
2013  |  15

Mixed frequency structural models:
Identification, estimation, and policy analysis

Working Paper
Norges Bank Research

Claudia Foroni and Massimiliano Marcellino



Working papers fra Norges Bank, fra 1992/1 til 2009/2 kan bestilles over e-post:
servicesenter@norges-bank.no

Fra 1999 og senere er publikasjonene tilgjengelige på www.norges-bank.no

Working papers inneholder forskningsarbeider og utredninger som vanligvis ikke har fått sin endelige form. 
Hensikten er blant annet at forfatteren kan motta kommentarer fra kolleger og andre interesserte. 
Synspunkter og konklusjoner i arbeidene står for forfatternes regning.

Working papers from Norges Bank, from 1992/1 to 2009/2 can be ordered by e-mail:
servicesenter@norges-bank.no

Working papers from 1999 onwards are available on www.norges-bank.no

Norges Bank’s working papers present research projects and reports (not usually in their final form)
and are intended inter alia to enable the author to benefit from the comments of colleagues and other interested 
parties. Views and conclusions expressed in working papers are the responsibility of the authors alone.

ISSN 1502-8143 (online)
ISBN 978-82-7553-760-5 (online)



Mixed Frequency Structural Models: Identification,

Estimation, and Policy Analysis ∗

Claudia Foroni

Norges Bank

Massimiliano Marcellino

European University Institute, Bocconi University and CEPR

28 May 2013

Abstract

In this paper we show analytically, with simulation experiments and with actual

data that a mismatch between the time scale of a DSGE model and that of the

time series data used for its estimation generally creates identification problems,

introduces estimation bias and distorts the results of policy analysis. On the con-

structive side, we prove that the use of mixed frequency data, combined with a

proper estimation approach, can alleviate the temporal aggregation bias, mitigate

the identification issues, and yield more reliable policy conclusions. The problems

and possible remedy are illustrated in the context of standard structural monetary

policy models.
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1 Introduction

Researchers typically model economic decision making processes as if conducted at fixed

specified intervals of time. However, as already mentioned in the literature (see Chris-

tiano and Eichenbaum (1987)), there is no reason to believe that the frequency at which

economic agents make decisions coincides with the frequency at which time series are

released. Christiano and Eichenbaum (1987) evaluate the consequences of the specifica-

tion error that results when agents’true decision interval is finer than the data sampling

interval. They show that the misalignment between agents’decision intervals and the

data sampling frequency is not a secondary issue, and that temporal aggregation is im-

portant in practice, having the potential to account for results considered anomalous in

the literature.1

Our first contribution is to provide a general treatment of the effects of temporal ag-

gregation of DSGE models. With few exceptions, such as Christiano and Eichenbaum

(1987), earlier literature addressed the temporal aggregation issue mostly in the context

of reduced form ARMA and VARMA models (see, among the others, Brewer (1973), Wei

(1981), Weiss (1984), Lutkepohl (1987), Marcellino (1998, 1999)). Taking standard mone-

tary models as an example, we assume that their frequency is monthly, since most central

banks take policy decisions once a month, while estimation is conducted with quarterly

data. We show analytically that it is generally impossible to identify the structural para-

meters, and the estimated responses to the monetary shock can be rather different from

the true ones.

Our main contribution is to demonstrate that the use of mixed frequency data can

improve identification, alleviate the temporal aggregation bias, and get estimated policy

responses closer to the actual ones. In a monetary policy context, this means, for example,

estimating models using quarterly time series of GDP (given that this variable is only

released quarterly) but monthly data on inflation and interest rate, rather than quarterly

data on all the three variables. Intuitively, the identification gains come from enlarging

the information set to better match the decision timing of the central bank, and this then

generates improved estimation and policy analysis.

In this paper we therefore focus on the use of mixed-frequency data in a structural

context. There is a small but growing literature which focuses on that. Giannone et al.

(2009) develop a methodology to incorporate monthly information in quarterly DSGE

models. However, the focus of their paper is different from ours. They consider quarterly

DSGE based parameter estimates as given and they exploit monthly information only to

obtain increasingly accurate early estimates and forecasts of the quarterly variables. Our

goal is instead very different. We do not take the parameters as given, instead we want to

1The assumption that agents take decisions at a regular, fixed interval has also been questioned in the
literature. Jorda (1999) analyzes the specification error that results when the agents’decision interval is
random and does not coincide with the data sampling interval, with additional results provided in Jorda
and Marcellino (2004).For simplicity and analytical tractability, we proceed under the assumption that
agents make decisions at fixed time intervals.
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analyze exactly what happens to these structural parameters when we consider different

frequencies in the data.

Kim (2010) is the closest contribution to our analysis. He focuses on whether frequency

misspecification of a New Keynesian model results in temporal aggregation bias of the

Calvo parameter. For estimation, he proposes a data augmentation method, in a Bayesian

framework. In our paper, we provide theoretical background to the analysis of Kim (2010),

by showing analytically the mapping from a monthly structural model to the quarterly

counterpart. Moreover, we highlight the causes of identification issues related to temporal

aggregation and show how the use of mixed-frequency data can alleviate them.

Finally, we work in a classical context, without employing Bayesian techniques. There-

fore, from an econometric point of view, we provide a general Kalman filter based estima-

tion method to deal with mixed frequency estimation in a classical maximum likelihood

framework. Specifically, we adapt the method of Mariano and Murasawa (2010) to a

structural context, and assess its finite sample properties in a set of Monte Carlo exper-

iments. Bayesian estimation could be also considered, by combining our expression for

the likelihood with the specification of prior distributions for the model parameters.

We then investigate how important these aggregation problems are in practice, and

to what extent they influence the estimated parameters and structural relations across

the variables. We use simulated and actual US data to estimate standard DSGE models

with quarterly aggregated data, and compare the results to those obtained with monthly

or mixed frequency data.

Overall, our empirical results support the theoretical findings and suggest that the

extent of the temporal aggregation bias can be large, but substantially mitigated by the

use of mixed frequency data. Specifically, with simulated data we are able to verify that

the results obtained from the mixed frequency approach are very similar to those from

the benchmark monthly model. Moreover, in the empirical small-scale New Keynesian

example, we compare impulse responses obtained from a quarterly and a mixed-frequency

model. Although typically the use of mixed monthly/quarterly data does not change the

pattern of the responses, it can influence their persistence and magnitude.

To strengthen our empirical results, we also examine the mixed frequency version of

a larger state-of-the-art model, developed at the quarterly level by Smets and Wouters

(2007). We focus on the responses of some key variables to a variety of demand, supply

and monetary policy shocks. Our mixed frequency estimation procedure still works well,

despite the increasing computational challenges due to the high dimension of the model,

and delivers interesting results. We confirm in this case the results obtained in the small

scale New Keynesian example on the possible differences in the responses to structural

shocks.

The paper is structured as follows. In Section 2, we focus on the temporal aggrega-

tion issues in a basic New Keynesian DSGE model. We provide analytical (Section 2),

simulated (Sections 3 and 4) and empirical (Section 5) results to assess the relevance of
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temporal aggregations issues. In Section 6, we summarize our main findings and conclude.

The Appendix contains additional details.

2 The time scale problem in a DSGE model

In this section, we want to analyze the time scale problem in a structural context, namely

in a new Keynesian model, which is the workhorse for the monetary policy analysis in the

framework of dynamic stochastic general equilibrium (DSGE) models.

Our starting point is a basic NewKeynesian model (see Galí (2008) for a comprehensive

derivation of it). The New Keynesian Phillips curve (NKPC, thereafter) and the dynamic

IS (DIS) constitute the non-policy block, the Taylor type monetary policy rule which

describes how the nominal interest rate evolves over time closes the model.

We want to show that temporal aggregation generates two different problems. First,

since it confounds parameters across equations, it is not always possible to identify the

parameters of the high frequency model, once it has been aggregated at a lower frequency.

Second, even when identification is not an issue and each parameter can be uniquely

identified from a quarterly model, the common approach of considering the same structural

model at a different frequency leads to different interpretations of the parameters values.

We first derive the mapping from the monthly specification to the equivalent quarterly

counterpart of the same model. Then, we illustrate how the temporal aggregation bias

can influence the estimates of the coeffi cients even when the model is uniquely identified.

In a second step, we use a slightly more complicated version of the model to show how

time aggregation raises also identification issues. Next, we show that the use of mixed

frequency data can overcome both the temporal aggregation bias and the identification

issue, allowing to identify the parameters of the underlying monthly model even when

one variable can be only observed at quarterly frequency. Finally, we discuss estimation

of the mixed frequency DSGE model.

As mentioned in the Introduction, an analysis on how to incorporate monthly informa-

tion in estimated quarterly DSGE models has been conducted by Giannone et al. (2009).

They focus on how to augment the quarterly model with monthly information to obtain

a better forecasting performance. In this paper, we focus instead on the identification

problems and estimation bias due to the mismatch between the time scale of the DSGE

model and that of the data used for estimation.

