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Motivation

In light of availability of high-dimensional data, machine learning
(ML) methods are becoming popular in econometrics

Athey and Imbens (2017) and Mullainathan and Spiess (2017),
both on the same issue of J. of Econ.Persp., highlight the use of
such methods in treatment effects, panel data etc.

Main message: while “traditional” econometrics is all about
consistency, the ML revolution is mainly about prediction

Recent work by Athey - Imbens showing that such methods can be
used for causality and policy evaluation

Little work has been done in time-series, even though there is
recent interest in large VARs and regressions with many predictors

Generalized Approximate Message Passing
(2)
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What I do in this paper

This paper works with the general class of graphical models,
estimated using an approximate inference algorithm

First developed by David Donoho (Stanford), and subsequently
Sundeep Rangan (NYU), Generalised Approximate Message
Passsing (GAMP) has been very successful in signal processing

But little is known about the usefulness of such algorithms in
statistics and even less in economics

Recent attempt by Mike Wand (2017, JASA) to introduce message
passing models in statistics (but estimated with Mean Field
Variational Bayes methods, not GAMP)

Why should econometricians care about such algorithms at all?

Generalized Approximate Message Passing
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What I do in this paper 2

In this talk I will attempt to establish the following

GAMP can be easily combined with hierarchical priors that shrink
or select/average coefficients (e.g. Normal-iGamma, or spike and
slab) and more complex prior structures

The computational cost of GAMP increases linearly in the number
of coefficients - it is extremely fast

Unlike “well-established” MCMC algorithms, GAMP-based
algorithms require minimal or no tuning. They are simple and
more transparent than simulation-based equivalents (i.e. you don’t
have to be an expert in Bayesian analysis to do variable selection
in high-dimensional spaces)

They can be fully modular, trivially parallelizable, and adapted to
a wide-class of models

Generalized Approximate Message Passing
(4)
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Structure of this talk

This unconvential Introduction was only to convince you that is worth
discussing about a methodology that is new to economists and entails
lots of engineering jargon. The remainder of the talk is as follows

1 Message passing methods, the GAMP algorithm, and its
combination with shrinkage-inducing priors

2 Monte Carlo evaluation

3 Macro Application 1: Forecasting with many orthogonal predictors

4 Macro Application 2: Forecasting inflation with many predictors
and time-varying parameters

Generalized Approximate Message Passing
(5)



Introduction GAMP mechanics Monte Carlo Empirical Applications Conclusions

Methodology

Consider the following regression with the usual notation/assumptions

y = xβ + ε, (1)

where interest lies in estimation of the p-dimensional vector β, with
possibly p� T .

Consider i.i.d prior p (β) =
∏p
i=1 p (βi), then the exact marginal

posterior for βi, i = 1, ..., p requires evaluation of a (p− 1)-dimensional
integral of the form

p (βi|y) =

∫
p (β|y) dβj 6=i, (2)

∝
∫
p (y|β) p (β) dβj 6=i, (3)

= p (βi)

∫
p (y|β)

p∏
j=1,j 6=i

p (βj) dβj 6=i. (4)

Generalized Approximate Message Passing
(6)
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Message Passing and Belief Propagation

I am going now to show that I can approximate this problem using
graphical models, and in particular factor graphs

Factor graph → “factorize (decompose) random variables into
quantities of lower dimensions”

In our case, the high-dimensional random variable we want to
factorize is the vector β

Example of an efficient factorization: a · b+ a · c = a(b+ c).

The following figure depicts the factor graph for the regression
problem

Variable vertices β = (β1, ..., βp) are denoted with a white circle
Function vertices
f = [p (β) , p (y|β)] = [p (β1) , ..., p (βp) , p (y1|β) , ..., p (yT |β)] are
represented using filled boxes

Generalized Approximate Message Passing
(7)
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Factor graph for regression model

Generalized Approximate Message Passing
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Message passing approach

Define µp(•)→a the message passed from probability function p(•) to
random variable a, then:

p (βi|y) = µp(βi)→βi

T∏
t=1

µp(yt|β)→βi . (5)

where µp(βi)→βi = p (βi). According to sum-product rule we further
have

1 µp(yt|β)→βi =
∫
p (yt|β)

∏p
j=1,j 6=i µβj→p(yt|β)dβj 6=i.

