W P

t /ZY,t and λ̃Pt = Ct/ZY,t.

The transformed set of model equations:

C̃t + Ĩt + G̃t + D̃t =
D̃t−1RD,t−1

µY,tπt
+ L̃t −

L̃t−1RL,t−1

µY,tπt
+ Ỹt + (1− ω)

J̃t−1
µY,tπt

, (A.109)

ψĨt = L̃t, (A.110)

K̃t = Ĩt

1− φI
2

(
Ĩt

Ĩt−1
µI,t − µI

)2
+ (1− δ) K̃t−1

µI,t
, (A.111)

P̃I,t = Q̃t

1− φI
2

(
Ĩt

Ĩt−1
µI,t − µI

)2

− φI

(
Ĩt

Ĩt−1
µI,t − µI

)
Ĩt

Ĩt−1
µI,t

+ ψΥL,tP̃I,t + . . .

. . .+ Et

M∗
t,t+1φI

Q̃t+1

µI,t+1

(
Ĩt+1

Ĩt
µI,t+1 − µI

)(
Ĩt+1

Ĩt
µI,t+1

)2
 , (A.112)
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Q̃t = Et

{
M∗

t,t+1

(
αΦt+1

Ỹt+1

K̃t

µY,t+1 + (1− δ) Q̃t+1

µZI ,t+1

)}
, (A.113)

(
φW
υ − 1

)
πW,t [πW,t − π̃W,t] =

(
υ

υ − 1

)
κ
Nη
t

λ̃tW̃t

− 1 + . . .

. . .+ Et

{(
φW
υ − 1

)
M∗

t,t+1

π2
W,t+1

πt+1

(
Nt+1

Nt

)
[πW,t+1 − π̃W,t+1]

}
, (A.114)

W̃t =
πW,t
µY,tπt

W̃t−1, (A.115)

λ̃t = At

(
C̃t − χ

C̃t−1
µY,t

)−σ
, (A.116)

λ̃t = Et

{
βdt+1

λ̃t+1RD,t

µY,t+1πt+1

}
, (A.117)

1−ΥL,t = Et

{
M∗

t,t+1dt+1
RL,t

πt+1

}
, (A.118)

M∗
t,t+1 = Et

{
β

λ̃t+1

µY,t+1λ̃t

}
, (A.119)

(
φP
ε− 1

)
πt [πt − π̃t] =

(
ε

ε− 1

)
Φt − exp (Pt) + . . .

. . .+ Et

{(
φP
ε− 1

)
M∗

t,t+1

Ỹt+1

Ỹt
µY,t+1πt+1 [πt+1 − π̃t+1]

}
, (A.120)

(
υL(rt)

υL(rt)− 1

)
RL,t

RL,t

− 1− φ̃L(rt)
RL,t

RL,t−1

[
RL,t

RL,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃L(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RL,t+1

RL,t

)2
L̃t+1

L̃t
µY,t+1

[
RL,t+1

RL,t

− 1

]}
= 0, (A.121)

1−
(

υD(rt)

υD(rt)− 1

)
RD,t

RD,t

− φ̃D(rt)
RD,t

RD,t−1

[
RD,t

RD,t−1
− 1

]
+ . . .

. . .+ Et

{
φ̃D(rt+1)M

∗
t,t+1

(
1

πt+1

)(
RD,t+1

RD,t

)2
D̃t+1

D̃t

µY,t+1

[
RD,t+1

RD,t

− 1

]}
= 0, (A.122)
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L̃t = D̃t + K̃B,t, (A.123)

K̃B,t = (1− δB)
K̃B,t−1

µY,t
+ ω

J̃t−1
µY,t

, (A.124)

J̃t = RL,tL̃t −RD,tD̃t −RtK̃B,t, (A.125)

RD,t = Rt, (A.126)

RL,t = Rt, (A.127)

Ỹt =

(
K̃t−1

µI,t

)α

N1−α
t , (A.128)

W̃t = (1− α) Φt
Ỹt
Nt

, (A.129)

R∗t = R∗ρRt−1

(
R∗
(πt
π

)κπ (
Ŷt

)κY )1−ρR
exp (εR,t) , (A.130)

Ŷt = κP

(
Yt
Y P
t

)
exp (Ft) , (A.131)

Ft = ρFFt−1 + εF,t, (A.132)

RZLB,t = K + εZLB,t, (A.133)

Rt = z(s1,t)RZLB,t + (1− z(s1,t))R
∗
t , (A.134)