2.1 A basic New Keynesian model: mapping from monthly to
quarterly specification

In this subsection, we consider a very simple version of the New Keynesian model, a

simplified version of the model analyzed by Clarida, Galí, Gertler (2000).
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The three equations describing the model are the following:

πt = βEtπt+1 + ky∗t + εst, (1)

y∗t = Ety
∗
t+1 − τ (Rt − Etπt+1) + εdt, (2)

Rt = ρrRt−1 + (1− ρr)
(
φππt + φyy

∗
t

)
+ εrt, (3)

where eq. (1) is the NKPC, eq. (2) the DIS and eq. (3) the policy rule, and πt, y∗t and

Rt stand respectively for inflation rate, output growth and real interest rate. y∗t is starred

since it is not observable at a monthly frequency. For analytical tractability and without

loss of generality, we assume that εst, εdt and εRt are uncorrelated, i.i.d. and normally

distributed with mean equal to zero and variance respectively equal to σ2
s, σ

2
d and σ

2
R.

Finally, k is a function of the Calvo parameter θ, which describes the price rigidity, and

it is defined as k = (1−βθ)(1−θ)
θ

.

The model in eq. (1) - (3) can be written in matrix form as:

B0X
∗
t = CX∗t−1 +DEtX

∗
t+1 + εt, (4)

where X∗t =
[
πt y∗t Rt

]′
and εt =

[
εst εdt εrt

]′
, with εt ∼ N (0, I3) .

The unique stable solution for this model is given by

A0X
∗
t = A1X

∗
t−1 + εt, (5)

with A0 and A1 satisfying the two following conditions:

A0 = B0 −DA−1
0 A1, (6)

A1 = C. (7)

The matrices B0, C,D,A0 and A1 are defined in Appendix 7.1.

The model is uniquely identified: all the parameters of the model in (1) - (3) appear

in the data generating process defined in (5), and each set of parameters gives a unique

value of A0 and A1 (for the proof, see Fucac, Waggoner and Zha (2007)).

We assume that agents’decision interval is in months, since the monetary authority

typically takes decisions once a month.2 If all the data were available at that frequency,

the econometrician could simply estimate (5), with the restrictions determined by the

structure of the economy described in the model, and obtain the estimates of all the

parameters. But y∗t is not observable, therefore the econometrician cannot estimate (5)

directly.

The common strategy adopted in the literature is to estimate the model at quarterly

frequency where all the data are available. The naive econometrician therefore simply

2In the Monte Carlo analysis we will also evaluate the consequences of a mispecified choice of temporal
frequency.
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estimates the following model:

AN0 Xτ = AN1 Xτ−1 + εNτ , (8)

with εNτ ∼ N (0, I) , for τ = 1, 2, 3... where τ indicates quarters. In other words, what

the econometrician does is to consider the same economy described by (5), and set the

agents’decision interval equal to the sampling interval at which all the data are available.

But this is obviously different from estimating (5) aggregated at quarterly level.

First, we consider the monthly process (5), and aggregate it at quarterly level. In order

to aggregate the process we need to follow some steps, which we describe in Appendix

7.1. We obtain:

AQ0 Xτ = AQ1 Xτ−1 + εQτ , (9)

with εQτ ∼ N
(
0,ΣQ

)
, and ΣQ is a diagonal matrix.

With this very basic model, we can identify all the parameters which define the

monthly process from those in AQ0 and AQ1 . This allows us to isolate one of the two

issues related to time aggregation, the temporal aggregation bias. In the next subsec-

tion we will show that with slightly more dynamics in the model the identification of the

monthly parameters from AQ0 and A
Q
1 is no longer possible.

The naive estimated model (8) obtained by considering agents acting at a quarterly

frequency is different from the correct quarterly aggregated model (9). If we focus on the

dynamics of the two models, (8) and (9), we see that they have the same zero restrictions

in the matrices:

Ai0 =

 X X X

0 X X

X X X

 , Ai1 =

 0 0 0

0 0 0

0 0 X

 ,Σi =

 X 0 0

0 X 0

0 0 X

 .
However, the only non-zero element of Ai1, which describes the dynamics of the model is

different in the two approaches: while in the naive case AN1 (3, 3) = 1
σNR
ρNR , in the quarterly

aggregated model it is AQ1 (3, 3) = 1
σR

ρ3R
Ψ
, where Ψ is a non-linear function of the other

structural parameters. Furthermore, we can see that ρNR is different from ρ3
R, which is

usually considered the quarterly counterpart of a monthly ρr. This is an example of how

the naive econometrician is therefore interpreting the coeffi cients in a different way from

the one who considers time aggregation. Hence, it is not surprising that the estimation

of these two different models gives rise to discrepancies in the estimated parameters.

Kim (2010), with a slightly different model setup, performed an empirical analysis

showing a temporal aggregation bias in the estimated structural parameters3. Our analysis

provides a theoretical justification for his results.

3Specifically, he found that the estimated Calvo parameter implies different average price duration
when based on monthly rather than quarterly data.
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2.2 A second New Keynesian model: aggregation and loss of
identification

As we have already mentioned, the aggregation of a structural process at a lower frequency

always leads to non-linear combinations of the parameters, which generally prevents the

identification of the disaggregated process. In this subsection, we aim at illustrating the

identification issues related to temporal aggregation. We do so by analyzing an extended

version of the New Keynesian model in (1) - (3). The model equations are:

πt = βEtπt+1 + ky∗t + εst, (10)

y∗t = Ety
∗
t+1 − τ (Rt − Etπt+1) + py∗t−1 + εdt, (11)

Rt = ρrRt−1 + (1− ρr)
(
φππt + φyy

∗
t

)
+ εrt. (12)

Hence, the NKPC and monetary policy rule remain the same as before, while the DIS

changes: y∗t depends, among other things, not only on the expected future output but

also on its value in the previous period, y∗t−1. In other words, the dynamic of the DIS

is more complex. For more details on this DIS formulation, see Furher and Rudebusch

(2004).4

Similarly to the previous example, the model can be rewritten first in a matrix form

and then in a reduced form like:

A0X
∗
t = A1X

∗
t−1 + εt, (13)

with the same constraints on A0 and A1.5 We normalize σd to one, to achieve identifica-

tion. The reason is that we want to start with a uniquely identified process at monthly

level, in such a way that we can disentangle the identification issues coming from temporal

aggregation.

Since, again, in X∗t we have y
∗
t which is not observable every month, we aggregate

(13), so that in the aggregated process we just have observations of y∗t which are available

(i.e. we have only observations at t, t− 3, t− 6,...).

What we obtain is

AQ0 Xτ = AQ1 Xτ−1 + εQτ , (14)

with εQτ ∼ N
(
0,ΣQ

)
.

Differently from the model analyzed in Section 2.1, not all the parameters which

describe the monthly structural model (β, k, τ , p, ρr, φπ, φy, σs,and σr) can be uniquely

identified from AQ0 , A
Q
1 and ΣQ.6 This example illustrates that time aggregation creates

4Furher and Rudebusch (2004) provide also a more general version of eq. (11). We choose the simple
version for analytical tractability. Moreover, we focus in a model where the dynamics involve variables
not available at the frequency we set up the model.

5The description of the different matrices is in Appendix 7.2.
6See Appendix 7.2 for more details on this point.
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non-linear combinations of the parameters which describe the monthly process. These

non-linear combinations make recovering the original parameters impossible. Moreover, if

we consider the zero restrictions, we see that now they vary in the two approaches. While

in the naive model we have

AN0 =

 X X X

0 X X

X X X

 , AN1 =

 0 0 0

0 X 0

0 0 X

 ,ΣN =

 X 0 0

0 X 0

0 0 X

 ,
in the quarterly aggregated model the matrices are of the form:

AQ0 =

 X X X

0 X X

X X X

 , Ai1 =

 0 0 0

0 X X

0 X X

 ,ΣQ =

 X 0 0

0 X X

0 X X

 .
Comparing the restrictions of this example emphasizes the second problem related to

time aggregation. The naive econometrician, who estimates the same structural model

setting the agents’decision interval equal to the sampling interval at which all the data

are available, imposes zero restrictions even where in the proper aggregated model there

are not, namely, she assumes by mistake that AN1 (2, 3) = 0 and AN1 (3, 2) = 0. The

naive econometrician imposes no effects between output and the lag of the interest rate,

while in the properly aggregated model there is a dynamic relation between the same two

variables. Hence, it is not surprising that the two models will provide different estimates

of the structural parameters.

2.3 Exploiting mixed frequency data to deal with identification
issues

In this section we show how the parameters of the model at monthly frequency can be

identified when we exploit mixed frequency data. Taking into account the information

which is available at monthly frequency (i.e. data on inflation rate and interest rate), we

solve the identification issue, which we face when we aggregate all the series at quarterly

level.

We first write the three equations represented in a compact form by (13) as:

1

σs
πt + Fy∗t +GRt = εst (15)

Hy∗t + LRt = py∗t−1 + εdt (16)
φπ
σr

(ρr − 1) πt +
φy
σr

(ρr − 1) y∗t +
1

σr
Rt =

1

σr
ρrRt−1 + εrt, (17)

where the matrices F , G, H, L are defined in the Appendix 10.6. We do not have any

problems in estimating eq. (15) and (17) at t = 3, 6, 9..., since all the data are available
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at this frequency. However, we cannot estimate eq. (16) since y∗t−1 is not observable.