2 µβj→p(yt|β) = p (βj)
∏T
s=1,s 6=t µp(ys|β)→βj .

Generalized Approximate Message Passing
(9)
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Belief Propagation

We can estimate messages 1 and 2 above using the following iterative
scheme, for r = 1, ..., R

µ
(r+1)
p(yt|β)→βi =

∫
p (yt|β)

p∏
j=1,j 6=i

µ
(r)
βj→p(yt|β)dβj 6=i, (6)

µ
(r+1)
βj→p(yt|β) = p (βj)

T∏
s=1,s 6=t

µ
(r)
p(ys|β)→βj , (7)

This “rule” is called Belief Propagation (Pearl, 1982)

General approach to inference in Bayesian Networks

Shows how to calculate the marginal distribution for each
unobserved node, conditional on any observed nodes

Generalized Approximate Message Passing
(10)



Introduction GAMP mechanics Monte Carlo Empirical Applications Conclusions

The GAMP approximation to Belief Propagation

There are several message passing algorithms for estimating the
quantities in the messages µp(yt|β)→βi and µβj→p(yt|β)

For example, Wand (2017, JASA) suggests Variational Bayes

GAMP relies on two approximations

When p→∞ a central limit theorem (CLT) postulates that the

messages ln
[∏p

j=1,j 6=i µβj→p(yt|β)

]
can be approximated by a

Gaussian distribution with respect to the uniform norm

second approximation involves taking the Taylor-series expansion of
terms in the messages, so that the mean and variance of p (βi|y) can
be obtained analytically up to the omission of O (1/p) terms

♠ As p→∞ both approximations vanish!

Generalized Approximate Message Passing
(11)
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The GAMP algorithm in a regression problem

Consider the regression model

yt = xtβ + εt,

where εt ∼ N
(
0, σ2

)
, yt is scalar, xt is 1× p vector, and consider the

prior distribution β ∼ Np (0, V ), V diagonal (hence p(βi) independent).

Initialize µ
(1)
β = 0, V

(1)
β = V , set s(0) = 0 and define x̃ = x� x, where �

denotes the Hadamard (element-wise) product (also, � denotes
element-wise division of matrices/vectors of the same dimension).
Finally, define z = xβ.

Generalized Approximate Message Passing
(12)
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The GAMP algorithm in practice

Algorithm 1 GAMP iterations

1: for r = 1 to R do
2: STEP 1: τ

(r)
c = (x� x)τ

(r)
β

3: c(r) = xµ
(r)
β − s(r−1) � τ

(r)
c

4: STEP 2: s(r) =
(
µ
(r)
z − c(r)

)
� τ (r)c

5: τ
(r)
s =

(
1− τ (r)z � τ (r)c

)
� τ (r)c

6: where µ
(r)
z = E

(
z| c(r), τ (r)c

)
and τ

(r)
z = var

(
z| c(r), τ (r)c

)
7: STEP 3: τ

(r)
q = 1�

(
Sτ

(r)
s

)
8: q(r) = µ

(r)
β + τ

(r)
q � x′s(r)

9: STEP 4: β ∼ N
(
µ
(r+1)
β , τ

(r+1)
β

)
10: where µ

(r+1)
β = E

(
β|q(r), τ (r)q

)
and τ

(r+1)
β = var

(
β|q(r), τ (r)q

)
11: end for

Generalized Approximate Message Passing
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Computational points

The algorithm provides approximation of the first two moments of

β (no need to sample from N
(
µ
(r+1)
β , τ

(r+1)
β

)
)

→ Convergence when ‖µ(r+1)
β − µ(r)

β ‖ → 0

Total of O(Tp) algorithmic operations, takes seconds with e.g.
T = 200 and p = 200.
→ Instead of element-wise operators, we can define the algorithm using

for loops (over t and over i) → Easy to parallelize for very large T
or p

Marginalizations/factorizations imply posterior independence,
therefore algorithm will not converge with highly correlated
predictors.
→ This is a problem for MCMC algorithms (Madigan et al. 1999), but

much more so for GAMP.