Gt

ZY,t
=

(
Gt−1

ZY,t−1

)ρG ( G

ZY

)1−ρG
exp (εG,t) , (A.135)

logAt = ρA logAt−1 + εA,t, (A.136)
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log µZ,t = gZ + ∆AZ,t, (A.137)

log µZI ,t = gZI + ∆AZI ,t, (A.138)

log µY,t =

(
1

1− α

)
(log µZ,t + α log µZI ,t) , (A.139)

log µI,t =

(
1

1− α

)
(log µZ,t + log µZI ,t) , (A.140)

Ỹ P
t = C̃P

t + ĨPt + G̃t, (A.141)

K̃P
t = ĨPt

1− φI
2

(
ĨPt
ĨPt−1

µI,t − µI

)2
+ (1− δ)

K̃P
t−1

µI,t
, (A.142)

1 = Q̃P
t

1− φI
2

(
ĨPt
ĨPt−1

µI,t − µI

)2

− φI

(
ĨPt
ĨPt−1

µI,t − µI

)
ĨPt
ĨPt−1

µI,t

+ . . .

. . .+ Et

MP
t,t+1φI

Q̃P
t+1

µI,t+1

(
ĨPt+1

ĨPt
µI,t+1 − µI

)(
ĨPt+1

ĨPt
µI,t+1

)2
 , (A.143)

Q̃P
t = Et

{
MP

t,t+1

(
α
Ỹ P
t+1

K̃P
t

µY,t+1 + (1− δ)
Q̃P
t+1

µZI ,t+1

)}
, (A.144)

(1− α)
Ỹ P
t

NP
t

= κ

(
NP
t

)η
λ̃Pt

, (A.145)

λ̃Pt = At

(
C̃P
t − χ

C̃P
t−1

µY,t

)−σ
, (A.146)

MP
t,t+1 = Et

{
β

λ̃Pt+1

µY,t+1λ̃Pt

}
, (A.147)

Ỹ P
t =

(
K̃P
t−1

µI,t

)α (
NP
t

)1−α
, (A.148)

W̃ P
t = (1− α)

Ỹ P
t

NP
t

, (A.149)
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Pt = ρPPt−1 + εP,t, (A.150)

κt = ρκκt−1 + εκ,t, (A.151)

π̃t = πξt−1π
1−ξ, (A.152)

π̃W,t = πξWt−1π
1−ξW , (A.153)

N̂t =
Nt

N
exp (εN,t) , (A.154)

∆ log Yt = log Ỹt − log Ỹt−1 + log µY,t, (A.155)

∆ logCt = log C̃t − log C̃t−1 + log µY,t, (A.156)

∆ log It = log Ĩt − log Ĩt−1 + log µI,t, (A.157)

AZ,t = ρAZAZ,t + εZ,t, (A.158)

AZI ,t = ρAZIAZI ,t + εZI ,t, (A.159)

ZY,t = Z
1

1−α
t Z

α
1−α
I,t , (A.160)

ZI,t = Z
1

1−α
t Z

1
1−α
I,t . (A.161)
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A.13 Steady State Model

φ̃L(rt) = z(s1,t)φ̃ZLB,L + (1− z(s1,t)) (m(s2,t)φ̃H,L + (1−m(s2,t)) φ̃L,L), (A.162)

φ̃D(rt) = z(s1,t)φ̃ZLB,D + (1− z(s1,t)) (m(s2,t)φ̃H,D + (1−m(s2,t)) φ̃L,D), (A.163)

µD(rt) = z(s1,t)µZLB,D + (1− z(s1,t))(m(s2,t)µH,D + (1−m(s2,t))µL,D), (A.164)

µL(rt) = z(s1,t)µZLB,L + (1− z(s1,t))(m(s2,t)µH,L + (1−m(s2,t))µL,L), (A.165)

υD(rt)

υD(rt)− 1
= µD(rt), (A.166)

υL(rt)

υL(rt)− 1
= µL(rt), (A.167)

AZ,t = 0, (A.168)

AZI ,t = 0, (A.169)

At = 1, (A.170)

πt = π, (A.171)

π̃t = π, (A.172)

log µZ,t = gZ + ∆AZ,t, (A.173)

log µZI ,t = gZI + ∆AZI ,t, (A.174)
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log µY,t =

(
1

1− α

)
(log µZ,t + α log µZI ,t) , (A.175)

log µI,t =

(
1

1− α

)
(log µZ,t + log µZI ,t) , (A.176)

πW,t = µY,tπt, (A.177)

π̃W,t = πW,t, (A.178)

P̃I,t = 1, (A.179)

RZLB,t = K =
RZLB,D

µZLB,D
, (A.180)

