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Introduction

The problem of correctly specifying a model has been a
recurring theme in econometrics.

There are a number of competing approaches such as those
based on specification testing or the use of information criteria

Up until recently, the problem of variable or model selection
has been analysed using standard statistical framework where
the number of observations is considerably larger than the
number of potential variables.

In high-dimensional regression settings, where the number
of variables (models) is larger than the number of available
observations, model selection and estimation have been
largely approached using a set of methods collectively known
as penalised (or regularised) regression.
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Other approaches (often referred as machine learning
techniques) such boosting, regression trees, and step-wise
regressions are also used, but they lack a rigorous theory and
the stopping criteria used in these algorithms are often ad hoc.

In this paper we propose an alternative approach to the
problem of variable selection in high-dimensional linear
regression models.
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Introduction: The Variable Selection Problem

Suppose that an investigator is faced with the problem of
explaining the target variable, denoted as yt , in terms of n
potential covariates, xnt = (x1t , x2t , ..., xnt)′. It is assumed
that the model generating yt is spanned by a sparse sub-set of
xnt .

Both n and T are large (and possibly n > T ).

Accordingly, the n potential covariates are classified in three
categories:

k signals, that together generate yt (k is fixed as n→ ∞)
k∗ pseudo-signals, which are not included in the model
generating yt (the DGP for short), but are correlated with
signals.
n− k − k∗ remaining noise covariates which are uncorrelated
with the k signal variables.

The identity of the signals is not known.
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Literature

Penalised regressions

Penalised regressions can be applied to linear as well as
non-linear regression models. In the linear case

yt = a+
n

∑
i=1

βixit + ut , t = 1, 2, ...,T ,

penalised regressions are used when n is large relative to T .

The potential covariates, {xit , for i = 1, 2, .., n}, are typically

standardised and in some cases also orthogonalised,
assumed to be strictly exogenous - in some papers endogeneity
is allowed but it is assumed there exist suitable instruments.
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Examples of penalty functions used in the literature:

Ridge regression:
n

∑
i=1

β2
i < K < ∞,

Lasso regression:
n

∑
i=1

|βi | < K < ∞,

Non-convex penalised regression:
n

∑
i=1

|βi |γ < K < ∞, 0 < γ < 1

or

Elastic net regression:
n

∑
i=1

[
(1− α) |βi |+ αβ2

i

]
< K < ∞.
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The penalised regressions are then computed by solving the
optimisation problem [βn = (β1, β2, ..., βn)′]

min
β

{
T

∑
t=1

(
yt − a− β′nxnt

)2
+ λ

n

∑
i=1

[
(1− α)|βi |γ + αβ2

i

]}
,

xnt = (x1t , x2t , ...., xnt)
′ for given values of λ, α and γ.

OLS corresponds to the no penalty case of λ = 0 and when
λ 6= 0, α = 1 yields the Ridge regressions and α = 0, γ = 1
the Lasso regression, with the latter being better suited for a
predictor selection as originally noted by Tibshirani (1996,
JRSS).

λ, α and γ are estimated using cross-validation techniques.

Chudik, Kapetanios and Pesaran OCMT Approach to Variable Selection



This Paper: A New Method

In this paper we propose One Covariate at a time Multiple
Testing (OCMT) procedure, where covariates are selected
one at a time, based on a t-test.

The general case requires an iterative stage to account for the
statistical contribution of covariates that have not been
previously selected (again one at a time) to the unexplained
part of yt .

The selected covariates are then used, in a final multiple
regression stage, to provide the final coefficient estimates.

In carrying out the t-tests we adjust the critical values to take
account of the multiple testing nature of the procedure.
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OCMT is conceptually and computationally simple, and
stands at the other extreme to the penalised regression
technique that considers all the covariates simultaneously.

Also unlike penalised regression and boosting, OCMT has an
important inferential element which helps in providing a bridge
between large and small dimensional analysis and inference.

Assumptions that underlie OCMT are in many ways weaker
than those for penalised regression and can be relaxed in a
more transparent manner due to OCMT’s roots in classical
inference.
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OCMT can accommodate non-sparse Cov(xnt), so long as
the correlations of signal and noise variables are sufficiently
weak. No restrictions are imposed on the correlations amongst
the noise variables.

But like penalised and boosting techniques, OCMT only
applies when the underlying DGP is sparse.

Also, it is possible for OCMT to select some pseudo-signals
(if they are sufficiently correlated with signals). In such cases
one could apply standard model selection criteria (such as the
Schwarz criterion) to the set of covariates selected by OCMT
(which is likely to be a lot less than T , in practice).
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Net Effect Coefficients

Consider the data generating process (DGP) given by

yt = a+
k

∑
i=1

βixit + ut , for t = 1, 2, ....,T . (1)

Following Pesaran and Smith (2014, Economics Letters) we
introduce the following total or ‘net’ effect of xit on yt :

θi ,T =
n

∑
j=1

I (βj 6= 0)βjσij ,T =
k

∑
j=1

βjσij ,T , (2)

where σij ,T = E
(
T−1x ′iMτx j

)
, Mτ = IT − τT τ′T /T , and

τT = (1, 1, ..., 1)′.
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Net Effect Coefficients

To simplify the notations we suppress the T subscript and use
θi and σij below.