Therefore, we need to modify eq. (16) in such a way that it contains only variables which

are available at the time of estimation. If we substitute y∗t−1 with its own expression

y∗t−1 = p
H
y∗t−2 − L

H
Rt−1 + 1

H
εdt−1, and then we repeat it again for y∗t−2, we obtain:

y∗t =
( p
H

)3

y∗t−3 −
L

H
Rt −

L

H

( p
H

)
Rt−1 −

L

H

( p
H

)2

Rt−2 + ξt. (18)

From eq. (15), 18) and (17), we can now identify all the parameters. In particular,

from eq. (15), we identify σs and obtain F and G; from eq. (17), we identify σr, ρr, φy
and φπ, and from eq. (18), we obtain L

H
and p

H
. These ratios, together with F,G and the

definition of F,G,H,L, allow us to identify all the remaining parameters, β, k, τ , p.

From this example, we can see how the use of mixed frequency data can solve, or at

least alleviate, the identification issue. However, in general, it is not always possible to

recover all the parameters, even with mixed frequency data. Consider for example the

case when Rt is also not available on a monthly basis but only at the quarterly frequency,

so that πt is the only observable monthly variable. Now, the model for Rt and y∗t can be

written as (
Rt

y∗t

)
= A1

(
Rt−1

y∗t−1

)
−
(

Hφπ
ρr−1

H+Lφy−Lρrφy
0

−Lφπ
ρr−1

H+Lφy−Lρrφy
0

)
πt

+

(
H

H+Lφy−Lρrφy
Hφy−Hρrφy
H+Lφy−Lρrφy

− L
H+Lφy−Lρrφy

H
H+Lφy−Lρrφy

)(
σrεrt
1
H
εdt

)
, (19)

where

A1 =

(
H ρr

H+Lφy−Lρrφy
1
H
p

Hφy−Hρrφy
H+Lφy−Lρrφy

−L ρr
H+Lφy−Lρrφy

p
H+Lφy−Lρrφy

)
,

which is a VAR(1) with πt as exogenous variable (observable at the monthly level). Since

Rt and y∗t are only observable quarterly, this VAR(1) cannot be estimated. We can only

estimate the corresponding model aggregated at quarterly frequency, which is(
Rt

y∗t

)
= A3

1

(
Rt−3

y∗t−3

)
− (1 + A1L+ A2

1L
2)

(
Hφπ

ρr−1
H+Lφy−Lρrφy

0

−Lφπ
ρr−1

H+Lφy−Lρrφy
0

)
πt +

(
νrt

νdt

)
,

(20)

where t =, 3, 6, 9, ... , L is the lag operator at the monthly frequency (since πt is observable

monthly) and the error process(
νrt

νdt

)
= (1 + A1L+ A2

1L
2)

(
H

H+Lφy−Lρrφy
Hφy−Hρrφy
H+Lφy−Lρrφy

− L
H+Lφy−Lρrφy

H
H+Lφy−Lρrφy

)
σrεrt
1
H
εdt

,

remains uncorrelated at the quarterly frequency. From the system in (20) it is no longer
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possible to recover the structural parameters σr, ρr, φy, φπ,
L
H
and p

H
, and therefore we

loose identifiability even when using the available higher frequency information on πt.

If instead πt and yt are only available quarterly but Rt monthly, it can be easily shown

that the model in (15), 18) and (17) can be still estimated.

Therefore, for the structural model in (15) and (17), when the output variable can be

only observed at the quarterly frequency, it is necessary and suffi cient to have monthly

information on Rt to achieve identification.

Unfortunately, it is not possible to provide a general rule on when and to what extent

the mixed frequency information helps, since this depends on the specific structure of the

structural model and amount and type of available mixed frequency information. But,

as the examples illustrate, the use of the available mixed frequency information can only

improve the identifiability of the system.

2.4 Estimation

We now present the general method for the estimation of a structural model with data

released at different frequencies, which we later implement in our Monte Carlo and empiri-

cal exercises. We follow and generalize the analysis of Mariano and Murasawa (2010), and

we provide the state-space representation of the models to be estimated in a maximum-

likelihood framework. We focus on log-linearized DSGE models, and more generally on all

the models whose solution can be cast in state-space form, where the low frequency series

are then considered as high frequency series with missing observations. 7 The framework

can be easily generalized to more than two frequencies, at the cost of increasing the nota-

tional complexity and computational efforts required. Therefore, we focus the exposition

on the case of two frequencies only.

In general, the solution of a log-linearized DSGE model can be written in the form:

yt = A (θ) st + ut, (21)

st = B (θ) st−1 + C (θ) εt, (22)

where st is a k× 1 state vector, yt is a N × 1 vector of observables, εt is a p× 1 vector of

shocks, and ut is a N × 1 vector of possible measurement errors. All the elements depend

on θ, the structural parameters of the model. Eq. (22) characterizes the DSGE model

solution, while eq. (21) maps the model variables into the observable variables.

In the case we consider here, not all variables are observable at frequency t.We define

{y1t} as the N1−variate low frequency series observable every mth period, and {y2t} as
7The method of Mariano and Murasawa (2010) relies on the use of the Kalman filter in the presence of

missing values and mixed-frequency data, and it has become commonly employed in the mixed-frequency
literature which does not rely on Bayesian techniques. The use of the Kalman filter to deal with missing
data is not new, in particular it has been extensively analyzed by Andrew Harvey in many of his studies
already in the 80s (see, e.g., Harvey and Pierce (1984) and Harvey (1985)). However, the Mariano and
Murasawa (2010) approach is simpler and particularly well suited for economic applications.
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the N2−variate high frequency series observable every period. {y∗1t} represents the latent
unobservable high frequency series underlying {y1t}, such that y1t = ω (L) y∗1t for each t,

where l is the lag order of the polynomial ω (L). Finally, we define the N × 1 vectors yt

and y∗t respectively as

(
y1t

y2t

)
and

(
y∗1t
y2t

)
for all t, where N = N1 +N2.

Following this notation, we want to estimate the following system:

y∗t = A (θ) st + ut, (23)

st = B (θ) st−1 + C (θ) εt. (24)

Both ut and εt are normally distributed, with vt = C (θ) εt, E (vtv
′
t) = Q (θ) , E (utu

′
t) =

H (θ).8 Hereafter, for simplicity, we write A,B,C,Q and H taking their dependence on

θ for given.

We need to modify the state-space form in (23) and (24) to include also the aggregation

rule yt = ω (L) y∗t . Let us define the new state vector as:

ft
(k+N)(l+1)×1

=
(
st st−1 ... st−l ut ut−1 ... ut−l

)′
.

The state-space representation is now

yt = Gft, (25)

ft = Mft−1 + Pzt, (26)

where zt is defined as:

zt
(p+N)×1

=

(
εt

ut

)
,

and the matrices G,M,P are the following:

G
N×(k+N)(l+1)

= [ H(0)A ... H(l)A H(0) ... H(l) ],

M
(k+N)(l+1)×(k+N)(l+1)

=



B 0 ... 0 ... 0

I ... 0 0 ... 0
...
. . .

...
...
. . .

...

0 ... I 0 ... 0

0 ... 0 0 ... 0

0 ... I ... 0 0
...

. . .
...
. . .

...
...

0 ... 0 ... I 0


, P

(k+N)(l+1)×(p+N)
=



C 0

0 0
...
...

0 0

0 I

0 0
...
...

0 0


.

8For simplicity we consider H diagonal, i.e. the measurement errors are serially uncorrelated, but the
method can be extended to the case of serially correlated measurement errors.
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We can now estimate the state-space form in (25) and (26) following the procedure

described in Mariano and Murasawa (2010), to whom we refer for additional details.

3 A Monte Carlo exercise within a DSGE framework

In this section we provide an illustration of the time aggregation issues in the context of

a small DSGE model and assess the finite sample performance of the estimation method

introduced in the previous section. The aim is to estimate the model described in Section

2.1, with monthly, mixed frequency and quarterly data only, and compare the different

estimates of the structural parameters. We use the standard solution methods for lin-

ear rational expectations models, and since the solution of the model has a state-space

representation, we obtain maximum likelihood estimates of the structural parameters by

making use of the Kalman filter. The vector of structural parameters that describes the

model in eq. (1), (2) and (3) is Θ =
(
β, θ, τ , ρr, φπ, φy, σs, σd, σr

)′
. Even though all the

nine structural parameters can be identified, for the purposes of our analysis, we calibrate

the values of β and τ , to increase the precision of the estimates of the other parameters.

3.1 Simulation design and results

The simulated data are generated from the reduced form of the model described in (1) -

(3). The calibrated values are: β = 0.99, φy = 0.5, φπ = 1.5, τ = 1, ρr = 0.9, k such that

the average duration of price stickiness is equal to 10 months, which implies the Calvo

parameter to be θ = 0.9. The standard deviation of the three shocks, σs, σd and σr is fixed

at 0.1. Moreover, τ = 1 is consistent with the choice of a consumer’s logarithmic utility

function. The sample size is equal to 300 monthly observations and 100 quarters to mimic

the ensuing application to the US economy in section 5. The number of replications in

the Monte Carlo experiment is 1000.