R∗t =

(
πt

βµN,D

)
exp

((
1

1− α

)
(gZ + αgZI )

)
, (A.181)

Rt = z(s1,t)RZLB,t + (1− z(s1,t))R
∗
t , (A.182)

RD,t = µD(rt)Rt, (A.183)

dt = πt
exp

((
1

1−α

)
(gZ + αgZI )

)
RD,tβ

, (A.184)

RL,t = Rt, (A.185)

RD,t = Rt, (A.186)

M∗
t,t+1 =

β

µY,t
, (A.187)

ΥL,t = 1− βdtRL,t

µY,tπt
, (A.188)
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Q̃t = P̃I,t (1− ψΥL,t) , (A.189)

Φt =
ε− 1

ε
, (A.190)

k y =
αΦµY,tµZI ,t

Q̃t

(µZI,t
M∗ − (1− δ)

) , (A.191)

i y = k y

(
1− (1− δ)

µI,t

)
, (A.192)

% =

(
1

1− i y − g y

)(RL,t −RD,t)ψi y
(

1−
(
Rt−1+δB
µY,tπt

)
− 1

πt

)
(
Rt −RD,t +

1−(1−δB)/µY,t
ω/µY,t

) − i y − g y + 1

 ,

(A.193)

c y = %(1− i y − g y), (A.194)

n y =

(
k y

µI,t

) −α
1−α

, (A.195)

W̃t =
(1− α)Φt

n y
, (A.196)

l y = ψi y, (A.197)

kb y =
(c y + i y + g y − 1)

(1− ((Rt − 1 + δB)/(µY,tπt))− 1/πt)
, (A.198)

d y = l y − kb y, (A.199)

j y = RL,tl y −RD,td y −Rtkb y, (A.200)

Ỹt =

((
υ − 1

υ

)(
AW̃t

κ(c y − χc y/µY,t)σn yη

)) 1
σ+η

, (A.201)
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Nt = n yỸt, (A.202)

K̃t = k yỸt, (A.203)

Ĩt = i yỸt, (A.204)

C̃t = c yỸt, (A.205)

G̃t = g yỸt, (A.206)

L̃t = l yỸt, (A.207)

K̃B,t = kb yỸt, (A.208)

D̃t = d yỸt, (A.209)

J̃t = j yỸt, (A.210)

λ̃t = At(C̃t − χC̃t/µY,t)−σ, (A.211)

∆ log Yt = log µY,t, (A.212)

∆ logCt = log µY,t, (A.213)

∆ log It = log µI,t, (A.214)

N̂t = 1, (A.215)

Ŷt = 1, (A.216)

Ft = 0, (A.217)

Pt = 0, (A.218)

κt = 0, (A.219)

Q̃P
t = 1, (A.220)

MP
t = β/µY,t, (A.221)

kp y =
αµY,t

Q̃P
t (1/MP

t − (1− δ)/µZI,t)
, (A.222)

ip y = kp y(1− (1− δ)/µI,t), (A.223)
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np y =

(
kpy
µI,t

) −α
1−α

, (A.224)

W̃ P
t =

(1− α)

np y
, (A.225)

Ỹ P
t =

(
AtW̃

P
t

(κp(cp y − χcp y/µY,t)σnp yη)

) 1
σ+η

, (A.226)

NP
t = np yỸ P

t , (A.227)

K̃P
t = kp yỸ P

t , (A.228)

ĨPt = ip yỸ P
t , (A.229)

C̃P
t = Ỹ P

t − ĨPt − g yỸ P
t , (A.230)

λ̃Pt = At(C̃
P
t − χC̃P

t /µY,t)
−σ. (A.231)

A.13.1 Omega

K̃B,t =
C̃t + Ĩt + G̃t − Ỹt

1−
(
Rt−1+δB
µY,tπt

)
− 1

πt

, (A.232)

K̃B,t =
%
(
Ỹt − Ĩt − G̃t

)
+ Ĩt + G̃t − Ỹt

1−
(
Rt−1+δB
µY,tπt

)
− 1

πt

, (A.233)

J̃t = RL,tψĨt −RD,t

(
ψĨt − K̃B,t

)
−RtK̃B,t, (A.234)

ω = K̃B,t

(
1− (1− δB) /µY,t

J̃B,t/µY,t

)
, (A.235)

RL,tψĨt −RD,t

(
ψĨt − K̃B,t

)
−RtK̃B,t = K̃B,t

(
1− (1− δB) /µY,t

ω/µY,t

)
, (A.236)