θi plays a crucial role in our proposed approach. We base
inference on θi and then decide if such an inference can help
in deciding whether or not βi = 0.
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Relationship between βi and θi

Ideally we would like to be able to base our selection decision
directly on βi and its estimate (jointly with the other
covariates). But when n is large such a strategy is not feasible
without some form of penalization.

Instead of following the penalization route, we propose to base
inference on θi and then decide if such an inference can help
in deciding whether or not βi = 0.

It is important to stress that knowing θi does not imply we
can determine βi . But it is possible to identify conditions
under which knowing θi = 0 or θi 6= 0 will help identify
whether βi = 0 or not.

Chudik, Kapetanios and Pesaran OCMT Approach to Variable Selection



The inverse mapping from θi to βi

θi 6= 0 θi = 0
βi 6= 0 (I) Signal net effect is nonzero (II) Signal net effect is zero
βi = 0 (III) Noise net effect is nonzero (IV) Noise net effect is zero

We consider each case in turn under appropriate restrictions.

Cases I and IV, βi 6= 0 iff θi 6= 0 arise if signal and noise
variables are uncorrelated.
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Case II, βi 6= 0 and θi = 0 can arise for some signals (not all),
and will be covered by iterating on the OCMT procedure.

Case III, βi = 0 and θi 6= 0 arises if the i th covariate is
correlated with one or more signal variables. To identify the
signal variables we need these correlations to be reasonably

weak, in the sense that
n

∑
j=k+1

|θj | < K < ∞ is satisfied. Finite

k∗ or (when k∗ → ∞)
n

∑
j=1
|σij | < K < ∞, for i = 1, 2, ..., k , is

sufficient.
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To deal with Case II, we generalise θi to consider a conditional
‘net’ effect of xit on yt , where we condition on the effect of a
subset of the signal (and pseudo signal) variables on yt .

We show this conditional ‘net’ effect will always be non-zero
for some such subsets.

We denote such conditional net effects of covariate i by

θi ,T (z) =
k

∑
j=1

βjσij ,T (z) where σij ,T (z) = E
(
T−1x ′iMzx j

)
,

Mz = IT − Z (Z ′Z )−1Z ′, Z = (z1, z2, ..., zT )
′, and z t is a

vector of variables that includes the constant and a subset of
covariates. We suppress the T subscript and use θi (z) and
σij (z) below.
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The OCMT Approach

We analyse the iterative scheme underlying OCMT. The need
for an iterative scheme arises due to the possibility, discussed
above, that θi = 0 and βi 6= 0.

We call such signal variables hidden signals.

Not all signal variables can be hidden.

Once one conditions on the set of signal variables that are not
hidden then, we show that there exists i such that θi (z) 6= 0,
while θi = 0 and βi 6= 0, where z denotes the signal variables
that are not hidden.

Using this fact one can successively uncover all hidden signals
(if any).
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The OCMT Approach - Stage 1

If we denote by P the set of iterations that need to be
considered to uncover all hidden signals, then 1 ≤ P0 ≤ k,
where P0 is the true value of P.

In the first stage, we run the n bivariate OLS regressions of yt
on xit ,

yt = ci ,(1)+φi ,(1)xit + eit,(1), t = 1, 2, ...,T , for i = 1, 2, ..., n,
(3)

and consider the t-ratio of θi ,(1), denoted by tθ̂T ,i ,(1)
in this

simple regression.
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The OCMT Approach -Stage 1

The first stage multiple testing estimator of I(1) (βi 6= 0) is
given by

̂I(1) (βi 6= 0) = I
[∣∣∣tφ̂i ,(1)

∣∣∣ > cp(n)
]

, for i = 1, 2, ..., n, (4)

where

cp(n, δ) = Φ−1
(

1− p

2f (n, δ)

)
(5)

is a critical value function, and f (n, δ) = nδ, for
0 < δ < ∞. We use δ∗ > δ in higher stages.

Covariates for which ̂I(1) (βi 6= 0) = 1 are selected as signals
or pseudo-signals.
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It is useful to note that c2p (n, δ) = O [δ ln (n)], and

exp

[
−
κc2p (n, δ)

2

]
= 	

(
n−δκ

)
. (6)

Assuming there exists κ1 > 0, such that T = 	 (nκ1), it
follows that cp (n, δ) = o

(
TC0

)
, for all C0 > 0.

As we shall see, the OCMT procedure applies irrespective of
whether n is small or large relative to T , so long as
T = 	 (nκ1), for any finite κ1 > 0.
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The OCMT Approach - Stage j>1

Denote the number of covariates selected in the first stage by
k̂s(1), the index set of the selected variables by Ss

(1), and the

T × k̂s(1) matrix of the k̂s(1) selected variables by X s
(1).