We want to compare the results obtained by estimating the model with mixed fre-

quency data to those obtained by the naive econometrician who simply disregards the

aggregation issue and uses quarterly data. As a benchmark, we estimate the model also

at monthly frequency, as if all the three series were available at a monthly level.

As mentioned in the Introduction, Kim (2010) runs a similar experiment, with a mod-

ified version of our DSGE model and conducting the estimation in a Bayesian framework.

Instead, we use a classical method, that of Mariano and Murasawa (2003), so far used

for reduced form and forecasting analyses only. Our main goal is to provide an empirical

counterpart for the theoretical discussion in the previous Section about the distortionary

effects of temporal aggregation.

To estimate the model at monthly frequency, we follow the standard maximum-

likelihood technique. We then repeat the same estimation, using only quarterly data,
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as a naive econometrician would do. To follow the approach of Section 2.1, we consider

a point-in-time aggregation scheme. Therefore, when aggregating from the monthly to

the quarterly level, we simply skip-sample the series, keeping one observation every third

available. Finally, to use mixed frequency data we cast the model into the modified

state-space form described in 2.4, and estimate it by means of the Kalman filter.

Table 1 reports the median value across replications of parameter estimates9. In italics,

we also report the 10th and 90th percentiles. The results show that with mixed frequency

data we approximate very well the monthly structure of the economy. The estimates of

the parameters are very similar to those obtained by estimating the benchmark model

at monthly frequency. The estimation of the monthly process is of course possible only

because we are using simulated data. Using quarterly variables, we notice that for some

parameters we obtain quite different estimates and wider confidence intervals. Moreover,

even for the parameters whose estimated value is similar, their interpretation can be

quite different. In particular, an estimate of the Calvo parameter θ close to 0.9 implies an

average price duration of 10 months with the monthly model, but of almost 10 quarters

with quarterly data. To obtain the same implied average price duration at quarterly

frequency, θ should be equal to 0.7. This evidence is also consistent with the findings of

Kim (2010).

4 Robustness analysis

To extend our analysis and assess the robustness of the reported findings of the Monte

Carlo experiments, we allow for some modifications of the experimental design.

As a first robustness check, we consider whether the usefulness of mixed frequency data

is confirmed with frequency mismatches other than the monthly-quarterly case analyzed

before. Specifically, we extend the analysis to the weekly-quarterly (or monthly-annual)

case, assuming 12 weeks per quarter so that m = 12.10

An even sampling frequency typically generates more identification problems than an

odd one. Consider as an example an AR(1) process with negative root. If the process is

aggregated with m odd, it is still possible to recover the original negative root. If instead

m is even, the aggregated process is compatible with both a positive and a negative

disaggregate root, so that the latter cannot be uniquely determined.

In the context of the DSGE model, we simulate the data as in Section 3.1, but in this

case we generate 3600 weekly observations which correspond to 300 quarterly values.11

9In computing the median and the percentiles, we excluded the replications for which we didn’t obtain
convergence in the estimation process.
10We consider 12 weeks in a quarter instead of 13 for two reasons. First a frequency mismatch equal

to 12 can be also interpreted as a monthly-yearly case, second because in what follows we consider also
the case of weekly-monthly-quarterly case, and for this we need a multiple of two frequencies. 12 easily
absolves this role, since we can consider 12 weeks in a quarter, 4 weeks in a month, and 3 months in a
quarter.
11Due to the higher number of missing values when m = 12, we increase the size to 300 quarterly
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As a second robustness check, we assess what happens when also the mixed frequency

process is misspecified, in the sense that the true generating frequency is higher than

what assumed in the mixed frequency model. As an example, which we then use in the

Monte Carlo simulation, the true DGP is a weekly process and we compare the structural

estimates obtained with quarterly data to those resulting from mixed frequency monthly-

quarterly data. This situation can arise because either the higher frequency data are

not available (e.g., weekly data on inflation) or the decision time is different from what

assumed.

Once again, we focus on parameter estimates in the case of the DSGE model. The

simulation design follows closely the one described before. The only difference is that the

DGP is now a weekly process, our y is obtained by skip-sampling every 12 periods, and

our x (inflation and interest rate in the case of our DSGE model) is also obtained by

skip-sampling but every 4 periods.

We anticipate that the results, discussed in the details in the next two subsections,

confirm the usefulness of the mixed frequency approach, also in finite samples, with a small

or medium frequency mismatch (m = 3 orm = 12), and even when the assumed temporal

frequency is misspecified (m = 3 vs truem = 12). The incorrect choice of mixed frequency

does not allow to perfectly capture the dynamic of the high frequency DGP (as instead

it was possible in the cases analyzed before). However, the results we obtain exploiting

monthly and quarterly information are generally closer to the true weekly DGP than

those obtained with quarterly values only. Hence, adding higher frequency information

still mitigates the identification problem and the extent of the consequent estimation bias.

4.1 The case of weekly and quarterly data

In this subsection, we repeat the same analysis conducted in Section 3, for a sampling

frequency m = 12. As mentioned, this frequency mismatch can be interpreted as the case

of weekly and quarterly or monthly and annual data.

The simulated data are generated from the reduced form of the model described in (1)

- (3). The calibrated values are: β = 0.99, φy = 0.5, φπ = 1.5, τ = 1, ρr = 0.9, θ = 0.9,

σs, σd and σr fixed at 0.1, τ = 1 (as in the main experiment) . The sample size is equal

to 3600 high frequency observations which correspond to 300 low frequency ones12. The

number of replications in the Monte Carlo experiment is 500.

To estimate the model at high frequency, we follow the standard maximum-likelihood

technique. To estimate a naive low frequency process we consider a point-in-time aggrega-

tion scheme. Therefore, when aggregating from the high to the low frequency, we simply

skip-sample the series, keeping one observation every 12th available. Again, to use mixed

observations to obtain more stable results when running the Kalman filter.
12We increased the number of low-frequency observations to obtain more stable results even in this

case with a high-number of missing observations. This allows to avoid computational issues related only
to the short sample size.
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frequency data we cast the model into the modified state-space form described in Section

2.4, and estimate it by means of the Kalman filter.

Table 2 reports the median value across replications of parameter estimates13. The

10th and 90th percentiles are in italics. The results generally confirm the findings in

Section 3: with mixed frequency data we approximate very well the high frequency struc-

ture of the economy, finding estimates of the parameters which are very similar to those

obtained by estimating the benchmark model at high frequency. Using low frequency

variables, some of the estimated parameters (such as φy and σr) turn out to be quite dif-

ferent and with wider confidence bands, in line with the results for the monthly-quarterly

case. Moreover, once again, even for the parameters whose estimated value is similar,

their interpretation can be quite different when based on the low frequency.

4.2 The mixed frequency process is also misspecified

We now address the case where the assumed mixed frequency is incorrect. To be precise,

we consider a weekly DGP while the model is estimated with monthly-quarterly or quar-

terly only data. Our goal is to check whether the mixed frequency approach still mitigates

the problems arising with time aggregation14.

We run the same experiment as in the previous section, with the high frequency and

low frequency cases being exactly the same as in Section 4.1. What changes is the mixed

frequency case. Here, rather than using weekly and quarterly data, we have monthly and

quarterly observations, despite the DGP being weekly.

As it appears from Table 3, when the mixed frequency process is misspecified in the

frequency, it sometimes provides estimates of the parameters which are quite different

from the true ones (and are instead more similar to the ones obtained with quarterly data

only). However, the confidence intervals generally remain smaller than the ones obtained

with quarterly data only. Therefore, we can conclude that exploiting more information

at least mitigates the temporal aggregation issues.

5 Two applications with US data

We now conduct an empirical analysis using data for the US economy in a DSGE frame-

work. Our main goal is to compare the shock responses obtained with a mixed frequency

approach to those from a standard quarterly model. In the first example we stay close

13In computing the median and the percentiles, we excluded the replications for which we didn’t obtain
convergence in the estimation process.
14There is a growing literature which conducts analysis in continuous time. In particular, the need

to include financial variables in DSGE models fosters research in the time-continuous framework (see
e.g. Christensen et al. (2011)). The main claim in using a continuous-time framework is the usefulness
in solving the model and a better link to financial models. However, the goal of this paper is to show
identification issues in structural models which are described in a discrete-time framework. Therefore,
we leave the analysis in continuous time for future research.

14



to the small scale model used to obtain the analytical results. We first estimate the

parameters of the economy described in eq. (1), (2) and (3), and then analyze the im-

pulse responses to the shocks. As a second example, we conduct a similar analysis for a

state-of-the-art DSGE model, the Smets and Wouters (2007) model.