Empirically GAMP can still be very useful: will show one Monte
Carlo simulation & two examples from macroeconomics

Generalized Approximate Message Passing
(14)
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How I use GAMP in this paper

Main benefit of GAMP: Can be used with generic prior and
likelihood functions
I combine with popular hierarchical priors (using an EM-GAMP
scheme):

1 Sparse Bayesian Learning (SBL), (Tipping, 2001, J.of Machine
Learning Research):

p (βi|αi) = N
(
0, α−1i

)
, (8)

p (αi) = Gamma (a, b) . (9)

2 Spike and Slab prior (SNS) (Mitchell and Beauchamp, 1988,
JASA):

p (βi|π0) = (1− π0) δ0 + π0N
(
0, α−1

)
, (10)

p (π0) = Beta
(
ρ
1
, ρ

2

)
. (11)

Generalized Approximate Message Passing
(15)
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Experiments on artificial data

Generate p predictors, with T observations each, from a Normal

Correlation among predictors is corr(xi, xj) = ρ|i−j|

Only first q = bc× pe predictors important

q coefficients from continuous U (−4, 4), all others are zero

Three different Data Generating Processes

1 Model 1: T = 50, p = 100, 200, 500 and ρ = 0.3 and c = 0.01

2 Model 2: T = 200, p = 100, 200, 500 and ρ = 0.3 and c = 0.05
3 Model 3: T = 200, p = 100 and ρ = 0.9 and c = 0.05.

→ In Model 3 predictors are orthogonalized (for estimation)

� Measure accuracy using Mean Absolute Deviations between true and
estimated parameters over all Monte Carlo iterations

Generalized Approximate Message Passing
(16)
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Model 1: Boxplots of MAD statistics
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Figure: Boxplots of MAD statistics over the 500 Monte Carlo iterations for
Model 1 case (T = 50, p = 100, 200, 500).

Generalized Approximate Message Passing
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Model 2: Boxplots of MAD statistics
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Figure: Boxplots of MAD statistics over the 500 Monte Carlo iterations for
Model 2 case (T = 200, p = 100, 200, 500).

Generalized Approximate Message Passing
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Model 3: Boxplots of MAD statistics
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Figure: Boxplots of MAD statistics over the 500 Monte Carlo iterations for
Model 3 case (T = 200, p = 100).

Generalized Approximate Message Passing
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...and why you should take this algorithm seriously

Table: Computing time (seconds) per Monte Carlo iteration for each of the
four algorithms.

SBL SNS LASSO SSVS

p = 100 < 0.01 < 0.01 4.03 1.81
T = 50 p = 200 < 0.01 < 0.01 12.88 5.29

p = 500 < 0.01 0.01 92.99 38.59

p = 100 < 0.01 0.01 6.28 1.98
T = 200 p = 200 < 0.01 0.01 12.54 5.11

p = 500 < 0.01 0.28 54.89 18.29
Notes: The reference machine is a 64 bit Windows 7-based PC with Intel Core 7

4770K CPU, 32GB DDR3 RAM running MATLAB 2016a.

Generalized Approximate Message Passing
(20)
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Empirical Application 1

Now let’s look how this algorithm fairs in real situations

222 US quarterly macro series, 1959:Q1-2015:Q3 (FRED-QD of Mike
McCracken)

I use one series at a time as y, remaining 221 converted to factors (to be
exact, only 130 of 222 disaggregated series used for factors)

Standard univariate forecast regressions with one lag + 50 factors
(orthogonal predictors)

h = 1, 2, 4, 8 (setting identical to Stock and Watson, 2012, JBES)

Competing methods: LASSO, SSVS, BMA, BAGGING, DFM5 (use
always first 5 factors from 50), OLS (on the full model with 50 factors)

Tables show quantiles of MSFEs (relative to MSFE of AR(1))
averaged over all 222 series

Generalized Approximate Message Passing
(21)
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Empirical Application 1, constant volatility