Further, let X (1) = (τT , X s
(1)), k̂(1) = k̂s(1), S(1) = S

s
(1) and

N(1) = {1, 2, ..., n} \ S(1).
In iteration stages j = 2, 3, ..., we consider the n− k̂(j−1)
regressions of yt on the variables in X (j−1) and, one at the
time, xit for i ∈ N(j−1).
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The OCMT Approach - Stage j>1

We then compute the following t-ratios

tφ̂T ,i ,(j)
=

φ̂T ,i ,(j)

s.e.
(

φ̂T ,i ,(j)

) =
x ′iM (j−1)y

σ̂i ,(j)

√
x ′iM (j−1)x i

, for i ∈ N(j−1), j ≥ 2,

(7)

where φ̂T ,i ,(j) = φ̂i ,(j) =
(
x ′iM (j−1)x i

)−1
x ′iM (j−1)y denotes

the estimated conditional net effect of xit on yt in stage j ,
σ̂2
i ,(j) = T−1e ′i ,(j)e i ,(j),

M (j−1) = IT −X (j−1)(X
′
(j−1)X (j−1))

−1X ′(j−1), and ei ,(j)

denotes the residual of the regression of y on
(
x i , X (j−1)

)
.
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The OCMT Approach -Stage j>1

Regressors for which
̂I(j) (βi 6= 0) = I

[∣∣∣tφ̂T ,i ,(j)

∣∣∣ > cp(n, δ∗)
]
= 1, are then added

to the set of already selected signal variables from the
previous stages.

Denote the number of variables selected in stage j by k̂s(j),

their index set by Ss
(j), and the T × k̂s(j) matrix of the k̂s(j)

selected variables by Xs
(j).

Also define X(j) = (X(j−1), Xs
(j)) = (x (j),1, ..., x (j),T )

′,

k̂(j) = k̂(j−1) + k̂s(j), S(j) = S(j−1) ∪ S
s
(j), and

N(j) = {1, 2, ..., n} \ S(j), and then proceed to stage j + 1.

Note that φ̂T ,i ,(j) →p θi ,(j)/σii ≡ θi

(
x (j−1)

)
/σii and θi (z)

denotes the conditional net effect introduced previously. Note
also that θi ,(1) is θi .
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The OCMT Approach - Final Stage

The procedure stops when no regressors are selected at a
given stage j . Then stage j − 1 will be denoted by P̂n,T , the
estimator of P0. So,

P̂n,T = min

{
j : ∑

i

̂I(j) (βi 6= 0) = 0

}
− 1, (8)

and
̂I (βi 6= 0) = ∑

P̂n,T

j=1
̂I(j) (βi 6= 0).

In the final step a multivariate regression of yt on all the selected
regressors is considered for inference and forecasting.
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The OCMT approach: Assumptions

We consider the following assumptions:

Assumption 1 Let X k,k∗ = (X k , X ∗k∗), where
X k = (x1, x2, ..., xk), and X ∗k∗ = (xk+1, xk+2, ..., xk+k∗) are T × k
and T × k∗ observation matrices on signal and noise variables, and
suppose that there exists T0 such that for all T > T0,(
T−1X ′k,k∗X k,k∗

)−1
is nonsingular with its smallest eigenvalue

uniformly bounded away from 0, and Σk,k∗ = E
(
T−1X ′k,k∗X k,k∗

)
is nonsingular for all T .

Assumption 2 The error term, ut , in DGP (1) is a martingale
difference process with respect to Fu

t−1 = σ (ut−1, ut−2, ..., ), with
zero mean and a constant variance, 0 < σ2 < C < ∞. Each of the
n covariates considered by the researcher, collected in the set
Snt = {x1t , x2t , ..., xnt}, is independently distributed of the errors
ut ′ , for all t and t ′.
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Assumption 3 Let F x
it = σ (xit , xi ,t−1, ....), where xit , for

i = 1, 2, ..., n, is the i-th covariate in the set Snt considered by the
researcher. Define F xn

t = ∪nj=k+k∗+1F x
jt , F xo

t = ∪k+k∗

i=1 F x
jt , and

F x
t = F xn

t ∪ F xo
t . Then, xit , i = 1, 2, ..., n, are martingale

difference processes with respect to F x
t−1. xit is independent of xjt ′

for i = 1, 2, ..., k + k∗, j = k + k∗ + 1, k + k∗ + 2, ..., n, and for all
t and t ′, and E

[
xitxjt − E (xitxjt)

∣∣F x
t−1
]
= 0, for i , j = 1, 2, ..., n,

and all t.
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Assumption 4 There exist sufficiently large positive constants
C0,C1,C2 and C3 and sx , su > 0 such that the covariates
Snt = {x1t , x2t , ..., xnt} satisfy

sup
i ,t

Pr (|xit | > α) ≤ C0 exp (−C1αsx ) , for all α > 0,

and the errors, ut , in DGP (1) satisfy

sup
t

Pr (|ut | > α) ≤ C2 exp (−C3αsu ) , for all α > 0.
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Assumption 5 Consider the pair {xt , q ·t}, for t = 1, 2, ...,T ,
where q ·t = (q1,t , q2,t , ..., qlT ,t)

′ is an lT × 1 vector containing a
constant and a subset of Snt , and xt is a generic element of Snt
that does not belong to q ·t . It is assumed that E (q ·txt) and
Σqq = E (q ·tq ′·t) exist and Σqq is invertible. Define

γqx ,T = Σ−1qq

[
T−1 ∑T

t=1 E (q ·txt)
]

and

ux ,t,T =: ux ,t = xt − γ′qx ,Tq ·t . All elements of the vector of
projection coefficients, γqx ,T , are uniformly bounded and only a
finite number of the elements of γqx ,T are different from zero.