5.1 Small-scale DSGE model

We estimate the model using data for the real GDP growth rate, the inflation rate,

measured as the growth rate of the consumer price index, and the Federal Fund rates

(FFR). The sample covers the period 1965 - 2007.15 In estimating the model with data

at different frequencies, we consider the quarter-on-quarter GDP growth and the monthly

inflation rate and monthly interest rate. Moving to the quarterly DSGE, we aggregate

the monthly series at the quarterly level. More specifically, we construct the quarterly

inflation rate and the quarterly interest rate as the sum of the three monthly observations

over the quarter.

We estimate the DSGE model within a maximum-likelihood framework, first at a

standard quarterly frequency, and then with the mixed frequency approach, rewriting the

model as described in Section 2.4. We calibrate the value of the discount factor β at 0.99,

the most common value in the literature.

Figure 1 reports the estimated impulse responses obtained with the two approaches,

mixed frequency (solid line) or quarterly data only (dashed line). It is worth to point

out that the mixed-frequency model allows to obtain monthly responses. However, in

order to compare the results with those obtained from the quarterly model, we focus on

the corresponding quarterly aggregates, despite the possibility to analyze also the intra-

quarterly dynamics in the mixed-frequency case. The aggregation of the impulse responses

is a delicate issue, since the aggregation method depends on the nature of the analyzed

series. In our example, we sum the impulse responses over the quarter, since the variables

under analysis represent rates.

The figure reveals some discrepancies between the two approaches. The patterns

remain similar and in line with economic theory, since a supply shock increases inflation

and reduces output, with the former effect dominating and leading to higher interest rates;

a demand shock increases all the three variables; and a restrictive monetary policy shock

lowers both output and inflation. However, the magnitude of the responses and their

persistence can be influenced by the data frequency. For example, the monetary policy

shock has a stronger effect on output and weaker effect on inflation when using the mixed

frequency data.

Finally, to further analyze the role of temporal aggregation in shaping the results, and

how the use of mixed-frequency data can play a role in this, we consider a monthly version

15The sample starts at the same point as in Smets and Wouters (2007), but it is updated to 2007.
We exclude the crisis period since a proper treatment of this episode is beyond the scope of the current
analysis.
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of our small New Keynesian model, using the growth rate in the industrial production

(IP) as a proxi for output.

With the resulting monthly estimates, we compute the impulse responses and then

aggregate them at the quarterly frequency, to make them comparable with those obtained

from the mixed-frequency and quarterly models. The impulse responses are shown in

Figure 2. The monthly and mixed-frequency responses exhibit some differences, but

generally smaller than those obtained comparing the monthly and quarterly responses.

It is not obvious that monthly IP is a good proxi for output, since the share of IP in

value added is rather limited and decreasing over time. Given this, we think the mixed

frequency results remain more reliable, but the similarity with the monthly responses

(even in the presence of different proxies for output) is reassuring.

5.2 Smets and Wouters (2007) model

The Smets and Wouters model (SW2007 henceforth) is a medium-scale DSGE model

which incorporates different types of real and nominal frictions and seven structural

shocks. It is considered by now a workhorse and benchmark model for analyzing var-

ious types of demand, supply and monetary policy shocks.

The model considers sticky nominal prices and wages, habit formation in the con-

sumption, investment adjustment costs, variable capital utilization and fixed costs in

production. We briefly report here only the main features of the model, the Appendix

8.1 provides the key equations while for a full derivation we refer to Smets and Wouters

(2007, SW).

The model variables for the sticky wage and price economy are: output (yt), con-

sumption (ct), investment (it), Tobin’s q (qt), utilized capital (kst ), installed capital (kt),

capacity utilization (zt), rental rate of capital (rkt ), price markup (µ
p
t ), inflation rate (πt),

wage markup ( µwt ), real wage (wt), total hours worked (lt), and nominal interest rate

(rt). For the corresponding flexible economy: output (y∗t ), consumption (c
∗
t ), investment

(i∗t ), Tobin’s q (q
∗
t ), utilized capital (k

s∗
t ), installed capital (k

∗
t ), capacity utilization (z

∗
t ),

rental rate of capital (rk∗t ), price markup (µ
p∗
t ), wage markup ( µ

w∗
t ), real wage (w

∗
t ), and

total hours worked (l∗t ).

The shocks are: total factor productivity (εat ), investment-specific technology (ε
i
t ),

government purchases (εgt ), risk premium (εbt), monetary policy (ε
r
t ), wage markup (ε

w
t )

and price markup (εpt ). While the total factor productivity, investment-specific tech-

nology, government purchase, risk premium and monetary policy shocks follow AR(1)

processes, the wage markup and price markup shocks follow ARMA(1,1) processes.

The model is estimated using seven macroeconomic variables: the log difference of real

GDP, real consumption, real investment and real wage, log hours worked, the log difference

of the GDP deflator, and the federal fund rate (FFR). The equations describing the model

are reported in Appendix 8.1.

In our exercise we estimate the SW model by Maximum Likelihood techniques with
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either quarterly or mixed frequency data, following the method described in Section 2.4.

In order to fully exploit monthly information whenever available, we slightly change the

data used for estimation with respect to SW. More in detail, while the log difference of

real GDP, real consumption, real investment and real wage stay the same, we use monthly

values of FFR, the log difference of the consumer price index and (average weekly) hours.

The quarterly aggregates of the monthly series are very similar (or even the same, as in

the case of the FFR) to the ones originally used in SW. We also extend the sample to

2007 (skipping however the recent financial crisis since a proper treatment of this episode

is beyond the scope of the current analysis.).

Despite the different estimation method, the different data used for some variables and

the longer sample, we show in Appendix 8.2 that we can replicate fairly well the quarterly

impulse response functions of SW (for a comparison of Bayesian and MLE estimates of

SW see also Iskrev (2008)). Hence, we can move to assessing whether and to what extent

the responses to shocks differ when mixed frequency or quarterly only data are used for

estimation.

Before discussing the results, let us comment on some of the features of the mixed-

frequency model. As already discussed in the small-scale DSGE case, the mixed-frequency

model allows to obtain monthly responses. We therefore would have the possibility to

analyse also the intra-quarterly dynamics of the shock propagation. However, in order to

compare the results with those obtained from the quarterly model, we present the cor-

responding quarterly aggregates only. Specifically, we skip sample the impulse responses

for the variables in (log-)levels, and sum the responses over the quarter for the variables

which represent rates. We focus on the impulse responses of output and hours (following

the skip sample scheme) and of inflation and the FFR (summing over the quarter). These

are the same four variables analyzed by Smets and Wouters (2007).

We group the main shocks under three categories. First, investment-specific tech-

nology, government purchase, and risk premium shocks, which can be all considered as

demand shocks since output and inflation move in the same direction. According to SW,

these demand shocks are the main drivers of output fluctuations in the short run.

Second, the wage markup and productivity shocks, which can be considered as supply

shocks since output and inflation move in opposite directions. Supply shocks are the main

determinants of output movements in the long run.

Third, the monetary policy shock that, according to SW, has only a very small role

in driving output fluctuations, but is nonetheless typically evaluated in DSGE analyses.

The impulse responses are graphed in Figures 3-8 where, as before, the solid lines

represent the mixed frequency responses and the dashed lines the quarterly responses.

Overall, the patterns are qualitatively similar to those in SW, but there are some inter-

esting differences that we now comment upon.

Starting with the demand shocks, a first feature emerging from Figures 3, 4 and 5

is that for all the three shocks the response of output is stronger with mixed frequency
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than with quarterly data. On the other hand, in all cases hours react less, at least in the

short run, with the mixed frequency data. The responses of inflation, in line with those

of output, are generally stronger with the mixed frequency data. Actually, in the case

of the investment specific technology shock there is even a negative reaction of inflation

when using quarterly data. Finally, the reaction of the interest rate is more heterogeneous

across shocks, it is stronger with quarterly data for the investment and spending shocks,

weaker for the risk premium shock.

For the two supply shocks, Figures 6 and 7, an increase in the wage mark-up has

stronger effects on inflation (positive) and output and hours (negative) with the mixed

frequency data. The effects are instead more limited with the mixed frequency data in

the case of the productivity shock, which persistently increases output and lowers hours,

while the effects on inflation and the interest rate are rather limited (in line with the SW

results). Therefore, we confirm the SW finding of a negative persistent effect on hours of

productivity increases.

Finally, about the monetary policy shock, the responses in Figure 8 are again qualita-

tively similar to those in SW. However, with respect to the mixed frequency case, when

using quarterly data there is only a very small decrease in inflation, and a more limited

effect on output but a stronger reaction of hours.

We can therefore conclude that the use of mixed frequency information can also affect

the results on the propagation of different types of shocks in realistic DSGE models.

It is also noticeable that our estimation method provides meaningful results even for

rather large models, despite the additional computational diffi culties when dealing with

the mixed-frequency data.

6 Conclusions

In the recent econometric literature, unbalanced datasets have attracted a substantial

attention. Different methods have been proposed to deal with mixed frequency data, but

the focus has only been on improving the forecasts of key series such as GDP growth,

which are usually available at a lower frequency only. In this paper, we shift the attention

to the use of mixed frequency data in the context of structural models.