Horizon h = 1
SBL SNS LASSO SSVS BMA BAG DFM5 OLS

0.05 0.746 0.763 0.781 0.723 0.733 0.757 0.745 0.872
0.25 0.898 0.935 0.943 0.917 0.915 0.921 0.915 1.033
0.5 0.975 0.999 0.996 0.990 0.990 0.987 0.993 1.130
0.75 1.011 1.002 1.040 1.003 1.013 1.020 1.029 1.273
0.95 1.058 1.021 1.111 1.037 1.068 1.087 1.106 1.544

Horizon h = 2
SBL SNS LASSO SSVS BMA BAG DFM5 OLS

0.05 0.745 0.737 0.799 0.748 0.750 0.713 0.753 0.844
0.25 0.866 0.911 0.919 0.889 0.897 0.902 0.887 1.013
0.5 0.980 0.998 1.001 0.990 0.989 0.979 0.990 1.121
0.75 1.021 1.002 1.050 1.007 1.024 1.033 1.041 1.270
0.95 1.094 1.052 1.135 1.069 1.112 1.114 1.137 1.495

Horizon h = 4
SBL SNS LASSO SSVS BMA BAG DFM5 OLS

0.05 0.765 0.758 0.784 0.774 0.766 0.703 0.783 0.858
0.25 0.871 0.888 0.908 0.885 0.884 0.885 0.870 1.014
0.5 0.961 0.979 0.991 0.975 0.980 0.970 0.978 1.111
0.75 1.012 1.001 1.054 1.009 1.030 1.025 1.051 1.279
0.95 1.129 1.057 1.163 1.102 1.166 1.159 1.197 1.574

Horizon h = 8
SBL SNS LASSO SSVS BMA BAG DFM5 OLS

0.05 0.728 0.703 0.753 0.696 0.753 0.769 0.744 0.892
0.25 0.909 0.927 0.920 0.916 0.917 0.935 0.898 1.036
0.5 0.989 0.993 1.010 0.985 1.001 1.008 0.973 1.183
0.75 1.047 1.019 1.078 1.028 1.054 1.070 1.060 1.357
0.95 1.157 1.111 1.232 1.136 1.236 1.253 1.321 1.895

Generalized Approximate Message Passing
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Empirical Application 1, EWMA volatility

Horizon h = 1
SBL-EWMA SNS-EWMA SBL SNS DFM5

0.05 0.730 0.733 0.746 0.763 0.745
0.25 0.892 0.928 0.898 0.935 0.915
0.5 0.971 0.991 0.975 0.999 0.993
0.75 0.999 0.994 1.011 1.002 1.029
0.95 1.028 1.018 1.058 1.021 1.106

Horizon h = 2
SBL-EWMA SNS-EWMA SBL SNS DFM5

0.05 0.747 0.738 0.745 0.737 0.753
0.25 0.858 0.892 0.866 0.911 0.887
0.5 0.972 0.990 0.980 0.998 0.990
0.75 1.002 0.995 1.021 1.002 1.041
0.95 1.056 1.027 1.094 1.052 1.137

Horizon h = 4
SBL-EWMA SNS-EWMA SBL SNS DFM5

0.05 0.752 0.747 0.765 0.758 0.783
0.25 0.868 0.882 0.871 0.888 0.870
0.5 0.946 0.979 0.961 0.979 0.978
0.75 0.999 0.994 1.012 1.001 1.051
0.95 1.069 1.051 1.129 1.057 1.197

Horizon h = 8
SBL-EWMA SNS-EWMA SBL SNS DFM5

0.05 0.703 0.675 0.728 0.703 0.744
0.25 0.893 0.910 0.909 0.927 0.898
0.5 0.976 0.982 0.989 0.993 0.973
0.75 1.027 1.005 1.047 1.019 1.060
0.95 1.120 1.090 1.157 1.111 1.321

Generalized Approximate Message Passing
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Empirical Application 2

Second application involves TVP regressions for inflation

πt = τt + φtπt−1 + βtxt + εt (12)

We now know that for inflation SV is important (as with other
macro variables), but also time-varying trend and possibly lags

Many people have proposed various Bayesian methods - some are
in this room today.