Assumption 6 The number of the true regressors in DGP (1), k,
is finite, and their slope coefficients could change with T , such
that for i = 1, 2, ..., k , βi ,T = 	

(
T−ϑ

)
, for some 0 ≤ ϑ < 1/2.
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Discussion of the assumptions

We allow for stochastic covariates, but require them to be
martingale differences. This is less restrictive than the IID
assumption often used in the literature.

But the martingale difference assumption need not be imposed
on the (pure) noise variables. Mixing can be used instead.

The pure noise variables can have any arbitrary degree of
correlation with the other noise variables.

Exponential probability tail assumptions are ubiquitous in the
literature.

Chudik, Kapetanios and Pesaran OCMT Approach to Variable Selection



Proposition

Suppose that yt , t = 1, 2, ...,T , are generated according to (1),
with βi 6= 0 for i = 1, 2, ..., k , and that Assumption 1 holds. Then,
there exists j , 1 ≤ j ≤ k , for which θi ,(j) 6= 0, and the population
value of the number of stages required to select all the signals,
denoted as P0, satisfies 1 ≤ P0 ≤ k .
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Example

As an illustration of the above Proposition consider the case where
k = 2, x1t and x2t are signal variables (hence β1 6= 0 and β2 6= 0)
and the remaining n− 2 variables in xnt are noise variables. Then
θ1 = β1σ11 + β2σ12 and θ2 = β2σ22 + β1σ12, and θi = 0, for

i > 2. Now if θ1 = 0, then β1 = − β2σ12
σ11

and θ2 = β2

(
σ22 − σ2

12
σ11

)
which can only be zero if the two signals are perfectly correlated.
This is disallowed by Assumption 1. Furthermore, suppose that x2t
is selected in the first stage of OCMT, then it follows that once we
condition on x2t the net effect of x1t , denoted by θ1,(2) will be
equal to β1σ11 which is non-zero by assumption.
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Theorem 1 - Statement of conditions

Consider the DGP (1) with k signal variables. In addition suppose
that there are k∗ pseudo-signal variables and n− k − k∗ noise
variables, and that Assumptions 1-4 and 6 hold. Assumption 5
holds for all pairs (xit , X (j−1)), i ∈ N(j−1), j = 1, 2, ..., where j
denotes the stage of the OCMT procedure, and X (j−1), and
N(j−1) are defined above.

cp (n, δ) is given by (5) with 0 < p < 1 and let f (n, δ) = cnδ, for
the first stage of OCMT and f (n, δ∗) = cnδ∗ , for subsequent
stages, for some c > 0, δ∗ > δ > 0. n,T → ∞, such that
T = 	 (nκ1), for some κ1 > 0, and k∗ = 	(nε) for some positive
ε < min {1, κ1/3}.
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Theorem 1 - Probability of P̂n,T > k

For any 0 < κ < 1, for some constant C0 > 0, and under the
conditions above, the probability that the number of stages in the
OCMT procedure, P̂n,T , defined by (8), exceeds k is given by

Pr
(
P̂n,T > k

)
= O

(
n1−κδ∗

)
+O

(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
.
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Theorem 1 - Probability of choosing the pseudo-true model

It is instructive to define formally the concept of the pseudo-true
model, which we consider this to be a set of models. Each model
in the set contains xit , i = 1, ..., k . No model can contain any of
the variables xit , i = k + k∗ + 1, ..., n. The models in the set may
contain some or all of xit , i = k + 1, ..., k + k∗. Formally, let

A0 =

{
k

∑
i=1

̂I (βi 6= 0) = k

}
∩
{

n

∑
i=k+k∗+1

̂I (βi 6= 0) = 0

}
.

For any 0 < κ < 1, for some constant C0 > 0, and under the
conditions above, we have

Pr (A0) = 1 +O
(
n1−δκ

)
+O

(
n2−δ∗κ

)
+O

(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
.
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Theorem 1 - True positive rate (TPR)

Consider the true positive rate (TPRn,T ),

TPRn,T =
∑n

i=1 I
[

̂I (βi 6= 0) = 1 and βi 6= 0
]

∑n
i=1 I (βi 6= 0)

.

For any 0 < κ < 1, for some constant C0 > 0, and under the
conditions above, we have

E |TPRn,T | = 1 +O
(
n1−κ1/3−κδ

)
+O

[
exp

(
−nC0κ1

)]
,

and if δ > 1− κ1/3, then TPRn,T →p 1;
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Theorem 1 - False positive rate (FPR)

Consider the false positive rate (FPRn,T ),

FPRn,T =
∑n

i=1 I
[

̂I (βi 6= 0) = 1, and βi = 0
]

∑n
i=1 I (βi = 0)

.