(RL,t −RD,t)ψĨt = K̃B,t

(
Rt −RD,t +

1− (1− δB) /µY,t
ω/µY,t

)
, (A.237)

(RL,t −RD,t)ψĨt(
Rt −RD,t +

1−(1−δB)/µY,t
ω/µY,t

) =
%
(
Ỹt − Ĩt − G̃t

)
+ Ĩt + G̃t − Ỹt

1−
(
Rt−1+δB
µY,tπt

)
− 1

πt

, (A.238)

(RL,t −RD,t)ψĨt

(
1−

(
Rt−1+δB
µY,tπt

)
− 1

πt

)
(
Rt −RD,t +

1−(1−δB)/µY,t
ω/µY,t

) − Ĩt − G̃t + Ỹt

 1(
Ỹt − Ĩt − G̃t

) = %.

(A.239)
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Appendix B Parameters

Table 2. Parameters description

Parameters Description

κ Weight on Labor in the Utility Function

κP Weight on Labor in the Utility Function (Potential Model)

υ Elasticity of Substitution Between Differentiated Labor

ε Elasticity of Substitution Between Differentiated Intermediate Goods

µZ,D Markdown on Deposit Interest Rates in the ZLB State

ω Share of Bank Profits Paid as Dividends

δb Depreciation Rate of Bank Capital

ψ Fraction of Investment Goods Bought Using Loans

δ Depreciation Rate of Physical Capital

α Capital’s Share of Income

σZLB Standard Deviation on ZLB Shocks

χ Weight on Habit

η Inverse of the Frisch Elasticity of Labor Supply

σ Inverse of the Intertemporal Elasticity of Substitution

β Time Discount Parameter

φP Weight on Rotemberg Adjustment Costs for Changing Prices

φW Weight on Rotemberg Adjustment Costs for Changing Wages

φI Weight on Investment Adjustment Costs

ξP Degree of Price Indexation

ξW Degree of Wage Indexation

µL,D Markdown of Deposit Interest Rates in the Low State

µH,D Markdown of Deposit Interest Rates in the High State

µZ,L Markup on Lending Rates in the ZLB State

µH,L Markup on Lending Rates in the High State

µL,L Markup on Lending Rates in the Low State

φZ,L Degree of Rigidity in Loan Rate-Setting at the ZLB

φZ,D Degree of Rigidity in Deposit Rate-Setting at the ZLB

φL,L Degree of Rigidity in Loan Rate-Setting in the Low State

φL,D Degree of Rigidity in Deposit Rate-Setting in the Low State

Continued on next page
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Parameters Description

φH,L Degree of Rigidity in Loan Rate-Setting in the High State

φH,D Degree of Rigidity in Deposit Rate-Setting in the High State

qH,L Transition Probability From High to Low State

qL,H Transition Probability from Low to High State

ρr Interest Rate Smoothing

κπ Weight on Inflation

κy Weight on the Output Gap

π Steady State Inflation

pN,L Transition Probability From Normal to ZLB State

pL,N Transition Probability From ZLB to Normal State

gZ Neutral Technology Growth

gZI Investment Specific Technology Growth

ρA Persistence Consumption Preference Shocks

ρAZ Persistence Neutral Technology Shock

ρAZI Persistence Investment Specific Technology Shock

ρG Persistence Government Spending Shock

ρπ Persistence Cost-Push Shock

ρκ Persistence Labor Preference Shock

ρY Persistence Output Gap Shock

σA Std. Consumption Preference Shock

σAZ Std. Neutral Technology Shock

σAZI Std. Investment Specific Technology Shock

σG Std. Government Spending Shock

σP Std. Cost-Push Shock

σκ Std. Labor Preference Shock

σY Std. Output Gap Shock

σR Std. Monetary Policy Shock

σL Std. Loan Markup Shock

σD Std. Deposit Markup Shock

σN Std. Labor Shock
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Table 3. Calibrated Parameters

Parameters Value

κ 8000

κP 8000

υ 6

ε 6

µZ,D 1

ω 0.5

δb 0.10

ψ 1

δ 0.025

α 0.35

σZLB 0.0001
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Table 4. Estimated parameters