Existing methods cannot incorporate large number of predictors

Even if they do incorporate some predictors MCMC variants are
extremely complex, and hard to beat parsimonious TVP-AR or
UC-SV specifications or simpler forgetting factor estimators

Generalized Approximate Message Passing
(24)
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Empirical Application 2

The TVP model can be written as constant parameter regression with
time-dummies (assume intercept and lags are all in a matrix x)

y = zθ + ε (13)

where

z =


x1 0 . . 0
0 x2 . . .
. 0 . . .
. . . . .
0 0 . . xT

 .

Without further assumptions, z′z is rank deficient

This is why people rely on the hierarchical prior p (θt|θt−1) ∼ RW
What if I do not use this restrictive prior, but instead shrink θ?

Generalized Approximate Message Passing
(25)
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Empirical Application 2

y = zθ + ε (14)

What if I do not use this restrictive prior, but instead shrink θ?

I will now show that GAMP can be used to estimate this
regression and recover TVP coefficients

I use monthly CPI data (685 obs) and 118 predictors

z has 80,830 columns!

→ Note that if desirable, we can also do the same shrinkage
estimation WITH the RW prior imposed, WITHOUT the need of
Kalman Filter (see Chan and Jeliazkov, 2009)

→ In that case, we could also use GAMP in state-space form

Generalized Approximate Message Passing
(26)
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Empirical Application 2: Parameter Estimates

Figure: Parameter estimates (Int, first & second lag), TVP-AR (MCMC) vs
Regression with time dummies + shrinkage (GAMP)
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Empirical Application 2: MSFEs (relative to AR(2))

h = 1 h = 6 h = 12
AR(2) 1.000 1.000 1.000
TVP AR models:
KP-AR(2) (Koop+Potter) 0.878 0.610 0.514
GK-AR(2) (Giordani+Kohn) 0.975 0.878 0.839
TVP-AR(2) 0.888 0.808 0.626
UC-SV 0.996 0.944 0.568
Constant parameter models with predictors:
LASSO-AR(2) + all predictors 0.901 0.863 0.916
SSVS-AR(2) + all predictors 0.898 0.914 0.894
GAMP-SBL-AR(2) + all predictors 0.999 0.822 0.927
GAMP-SNS-AR(2) + all predictors 0.952 0.895 0.740
TVP models with predictors:
TVP-BMA-AR(2) + 10 predictors 0.906 1.070 0.813
TVP-DMA-AR(2) + 10 predictors 0.825 0.594 0.433
GAMP-SBL-TDAR(2) + all predictors 0.863 0.690 0.505
GAMP-SNS-TDAR(2) + all predictors 0.832 0.701 0.604

Generalized Approximate Message Passing
(28)
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Empirical Application 2: logPLs (relative to AR(2))

h = 1 h = 6 h = 12
AR(2) 0.000 0.000 0.000
TVP AR models:
KP-AR(2) (Koop+Potter) -0.089 0.522 0.218
GK-AR(2) (Giordani+Kohn) 0.202 0.078 -0.076
TVP-AR(2) 0.287 0.112 0.096
UC-SV 0.065 0.078 0.101
Constant parameter models with predictors:
LASSO-AR(2) + all predictors -0.515 -0.997 -0.333
SSVS-AR(2) + all predictors 0.191 0.489 0.268
GAMP-SBL-AR(2) + all predictors -0.313 0.123 0.031
GAMP-SNS-AR(2) + all predictors 0.115 0.194 -0.192
TVP models with predictors:
TVP-BMA-AR(2) + 10 predictors 0.548 0.077 0.551
TVP-DMA-AR(2) + 10 predictors -0.091 -0.482 -0.178
GAMP-SBL-TDAR(2) + all predictors 0.003 0.416 0.045
GAMP-SNS-TDAR(2) + all predictors 0.055 0.258 0.144
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Conclusions

New Bayesian estimation methodology for models with orthogonal
predictors

Extremely fast, automatic (not much tuning), and low
maintenance costs

Fully modular and parallelizable algorithm

Can be combined with arbitrary prior distributions - I show how it
works with Normal-Inverse Gamma, and spike and slab priors

It can be useful in various scenarios that macroeconomists are
interested in

But algorithm can be combined with arbitrary likelihood function
- possible future research would be to use GAMP to estimate
Bayesian quantile regression (Laplace likelihood)

Generalized Approximate Message Passing
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