For any 0 < κ < 1, for some constant C0 > 0, and under the
conditions above, we have

E |FPRn,T | =
k∗

n− k
+O

(
n−κδ

)
+O

(
n1−κ1/3−κδ

)
+O

(
n1−κδ∗

)
+O

(
nε−1)+O

[
exp

(
−nC0κ1

)]
,

and if δ > min {0, 1− κ1/3}, and δ∗ > 1, then FPRn,T →p 0.
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Theorem 1 - False discovery rate (FDR)

Consider the false discovery rate (if ∑n
i=1

̂I (βi 6= 0) > 0 ) defined
by

FDRn,T =
∑n

i=1 I
[

̂I (βi 6= 0) = 1, and βi = 0
]

∑n
i=1

̂I (βi 6= 0)
.

For any 0 < κ < 1, for some constant C0 > 0, and under the
conditions above, we have

FDRn,T →p
k∗

k∗ + k
,

if ∑n
i=1

̂I (βi 6= 0) > 0, δ > max {1, 2− κ1/3}, δ∗ > 2, and
θi ,(j) = 	

(
T−ϑ

)
for i = k + 1, k + 2, ..., k + k∗, some

0 ≤ ϑ < 1/2 and some 1 ≤ j ≤ P0.
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Theorem 1 - The residual norm of the selected model

Consider the norm: Fũ = 1
T ∑T

i=1 ũ
2
t , where ũt is the fitted value

based on the estimates of the selected regression model.

Under the conditions above, we have

E (Fũ)→ σ2, if δ > 1 and δ∗ > 2.
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The norm of the estimated coefficients

The OCMT estimator of βi , denoted by β̃i , is given by

β̃i =

{
β̂
(k̂n,T )
i , if ̂I (βi 6= 0) = 1

0, otherwise
, for i = 1, 2, ..., n, (9)

where β̂
(k̂)
i is the OLS estimator of the coefficient of the i th

variable in a regression that includes all the covariates for

which ̂I (βi 6= 0) = 1, and a constant term.

Consider the following norm:

Fβ̃ = ||β̃n −βn || =
[
∑n

i=1

(
β̃i − βi

)2]1/2
.
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We assume the following additional regularity condition.

Assumption 7 Let S denote the T × lT observation matrix on the
lT regressors selected at any one of the P̂n,T stages of the OCMT
procedure. Then,

1 Let Σss = E (S′S/T ) with eigenvalues denoted by
µ1 ≤ µ2 ≤ ... ≤ µlT . Let µi = O (lT ),
i = lT −M + 1, lT −M + 2, ..., lT , for some finite M, and
sup1≤i≤lT−M µi < C0 < ∞, for some C0 > 0. In addition,
inf1≤i<lT µi > C1 > 0, for some C1 > 0.

2 E
[(

1−
∥∥Σ−1ss

∥∥
F

∥∥Σ̂ss − Σss

∥∥
F

)−4]
= O (1), where

Σ̂ss = S′S/T .
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Theorem 2: The norm of the estimated coefficients

Suppose conditions of Theorem 1 hold, and consider the coefficient
norm of the selected model, Fβ̃. In addition, suppose that
Assumption 7 hold. Denote the maximum number of selected
regressors that is allowed to enter the final stage regression by lmax

and suppose that lmax = 	 (nκ2), for some κ2 > 0. Let
T = 	 (nκ1), for some κ1 > 0, k∗ = 	 (nε) for some positive
ε < min {κ2, κ1/3}, δ∗ > δ > 1 and δ∗ > 2. Then, for any
0 < κ < 1, and some constant C0 > 0, we have

E
(
Fβ̃

)
=O

(
n2ε−κ1/2

)
+O

(
n1−δκ

)
+O

(
n2−δ∗κ

)
+O

(
n1−δκ+2κ2−κ1/2

)
+O

(
n2−δ∗κ+2κ2−κ1/2

)
+O

[
exp

(
−nC0κ1

)]
.
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Main intuition behind the theoretical results

Lemma 16 (stated also in the background slides) is a key
lemma in the paper.

Assuming k∗ = 0 (for simplicity), and T = 	 (nκ1), for some
κ1 > 0 (κ1 could be much smaller than 1), Lemma 16 implies
that for any 0 < κ < 1 there exist finite positive constants C0

and C1 such that

n

∑
i=k+1

Pr
[∣∣∣tφ̂i ,(1)

∣∣∣ > cp(n)|θi = 0
]
≤

(n− k) exp

[
−κc2p (n, δ)

2

]
+ (n− k) exp

(
−C0T

C1

)
.
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But in view of (6),
(n− k) exp

[
−κc2p (n, δ)/2

]
= 	

(
n1−δκ)→ 0 for δ > 1 and

κ < 1. Therefore, the probability of selecting at least one
noise variable in stage 1 declines to 0 with n at the rate n1−δκ.

Higher stages are necessary only to uncover the hidden signals,
and δ∗ > 2 is sufficient for the probability of selecting at least
one noise variable in higher stages of OCMT to tend to 0 in n.
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A Monte Carlo study

We compare the small sample performance of the OCMT
method with Lasso (and also SICA, Hard thresholding and
boosting methods.)