The common approach in the literature is to estimate the deep parameters of the

economy at a frequency such that data for all the variables are available, independently

of the fact that the agents take decisions within a different time framework. Hence,

structural models are typically estimated with quarterly data even if monthly or even

higher frequency information on some variables is available.

We show that this practice can have important consequences when trying to give

an economic interpretation to the estimated parameters and model dynamics. Using

examples from the New Keynesian DSGE literature, we derive the analytical mapping

from a monthly specification to a quarterly specification of the same model, showing that
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it is in general impossible to identify the parameters which describe the monthly process

when using quarterly data only. Even when identification is possible, the naive approach

which overlooks aggregation issues can bring to misleading results, since a monthly model

aggregated at quarterly level is clearly different from a quarterly model which replicates

the structural relations of the monthly model and just changes the agents’time decision

interval.

We also show that the identification issue arising from aggregation can be mitigated,

and in some cases even solved, by the use of mixed frequency data. Using data at different

frequencies allows us to exploit the information included in the intra-quarter lags of the

monthly variables to identify more parameters than in the case we just use quarterly data.

We then provide a general classical estimation method to deal with mixed frequency

data in a structural context, based on a modified state-space framework combined with

the use of the Kalman filter to deal with the missing observations in the low frequency

series.

Finally, our Monte Carlo analysis and empirical examples, based on the estimation

of DSGE models using simulated and US data, confirm the practical importance of the

aggregation issue, and that it can be alleviated by the use of mixed frequency data.
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Table 1: Estimates of structural DSGE parameters with monthly, mixed-frequency and
quarterly simulated data

DGP

θ 0.9
0.876 0.926 0.857 0.935 0.876 0.925

φ y 0.5
0.170 1.589 0.061 2.348 0.121 1.744

φπ 1.5
0.856 2.593 0.511 2.784 0.764 3.308

ρ r 0.9
0.839 0.956 0.803 0.967 0.818 0.960

σ s 0.1
0.095 0.105 0.091 0.110 0.095 0.105

σ d 0.1
0.094 0.105 0.089 0.108 0.090 0.108

σ r 0.1
0.092 0.108 0.124 0.162 0.090 0.109

0.899 0.893 0.898

0.584 0.375 0.633

0.099 0.099

1.404 1.403 1.492

0.911 0.887 0.917

0.100 0.141 0.100

monthy estimates quarterly estimates
mixed frequency

estimates

0.100 0.100 0.100

0.100

Notes: The estimates are obtained for a sample of 300 monthly observations or, equivalently 100 quarterly
observations. The DGP is represented by the reduced form of the model in eq. (1) - (3). Column 2 reports
the true parameters, from which we generated the data. Column 3 reports median, the 10th and 90th
percentile across replications of the parameters estimated with monthly data, Column 4 with quarterly
data and Column 5 with mixed-frequency data. The number of replications is fixed at 1000.
* A Calvo parameter θ equal to 0.9 at monthly frequency implies an average price duration of 10 months.
To obtain the same implied average price duration at quarterly frequency θ should be equal to 0.7.
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Table 2: Estimates of structural DSGE parameters with high-, mixed- and low-frequency
simulated data (frequency mismatch: m =12)

DGP

θ 0.9
0.893 0.908 0.865 0.917 0.893 0.908

φ y 0.5
0.334 0.779 0.035 1.667 0.184 1.234

φπ 1.5
1.179 2.152 0.804 2.093 0.856 2.841

ρ r 0.9
0.876 0.926 0.794 0.958 0.838 0.947

σ s 0.1
0.098 0.101 0.095 0.106 0.098 0.101

σ d 0.1
0.099 0.102 0.094 0.105 0.094 0.105

σ r 0.1
0.097 0.103 0.156 0.192 0.093 0.105

0.900 0.885 0.900

0.559 0.184 0.521

0.099 0.099

1.580 1.572 1.596

0.907 0.845 0.903

0.101 0.169 0.101

HF estimates LF estimates MF estimates

0.100 0.100 0.100

0.100

Notes: The estimates are obtained for a sample of 3600 high-frequency observations or, equivalently 300
low-frequency observations. The DGP is represented by the reduced form of the model in eq. (1) - (3).
Column 2 reports the true parameters, from which we generated the data. Column 3 reports median,
the 10th and 90th percentile across replications of the parameters estimated with high-frequency data,
Column 4 with low-frequency data and Column 5 with mixed-frequency data. The number of replications
is fixed at 500.

Table 3: Estimates of structural DSGE parameters with high-, mixed- and low-frequency
simulated data (true DGP: weekly - data availability: monthly and quarterly.)

DGP

θ 0.9
0.893 0.908 0.865 0.917 0.870 0.900

φ y 0.5
0.334 0.779 0.035 1.667 0.040 0.622

φπ 1.5
1.179 2.152 0.804 2.093 0.916 1.783

ρ r 0.9
0.876 0.926 0.794 0.958 0.782 0.909

σ s 0.1
0.098 0.101 0.095 0.106 0.097 0.104

σ d 0.1
0.099 0.102 0.094 0.105 0.094 0.105

σ r 0.1
0.097 0.103 0.156 0.192 0.135 0.160

0.900 0.885 0.885

0.559 0.184 0.162

0.099 0.099

1.580 1.572 1.118

0.907 0.845 0.832

0.101 0.169 0.145

HF estimates LF estimates MF estimates

0.100 0.100 0.101

0.100

Notes: The estimates are obtained for a sample of 3600 weekly observations or, equivalently 900 monthly
and 300 quarterly observations. The DGP is represented by the reduced form of the model in eq. (1) -
(3). Column 2 reports the true parameters, from which we generated the data. Column 3 reports median,
the 10th and 90th percentile across replications of the parameters estimated with weekly data, Column 4
with quarterly data and Column 5 with monthly and quarterly data. The number of replications is fixed
at 500.
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Figure 1: Impulse Responses for a small-scale New Keynesian DSGE model
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Notes: The impulse responses in solid lines are those obtained with mixed-frequency data at a monthly
frequency and then aggregated to a quarterly level. The dashed ones are those obtained with the quarterly
data. The shocks are indicated as follows: es the supply shock, ed the demand shock, em the monetary
policy shock. The sample considered for the estimation spans 1965-2007.
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Figure 2: Impulse Responses for a small-scale New Keynesian DSGE model: a monthly
benchmark
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Notes: The impulse responses in solid lines are those obtained with mixed-frequency data at a monthly
frequency and then aggregated to a quarterly level. The dashed ones are those obtained with the quarterly
data. The dashed-dotted ones are those obtained with the monthly data, considering industrial production
as measure of real activity, and then aggregated to a quarterly level. The shocks are indicated as follows:
es the supply shock, ed the demand shock, em the monetary policy shock. The sample considered for the
estimation spans 1965-2007.
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Figure 3: Impulse Responses to a risk-premium shock
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Notes: The impulse responses in solid lines are those obtained with mixed-frequency data at a monthly
frequency and then aggregated to a quarterly level. The dashed ones, are those obtained with the
quarterly data. The sample considered for the estimation spans 1965-2007.

Figure 4: Impulse Responses to an exogenous spending shock
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Notes: See Notes at Figure 3.
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Figure 5: Impulse Responses to an investment-specific technology shock

5 10 15 20 25
­0.2

0

0.2

0.4

0.6

0.8

1

1.2
Output

5 10 15 20 25
­0.2

­0.1

0

0.1

0.2

0.3
Hours

5 10 15 20 25
­6

­4

­2

0

2

4

6
x 10­3 Inflation

5 10 15 20 25
­0.04

­0.02

0

0.02

0.04

0.06

0.08
Interest rate

Notes: See Notes at Figure 3.

Figure 6: Impulse Responses to a wage markup shock
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Figure 7: Impulse Responses to a productivity shock
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Figure 8: Impulse Responses to a monetary policy shock
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7 Appendix A

7.1 A basic New Keynesian model: mapping and identification
issues

Our basic New Keynesian model is described by the following three equations:

πt = βEtπt+1 + κy∗t + εst, (27)

y∗t = Ety
∗
t+1 − τ (Rt − Etπt+1) + εdt, (28)

Rt = ρrRt−1 + (1− ρr)
(
φππt + φyy

∗
t

)
+ εrt. (29)

Let us rewrite the model in a matrix form:

B0X
∗
t = CX∗t−1 +DEtX

∗
t+1 + εt, (30)

where X∗t =
[
πt y∗t Rt

]′
and εt =

[
εst εdt εrt

]′
, with εt ∼ N (0, I3) .