Param Distrb Mean Std Dev Post Mode Post Mean 5% 95%

χ beta 0.7000 0.0050 0.7043 0.7003 0.6907 0.7126

η normal 2.0000 0.2500 1.0099 1.0084 1.0010 1.0169

σ normal 2.0000 0.2500 1.8522 1.8605 1.8516 1.8703

β uniform 0.9988 0.0004 0.9995 0.9994 0.9991 0.9995

φP gamma 10.000 0.5000 12.013 11.982 11.891 12.106

φW gamma 10.000 0.5000 11.023 10.978 10.861 11.115

φI gamma 3.0000 0.5000 1.8650 2.0090 1.7030 2.4680

ξP beta 0.5000 0.1500 0.0339 0.0383 0.0222 0.0517

ξW beta 0.5000 0.1500 0.0914 0.0926 0.0804 0.1069

µL,D normal 0.9980 0.0003 0.9980 0.9979 0.9975 0.9983

µH,D normal 0.9930 0.0003 0.9935 0.9934 0.9931 0.9938

µZ,L normal 1.0110 0.0003 1.0110 1.0111 1.0107 1.0115

µH,L normal 1.0080 0.0003 1.0080 1.0078 1.0074 1.0082

µL,L normal 1.0110 0.0003 1.0104 1.0105 1.0102 1.0109

φ̃Z,L right triang 0.0000 1.5000 0.4153 0.4180 0.3998 0.4360

φ̃Z,D right triang 0.0000 1.5000 0.1374 0.1411 0.1272 0.1600

φ̃L,L right triang 0.0000 1.5000 0.8792 0.8735 0.8660 0.8808

φ̃L,D right triang 0.0000 1.5000 0.2800 0.2770 0.2672 0.2911

φ̃H,L right triang 0.0000 1.5000 0.8163 0.8298 0.8152 0.8491

φ̃H,D right triang 0.0000 1.5000 0.2739 0.2612 0.2377 0.2739

qH,L beta 0.1250 0.0400 0.1064 0.1147 0.1040 0.1327

qL,H beta 0.1250 0.0400 0.0653 0.0516 0.0346 0.0674

ρr beta 0.7000 0.0050 0.7055 0.7084 0.6991 0.7201

κπ normal 1.5000 0.2500 2.0100 2.0060 1.9918 2.0192

κy normal 0.1200 0.0500 0.2652 0.2679 0.2594 0.2789

π uniform 1.0055 0.0026 1.0026 1.0025 1.0012 1.0040

pN,Z beta 0.1250 0.0400 0.0324 0.0317 0.0196 0.0428

pZ,N beta 0.1250 0.0400 0.3162 0.3168 0.3015 0.3304

gZ uniform 0.0050 0.0029 0.0000 0.0002 0.0000 0.0006

gZI uniform 0.0050 0.0029 0.0031 0.0030 0.0023 0.0037

ρA beta 0.5000 0.1500 0.9887 0.9780 0.9463 0.9937

Continued on next page
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Param Distrb Mean Std Dev Post Mode Post Mean 5% 95%

ρAZ uniform 0.5000 0.2887 0.9771 0.9726 0.9510 0.9842

ρAZI uniform 0.5000 0.2887 0.7751 0.7537 0.7195 0.7815

ρG beta 0.5000 0.1500 0.9330 0.9323 0.9208 0.9438

ρπ beta 0.7000 0.0500 0.4761 0.4627 0.4299 0.4780

ρκ beta 0.5000 0.1500 0.4201 0.4127 0.4040 0.4198

ρY right triang 0.0000 0.1000 0.1358 0.1248 0.1150 0.1372

σA inverse gamma 0.1000 2.0000 0.0546 0.0460 0.0378 0.0562

σAZ inverse gamma 0.1000 2.0000 0.0059 0.0060 0.0051 0.0070

σAZI inverse gamma 0.1000 2.0000 0.0231 0.0255 0.0215 0.0319

σG inverse gamma 0.1000 2.0000 0.0260 0.0245 0.0216 0.0275

σP inverse gamma 0.1000 2.0000 0.0425 0.0438 0.0381 0.0526

σκ inverse gamma 0.1000 2.0000 0.0314 0.0330 0.0289 0.0379

σY right triang 0.0000 0.1000 0.0156 0.0154 0.0136 0.0174

σR inverse gamma 0.1000 2.0000 0.0038 0.0039 0.0038 0.0041

σL inverse gamma 0.1000 2.0000 0.0038 0.0038 0.0038 0.0040

σD inverse gamma 0.1000 2.0000 0.0038 0.0038 0.0038 0.0039

σN inverse gamma 0.1000 2.0000 0.0038 0.0042 0.0038 0.0050
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Appendix C Additional results
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Figure 11. Deposit rate pass-through: Alternative measures based on a more direct computation of the

impulse responses
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Figure 12. Loan rate pass-through: Alternative measures based on a more direct computation of the

impulse responses
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Figure 13. Simulation exercise to Loan markup shock - Estimated model and Full pass-through
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