We consider four sets of designs depending on the choice of
signal and noise θ’s:

Noise θ’s
Signal θ’s All are zero Some are nonzero
All are nonzero Design set I Design set II
Some are zero Design set III Design set IV

Design sets I-IV consider bounded number of signal variables.
In addition to these four sets of designs, we also consider
experiments with k = n geometrically declining signal
variables (design set V).
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Design Set I: All signals have nonzero net effects

DGP is given by the following model with k = 4 signals:

yt = β1x1t + β2x2t + β3x3t + β4x4t +κut , ut ∼ IIDN (0, 1) ,

for t = 1, 2, ...,T . We set β1 = β2 = β3 = β4 = 1 and
consider the following ways of generating
xt = (x1t , x2t , ..., xnt)

′:

DGP-I(a) Temporally uncorrelated and weakly collinear covariates:

signals: xit = (ε it + gt) /
√

2, for i = 1, 2, 3, 4, (10)

noise: x5t = ε5t , xit = (ε i−1,t + ε it) /
√

2, for i > 5, (11)

where gt ∼ IIDN (0, 1) and ε it ∼ IIDN (0, 1). In this design
k∗ = 0, and the signal and noise variables are uncorrelated, but
signals and noise variables are correlated with each other.
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DGP-I(b) Temporally correlated and weakly collinear covariates:
Variables are generated according to (10)-(11) with

ε it = ρi ε i ,t−1 +
√

1− ρ2i eit , eit ∼ IIDN (0, 1). We set ρi = 0.5 for

all i .
DGP-I(c) Strongly collinear noise variables due to a persistent
unobserved common factor. Signal variables are generated
according to (10) and noise variables are generated as

x5t = (ε5t + bi ft) /
√

3, xit =
[
(ε i−1,t + ε it) /

√
2 + bi ft

]
/
√

3,

for i > 5, bi ∼ IIDN (1, 1), and ft = 0.95ft−1 +
√

1− 0.952vt ,
vt ∼ IIDN (0, 1), and ε it ∼ IIDN (0, 1).
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DGP-I(d) Equal (low or high) pair-wise correlation of signal
variables:

signal variables: xit = (ε it + νgt) /
√

1 + ν2, for i = 1, 2, 3, 4,

and noise variables are generated according to (11), where
ε it ∼ IIDN (0, 1), gt ∼ IIDN (0, 1) and we set ν =

√
ω/ (1−ω),

for ω = 0.2 (low) and 0.8 (high). This ensures the correlation
among the signal variables is ω. There is no correlation among
noise variables.
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In all DGPs (in all design sets) n = 100, 200, 300,
T = 100, 300, 500, and RMC = 2000. In addition, we set κ so
that R2 = 30%, 50% or 70%.

To save on space, we average reported statistics across
R2 = 30, 50, 70%, and report these averages only for
n,T = 100, 300. Complete set of findings is provided in the
MC Supplement.

We report:

TPR, FPR and FDR,
the out-of-sample root mean square forecast error (RMSFE),
the root mean square error of β̃ (RMSEβ̃).

Other statistics (such as the probability of selecting the
correct model) are reported in the MC Supplement.
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Table 1: MC findings for the first set of experiments

DGP-I (averaged across R2 = 30%, 50%, 70%)

Oracle Lasso A-Lasso OCMT Oracle Lasso A-Lasso OCMT

n = T = 100 n = 100, T = 300

TPR 1.000 0.909 0.734 0.906 1.000 0.987 0.916 0.999

FPR 0.000 0.054 0.010 0.000 0.000 0.054 0.005 0.000

FDR 0.000 0.478 0.149 0.005 0.000 0.461 0.065 0.003

RMSFE 3.419 3.551 3.570 3.460 3.362 3.408 3.407 3.363

RMSEβ̃ 1.471 1.542 2.879 1.786 0.473 0.605 1.195 0.489

n = 300, T = 100 n = T = 300

TPR 1.000 0.898 0.745 0.877 1.000 0.986 0.919 0.999

FPR 0.000 0.034 0.010 0.000 0.000 0.026 0.004 0.000

FDR 0.000 0.615 0.289 0.006 0.000 0.539 0.129 0.003

RMSFE 3.418 3.602 3.635 3.480 3.362 3.421 3.414 3.363

RMSEβ̃ 1.466 1.831 3.548 1.924 0.464 0.654 1.256 0.483

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%.
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Design Set II: Featuring pseudo-signals

yt is generated in the same way as in the first set of designs,
but we consider the following ways of generating xt :

DGP-II(a) Two pseudo-signal variables:

signal variables: xit = (ε it + gt) /
√

2, for i = 1, 2, 3, 4,

noise variables: (pseudo-signal) x5t = ε5t + κx1t , x6t = ε6t + κx2t ,

(pure noise) xit = (ε i−1,t + ε it) /
√

2, for i > 6,

where gt ∼ IIDN (0, 1), and ε it ∼ IIDN (0, 1). We set κ = 1.33
(to achieve 80% correlation between the signal and the
pseudo-signal variables)
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DGP-II-(b) All noise variables collinear with signals:
xt ∼ IIDN (0, Σx ) with the elements of Σx given by 0.5|i−j |,
1 ≤ i , j ≤ n.

