Working Paper

Combining inflation density forecasts

Author: By Christian Kascha and Francesco Ravazzolo
Series: Working Paper
Number: 22/2008

Abstract
In this paper, we empirically evaluate competing approaches for combining inflation density forecasts in terms of Kullback-Leibler divergence. In particular, we apply a similar suite of models to four different data sets and aim at identifying combination methods that perform well throughout different series and variations of the model suite. We pool individual densities using linear and logarithmic combination methods. The suite consists of linear forecasting models with moving estimation windows to account for structural change. We find that combining densities is a much better strategy than selecting a particular model ex-ante. While combinations do not always perform better than the best individual model, combinations always yield accurate forecasts and, as we show analytically, provide insurance against selecting inappropriate models. Combining with equal weights often outperforms other weighting schemes. Also, logarithmic combinations can be advantageous, in particular if symmetric densities are preferred.

 

Published 12 December 2008 14:30

Downloads