The matrices B0, C,D have the following form:

B0 =


1
σs

− k
σs

0

0 1
σd

τ
σd

φπ
σr

(ρr − 1) 1
σr
φy (ρr − 1) 1

σr

 ,

C =

 0 0 0

0 0 0

0 0 1
σr
ρr

 ,

D =


β
σs

0 0
τ
σd

1
σd

0

0 0 0

 .
The unique stable solution for this model is given by

A0X
∗
t = A1X

∗
t−1 + εt, (31)
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with A0 and A1 defined as follows:

A0 =


1
σs

− k
σs

G

0 1
σd

F
φπ
σr

(ρr − 1) 1
σr
φy (ρr − 1) 1

σr

 ,

A1 = C =

 0 0 0

0 0 0

0 0 1
σr
ρr


where

G =
β

σrσs
ρr

Gσrσs + Fkσdσr
Gφπσs + Fσdφy + Fkφπσd −Gφπσsρr − Fσdρrφy − Fkφπσdρr + 1

and

F =
τ

σd
+

1

σr
ρr

(
F σr
Gφπσs+Fσdφy+Fkφπσd−Gφπσsρr−Fσdρrφy−Fkφπσdρr+1

+
τ
σd

Gσrσs+Fkσdσr
Gφπσs+Fσdφy+Fkφπσd−Gφπσsρr−Fσdρrφy−Fkφπσdρr+1

)
.

It can be checked that all the parameters of this model can be easily identified.

We now provide the details for the second step of our analysis, i.e. how the monthly

process can be aggregated to a quarterly level.

The process in (31) can be rewritten as

A0X
∗
t = A1A

−1
0 A0X

∗
t−1 + εt, (32)

and then by recursively substituting A0X
∗
t−i with its equivalent A1A

−1
0 A0X

∗
t−i + εt−i, we

obtain:

A0X
∗
t = A1A

−1
0 A1A

−1
0 A1X

∗
t−3 + A1A

−1
0 A1A

−1
0 εt−2 + A1A

−1
0 εt−1 + εt (33)

which we can write simply as

A0X
∗
t = AQ1 X

∗
t−3 + ut, (34)

where ut ∼ N
(
0,ΣQ

)
and

AQ1 = A1A
−1
0 A1A

−1
0 A1 =


0 0 0

0 0 0

0 0 1
σr

ρ3r

(Gφπσs+Fσdφy+Fkφπσd−Gφπσsρr−Fσdρrφy−Fkφπσdρr+1)
2

 .
We can show that from the elements of the matrices A0 and A

Q
1 defined above, we

can recover all the parameters driving the monthly process. Specifically, from the matrix
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A0 we identify σs, σd, σr and k. Moreover, we obtain F and G, and also the values of the

combinations of parameters φπ (1− ρr) and φy (1− ρr) .We can rewrite the element of the
matrix AQ1 , A

Q
1 (3, 3) = 1

σr

ρ3r

(Gφπσs+Fσdφy+Fkφπσd−Gφπσsρr−Fσdρrφy−Fkφπσdρr+1)
2 as A

Q
1 (3, 3) =

ρ3r

σr(Gφπ(1−ρr)σs+Fσdφy(1−ρr)+Fkφπ(1−ρr)σd+1)
2 , where all the elements in the denominator are

known and therefore we can recover ρr from the numerator. Having ρr, we also identify

φπ and φy. The last two parameters, β and τ can be obtained from the definition of F

and G.

7.2 Introducing more dynamic in the Euler equation

Our New Keynesian model is described by the following three equations:

πt = βEtπt+1 + ky∗t + εst, (35)

y∗t = Ety
∗
t+1 − τ (Rt − Etπt+1) + py∗t−1 + εdt, (36)

Rt = ρrRt−1 + (1− ρr)
(
φππt + φyy

∗
t

)
+ εrt, (37)

which can be written in matrix form as:

B0X
∗
t = CX∗t−1 +DEtX

∗
t+1 + εt, (38)

where X∗t =
[
πt y∗t Rt

]′
and εt =

[
εst εdt εrt

]′
, with εt ∼ N (0, I3) .

We normalize σd to 1.

The matrices B0, C,D have the following form:

B0 =


1
σs

− k
σs

0

0 1 τ
φπ
σr

(ρr − 1) 1
σr
φx (ρr − 1) 1

σr

 ,

C =

 0 0 0

0 p 0

0 0 1
σr
ρr

 ,

D =


β
σs

0 0

τ 1 0

0 0 0

 .
The unique stable solution for this model is given by

A0X
∗
t = A1X

∗
t−1 + εt, (39)
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with A0 and A1 defined as follows:

A0 =


1
σs

F G

0 H L
φπ
σr

(ρr − 1) 1
σr
φx (ρr − 1) 1

σr

 ,

A1 = C =

 0 0 0

0 p 0

0 0 1
σr
ρr

 ,
where

F = p
β

σs

Fσs +Gσsφx −Gσsρrφx
H + Lφx − Lρrφx +GHφπσs − FLφπσs −GHφπσsρr + FLφπσsρr

− k

σs
,

G =
β

σrσs
ρr

GHσrσs − FLσrσs
H + Lφx − Lρrφx +GHφπσs − FLφπσs −GHφπσsρr + FLφπσsρr

,

H = 1− p
(

Gφπσs−Gφπσsρr+1
H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr
−τ Fσs+Gσsφx−Gσsρrφx

H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr

)
,

L = τ +
1

σr
ρr

(
L σr
H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr

+τ GHσrσs−FLσrσs
H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr

)
.

It can be checked that all the parameters of the model are identified.

To aggregate the process at a quarterly level, we conduct the same steps as in Appendix

7.1 and obtain

A0X
∗
t = AQ1 X

∗
t−3 + ut, (40)

where ut ∼ N
(
0,ΣQ

)
and

AQ1 = A1A
−1
0 A1A

−1
0 A1 =

 0 0 0

0 M N

0 P Q

 ,
with M,N,P,Q highly non-linear functions of all the structural parameters:

M = p

(
p2 (Gφπσs−Gφπσsρr+1)2

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

−Lpρr
φx−ρrφx−Fφπσs+Fφπσsρr

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

)
,

N = − 1

σr
ρr

(
Lp2σr

Gφπσs−Gφπσsρr+1

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

+HLpσr
ρr

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

)
,
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P = p

(
H
σr
ρ2
r

φx−ρrφx−Fφπσs+Fφπσsρr
(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

+ p
σr
ρr (Gφπσs −Gφπσsρr + 1) φx−ρrφx−Fφπσs+Fφπσsρr

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

)
,

Q =
1

σr
ρr

(
H2 ρ2r

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

−Lpρr
φx−ρrφx−Fφπσs+Fφπσsρr

(H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr)2

)
.

While it is still possible to easily identify σs and σr, we need to solve highly non-linear

equations to find the other parameters, which do not give rise to a unique solution.

In general, we can write the solution of a DSGE model as

st = Ast−1 +But. (41)

Aggregating the process to a quarterly level, we obtain

sτ = A3sτ−1 + ετ , (42)

with the possibility of an MA component, depending on the aggregation method chosen.

Identifying the monthly process from the quarterly one would imply at least to get a

unique A from the matrix A3. Therefore, we want to find the cube roots of a matrix.

But, we can show in the easiest case possible that this is not necessarily unique. Let us

consider for simplicity A3 as a 2× 2 identity matrix16. It is obvious to see that A = I2 is

a cube root of A3. However, it is possible to check that any matrix

A =

[
−d− 1 − 1

f
(d2 + d+ 1)

f d

]
, d, f ∈ R, f 6= 0, (43)

is also a cube root. This is therefore a very easy example which shows that from A3 we

cannot always uniquely identify A.

7.3 Obtaining identification by exploiting mixed frequency data

The unique stable solution for the model

πt = βEtπt+1 + ky∗t + εst, (44)

y∗t = Ety
∗
t+1 − τ (Rt − Etπt+1) + py∗t−1 + εdt, (45)

Rt = ρrRt−1 + (1− ρr)
(
φππt + φyy

∗
t

)
+ εrt, (46)

16The dimension of the matrix is set at n = 2 for simplicity, but it can be extended to any other n.
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is given by

A0X
∗
t = A1X

∗
t−1 + εt, (47)

with A0 and A1 defined as follows:

A0 =


1
σs

F G

0 H L
φπ
σr

(ρr − 1) 1
σr
φx (ρr − 1) 1

σr

 ,

A1 = C =

 0 0 0

0 p 0

0 0 1
σr
ρr

 .
We can rewrite (47) as a system of three equations:

1

σs
πt + Fy∗t +GRt = εst (48)

Hy∗t + LRt = py∗t−1 + εdt (49)
φπ
σr

(ρr − 1) πt +
φy
σr

(ρr − 1) y∗t +
1

σr
Rt =

1

σr
ρrRt−1 + εrt. (50)

We then need to modify eq. (16) in such a way that it contains only variables which

are available at the time of estimation. If we substitute y∗t−1 with its own expression

y∗t−1 = p
H
y∗t−2 − L

H
Rt−1 + 1

H
εdt−1, and then we repeat it again for y∗t−2, we obtain:

y∗t =
p

H

(
p

H
y∗t−2 −

L

H
Rt−1 +

1

H
εdt−1

)
− L

H
Rt +

1

H
εdt−1 =

=
p

H

(
p

H

(
p

H
y∗t−3 −

L

H
Rt−2 +

1

H
εdt−1

)
− L

H
Rt−1 +

1

H
εdt−1

)
− L

H
Rt +

1

H
εdt−1 =

=
( p
H

)3

y∗t−3 −
L

H
Rt −

L

H

( p
H

)
Rt−1 −

L

H

( p
H

)2

Rt−2 + ξt. (51)

From eq. (48), (51) and (50), we can now identify all the parameters. From eq. (48),

we identify σs and obtain F and G. From eq. (50), we identify σr, ρr, φy and φπ. From

eq. (51), we obtain L
H
and p

H
. Moreover, we know that F,G,H,L are defined as:

F = p
β

σs

Fσs +Gσsφx −Gσsρrφx
H + Lφx − Lρrφx +GHφπσs − FLφπσs −GHφπσsρr + FLφπσsρr

− k

σs
,

G =
β

σrσs
ρr

GHσrσs − FLσrσs
H + Lφx − Lρrφx +GHφπσs − FLφπσs −GHφπσsρr + FLφπσsρr

,

H = 1− p
(

Gφπσs−Gφπσsρr+1
H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr
−τ Fσs+Gσsφx−Gσsρrφx

H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr

)
,
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L = τ +
1

σr
ρr

(
L σr
H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr

+τ GHσrσs−FLσrσs
H+Lφx−Lρrφx+GHφπσs−FLφπσs−GHφπσsρr+FLφπσsρr

)
.