DGP-II(b) corresponds to the interesting case where θi 6= 0
for all i = 1, 2, ..., n, but ∑n

j=k+1 |θj | < ∞.

When pseudo-signal variables are present (k∗ > 0), the
OCMT procedure is expected to pick up the pseudo-signals in
DGP-II(a) with a high probability, but β̃ remains consistent in

the sense that
∥∥β̃ − β

∥∥2
F
→ 0 (see Theorem 2). β̃ will be

asymptotically less efficient than the estimates of the true
model due to the presence of pseudo-signals.
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Table 2: MC findings for the second set of experiments

DGP-II (averaged across R2 = 30%, 50%, 70%)

Oracle Lasso A-Lasso OCMT Oracle Lasso A-Lasso OCMT

n = T = 100 n = 100, T = 300

TPR 1.000 0.913 0.754 0.890 1.000 0.993 0.944 1.000

FPR 0.000 0.060 0.011 0.008 0.000 0.062 0.005 0.014

FDR 0.000 0.514 0.170 0.145 0.000 0.508 0.077 0.225

RMSFE 3.283 3.425 3.445 3.335 3.226 3.274 3.269 3.234

RMSEβ̃ 0.989 1.499 2.455 1.619 0.308 0.563 0.877 0.475

n = 300, T = 100 n = T = 300

TPR 1.000 0.904 0.765 0.859 1.000 0.991 0.944 0.999

FPR 0.000 0.037 0.011 0.003 0.000 0.029 0.005 0.004

FDR 0.000 0.643 0.314 0.135 0.000 0.578 0.142 0.217

RMSFE 3.284 3.478 3.513 3.355 3.226 3.290 3.279 3.234

RMSEβ̃ 0.979 1.773 3.162 1.726 0.320 0.626 0.994 0.487

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%.
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Design set III: Featuring signals with zero net effects

Signal and noise variables {xit} are as in DGP-I(a) (see
(10)-(11)), but β’s are no longer equal to one in order to
allow for zero net effects. We assume the fourth signal has
zero net effect:

DGP-III. We set β1 = β2 = β3 = 1 and β4 = −1.5 This implies
θi 6= 0 for i = 1, 2, 3 and θi = 0 for i ≥ 4.
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Table 3: MC findings for the third set of experiments

DGP-III (averaged across R2 = 30%, 50%, 70%)

Oracle Lasso A-Lasso OCMT Oracle Lasso A-Lasso OCMT

n = T = 100 n = 100, T = 300

TPR 1.000 0.883 0.768 0.726 1.000 0.998 0.984 0.997

FPR 0.000 0.111 0.017 0.000 0.000 0.146 0.010 0.000

FDR 0.000 0.679 0.238 0.007 0.000 0.740 0.127 0.002

RMSFE 2.105 2.341 2.301 2.265 2.072 2.141 2.103 2.074

RMSEβ̃ 0.404 2.324 2.340 2.145 0.128 0.717 0.568 0.222

n = 300, T = 100 n = T = 300

TPR 1.000 0.829 0.724 0.670 1.000 0.992 0.972 0.991

FPR 0.000 0.060 0.016 0.000 0.000 0.071 0.011 0.000

FDR 0.000 0.778 0.435 0.008 0.000 0.799 0.263 0.003

RMSFE 2.113 2.431 2.393 2.309 2.070 2.174 2.121 2.077

RMSEβ̃ 0.410 2.878 2.854 2.448 0.128 1.041 0.721 0.330

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%.
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Design set IV: Featuring signals with zero net effects and
pseudo-signals

We allow for both, zero net effects as well as pseudo-signals:

DGP-IV(a) We generate x t in the same way as in DGP-II(a)
which features two pseudo-signal variables. We generate slope
coefficients βi as in DGP-III to ensure θi 6= 0 for i = 1, 2, 3 and
θi = 0 for i = 4.
DGP-IV(b) We generate x t in the same way as in DGP-II(b),
where all noise variables are collinear with signals. We set
β1 = −0.875 and β2 = β3 = β4 = 1. This implies θi = 0 for
i = 1 and θi > 0 for all i > 1.
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Table 4: MC findings for the fourth set of experiments

DGP-IV (averaged across R2 = 30%, 50%, 70%)

Oracle Lasso A-Lasso OCMT Oracle Lasso A-Lasso OCMT

n = T = 100 n = 100, T = 300

TPR 1.000 0.843 0.705 0.710 1.000 0.983 0.942 0.957

FPR 0.000 0.095 0.015 0.006 0.000 0.126 0.010 0.014

FDR 0.000 0.641 0.222 0.126 0.000 0.695 0.121 0.244

RMSFE 2.240 2.445 2.426 2.385 2.198 2.266 2.241 2.219

RMSEβ̃ 0.458 2.027 2.235 1.889 0.143 0.743 0.727 0.440

n = 300, T = 100 n = T = 300

TPR 1.000 0.794 0.672 0.662 1.000 0.968 0.926 0.945

FPR 0.000 0.051 0.013 0.002 0.000 0.061 0.010 0.004

FDR 0.000 0.740 0.380 0.111 0.000 0.759 0.238 0.235

RMSFE 2.238 2.514 2.495 2.413 2.199 2.298 2.260 2.224

RMSEβ̃ 0.444 2.437 2.665 2.100 0.145 0.985 0.855 0.510

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%.
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Design set V: All variables are signals

In the fifth set of experiments, we consider k = n signal
variables. MC Findings are reported assuming the first 11
variables are signals (as a benchmark).