After some algebraic manipulations, from the definition of G we obtain β, and from

the definition of F we identify k. Combining the definitions of H and L, we obtain τ .

Once we have τ , we have all the necessary parameters to disentangle H and L, and as a

consequence we identify also p.
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8 Appendix B

8.1 Smets and Wouters (2007, SW): the model equations

We list here the equations which describe the dynamics of the SW model.

The model variables for the sticky wage and price economy are: output (yt), con-

sumption (ct), investment (it), Tobin’s q (qt), utilized capital (kst ), installed capital (kt),

capacity utilization (zt), rental rate of capital (rkt ), price markup (µ
p
t ), inflation rate (πt),

wage markup ( µwt ), real wage (wt), total hours worked (lt), and nominal interest rate

(rt). For the corresponding flexible economy: output (y∗t ), consumption (c
∗
t ), investment

(i∗t ), Tobin’s q (q
∗
t ), utilized capital (k

s∗
t ), installed capital (k

∗
t ), capacity utilization (z

∗
t ),

rental rate of capital (rk∗t ), price markup (µ
p∗
t ), wage markup ( µ

w∗
t ), real wage (w

∗
t ), and

total hours worked (l∗t ), for the corresponding flexible economy.

The shocks are: total factor productivity (εat ), investment-specific technology (ε
i
t ),

government purchases (εgt ), risk premium (εbt), monetary policy (ε
r
t ), wage markup (ε

w
t )

and price markup (εpt ).

Flexible economy:

εat = αrk∗t + (1− α)w∗t (52)

z∗t =
1
ψ

1−ψ
rk∗t (53)

ks∗t = z∗t + k∗t−1 (54)

rk∗t = w∗t + l∗t − ks∗t (55)

y∗t = cyc
∗
t + iyi

∗
t + rksskyz

∗
t + εgt (56)

y∗t = Φ (αks∗t + (1− α) l∗t + εat ) (57)

i∗t =
1

1 + β γ(1−σc)

(
i∗t−1 + β γ(1−σc)Et i

∗
t+1 +

1

γ2 ϕ
q∗t

)
+ εit (58)

q∗t = −r∗t +
(
1− β (1− δ) γ−σc

)
Et r

k∗
t+1 + β (1− δ) γ−σc Etq∗t+1 − εbt (59)

c∗t =

h
γ

1 + h
γ

c∗t−1 +
1

1 + h
γ

Etc
∗
t+1 +

(σc − 1) wsslss

cssσc

(
1 + h

γ

) (
l∗t − Etl∗t+1

)
(60)

−
1− h

γ

σc

(
1 + h

γ

)r∗t + εbt

w∗t = σll
∗
t +

1

1− h
γ

c∗t −
h
γ

1− h
γ

c∗t−1 (61)

k∗t =
(1− δ)
γ

k∗t−1 +

(
1− (1− δ)

γ

)
i∗t (62)

+ γ2 ϕ

(
1− (1− δ)

γ

)(
1 + β γ(1−σc)

)
εit
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Sticky Wage economy:

µpt = α rkt + (1− α) wt − εat (63)

zt =
1
ψ

1−ψ
rkt (64)

rkt = wt + lt − kst (65)

kst = zt + kt−1 (66)

it =
1

1 + βγ(1−σc)

(
it−1 + βγ(1−σc)Et it+1 +

1

γ2 ϕ
qt

)
+ εit (67)

qt = −rt + Etπt+1 +
(
1− β (1− δ) γ−σc

)
Etr

k
t+1 (68)

+ β (1− δ) γ−σc Etqt+1 − εbt

ct =

h
γ

1 + h
γ

ct−1 +
1

1 + h
γ

Et ct+1 +
(σc − 1) wsslss

cssσc

(
1 + h

γ

) (lt − Etlt+1) (69)

−
1− h

γ

σc

(
1 + h

γ

) (rt − Etπt+1) + εbt

yt = cy ct + ii it + rkssky zt+ε
g
t (70)

yt = Φ (αkst + (1− α) lt + εat ) (71)

rt = rπ (1− ρ)πt + (1− ρ) ry (yt − y∗t ) (72)

+ r∆y

(
yt − y∗t − yt−1 + y∗t−1

)
+ ρ rt−1 + εrt

πt =
1

1 + βγ(1−σc) ιp
∗ (73)βγ(1−σc)Etπt+1 + ιp πt−1 +

(1−ξp) (1− βγ(1−σc)ξp)
ξp

1 + (Φ− 1) εp
µpt

+ εpt

wt =
1

1 + βγ(1−σc)
wt−1 +

βγ(1−σc)

1 + βγ(1−σc)
Etwt+1 +

ιw
1βγ(1−σc)

πt−1 (74)

− 1 + βγ(1−σc) ιw
1 + βγ(1−σc)

πt +
βγ(1−σc)

1 + βγ(1−σc)
Etπt+1

+
(1− ξw)

(
1− βγ(1−σc) ξw

)(
1 + βγ(1−σc)

)
ξw

1

1 + (λw − 1) εw
∗(

σl lt +
1

1− h
γ

ct −
h
γ

1− h
γ

ct−1 − wt

)
+ εwt

kt =
(1− δ)
γ

kt−1 +

(
1− (1− δ)

γ

)
it (75)

+ ϕγ2

(
1− (1− δ)

γ

)(
1 + β γ(1−σc)

)
εit
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Dynamics of the shocks:

εat = ρaε
a
t−1 + ηat (76)

εbt = ρb ε
b
t−1 + ηbt (77)

εgt = ρgε
g
t−1 + ηgt + ρgaη

a
t (78)

εit = ρI ε
i
t−1 + ηIt (79)

εrt = ρr ε
r
t−1 + ert (80)

εpt = ρπ ε
p
t−1 + ηpt − µp η

p
t−1 (81)

εwt = ρw ε
w
t−1 + ηwt − µw ηwt−1 (82)

Measurement equations:

dlGDPt = yt − yt−1 + γ̄ (83)

dlCONSt = γ̄ + ct − ct−1 (84)

dlINVt = γ̄ + it − it−1 (85)

dlWAGt = γ̄ + wt − wt−1 (86)

dlPt = πt + π̄ (87)

FEDFUNDSt = rt + r̄ (88)

lHOURSt = lt + l̄ (89)
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8.2 Smets and Wouters (2007): comparison between IRFs obtained with

Bayesian and Maximum Likelihood estimation

In the following figures we report the impulses responses by Smets and Wouters (in solid

line), the ones we obtained by estimating the model with ML on the same sample (in

dashed line), and on the sample extended to the end of 2007 (in x-marked line). The

graphs are meant to show that the results obtained with ML are fairly similar to the

original ones with Bayesian techniques. Moreover, our ML results on the original sample

are very similar to the ones obtained by Iskrev (2008) in a similar experiment.

Figure 9: Impulse Responses to a risk-premium shock
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Notes: The impulse responses in solid lines are those obtained by Smets and Wouters
(2007). The dashed ones, are those obtained with ML estimation on the same sample.

The x-marked ones are those obtained with ML on the sample extended to 2007.
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Figure 10: Impulse Responses to an exogenous spending shock
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Notes: See Notes at Figure 9.

39



Figure 11: Impulse Responses to an investment-specific technology shock
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Notes: See Notes at Figure 9.
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Figure 12: Impulse Responses to a wage markup shock
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Notes: See Notes at Figure 9.
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Figure 13: Impulse Responses to a productivity shock
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Notes: See Notes at Figure 9.
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Figure 14: Impulse Responses to a monetary policy shock

5 10 15 20 25
­0.4

­0.3

­0.2

­0.1

0

0.1
Output

5 10 15 20 25
­0.25

­0.2

­0.15

­0.1

­0.05

0

0.05

0.1
Hours

5 10 15 20 25
­0.05

­0.04

­0.03

­0.02

­0.01

0

0.01
Inflation

5 10 15 20 25
­0.05

0

0.05

0.1

0.15

0.2
Interest rate

Notes: See Notes at Figure 9.
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