DGP-V βi = 1/i2 and x t ∼ IIDN (0, Σx ) with the elements of Σx

given by 0.5|i−j |, 1 ≤ i , j ≤ n.
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Table 5: MC findings for the fifth set of experiments

DGP-V (averaged across R2 = 30%, 50%, 70%)

Oracle∗ Lasso A-Lasso OCMT Oracle∗ Lasso A-Lasso OCMT

n = T = 100 n = 100, T = 300

TPR∗ 1.000 0.270 0.122 0.197 1.000 0.359 0.147 0.300

FPR∗ 0.000 0.049 0.002 0.000 0.000 0.052 0.001 0.000

FDR∗ 0.000 0.474 0.058 0.006 0.000 0.435 0.016 0.003

RMSFE 1.371 1.362 1.358 1.326 1.311 1.314 1.328 1.299

RMSEβ̃ 0.420 0.183 0.168 0.140 0.128 0.068 0.086 0.050

n = 300, T = 100 n = T = 300

TPR∗ 1.000 0.244 0.131 0.185 1.000 0.321 0.156 0.285

FPR∗ 0.000 0.031 0.004 0.000 0.000 0.024 0.002 0.000

FDR∗ 0.000 0.635 0.159 0.008 0.000 0.535 0.053 0.004

RMSFE 1.372 1.380 1.366 1.328 1.313 1.321 1.328 1.300

RMSEβ̃ 0.424 0.227 0.233 0.149 0.127 0.076 0.089 0.049

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%. (∗) Findings are
reported assuming the first 11 variables are signals.
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MC results: Lasso versus OCMT

Although the OCMT on average beats Lasso in our set of
experiments, it is not the case that Lasso is always
outperformed by OCMT.

There are instances, where Lasso beats OCMT, and none of
the methods uniformly outperform others.

A-Lasso improves on Lasso’s FDR/FPR, but it worsens TPR.

The trade-offs between the Lasso and OCMT depend, in
large part, on the correlation of the signal variables.

An increased correlation between the signals tends to increase
the size of the net effect coefficients, and therefore the power
of OCMT improves.
Lasso tends to deteriorate with an increase in the correlation
of signal variables, since the marginal contribution of the
signals to the overall fit diminishes.
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MC evidence on the performance of other popular methods

We also consider:

Hard thresholding (Zheng, Fan and Lv, 2014 JRSS)

SICA (Lv and Fan, 2009, Ann. Statist.). SICA stands for
‘smooth integration of counting and absolute deviation‘ -
which refers to the type of penalty function used.

Boosting methods: We implement the boosting method
proposed by Buhlmann (2006, Ann. Statist.) and consider two
step sizes, v = 0.1 (recommended by Buhlmann), and v = 1.
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Penalties

Consider the penalised least squares

min
β

Q (β) , Q (β) = (2T )−1
∥∥∥∥∥y−

n

∑
i=1

βix i

∥∥∥∥∥
2

2

+ ‖Pλ (β)‖1 ,

where we use the compact notation
Pλ (β) = Pλ (|β|) = [pλ (|β1|) , pλ (|β2|) , ..., pλ (|βn|)]′.
Depending on the choice of the penalty function, we obtain:

Lasso: pλ (b) = λb

SICA: pλ (b) = λ (a+ 1) b/ (a+ b) with a = 10−4

Hard thresholding: pλ (b) =
1

2

{
λ2 − (λ− b)2+

}
, b ≥ 0.
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This figure (taken from Lv and Fan, 2009, Ann. Statist.)
illustrates the role of SICA (for different values of a) and
Lasso (a = ∞) penalties .
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Computational demands: OCMT vs. other methods

Computational demands of data-rich methods can be a
problem in certain applications.

OCMT is simple and fast. It takes less than 0.01 seconds to
apply the OCMT in Matlab to a sample of n = 300 variables
and T = 100 observations using a laptop.

In contrast, penalised regressions are much more demanding.
They take us about 200 to 10,000 times longer than the
OCMT using the same hardware.

The boosting method (with 500 iterations) is less demanding
than the penalised regression methods - it takes ‘only’ about
50 times longer than OCMT.
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MC results on the performance of OCMT, Lasso, Hard,
Sica and Boosting methods

We show the following statistics:

TPR, FPR and FDR (as before)
RMSFE relative to the benchmark Oracle method (rRMSFE)
RMSEβ̃ relative to the benchmark Oracle method (rRMSEβ̃)

the probability that regressors 1, 2, ..., k are among the selected
(π̂k), and the probability of selecting the correct model (π̂).
In addition to π̂, we also report the probability of selecting
pseudo-true model with all pseudo-signals, denoted by π̂∗ in
DGP-II(a) and DGP-IV(a).

The benchmark model in DGP-V consists of the first 11
variables.
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Table 7: Additional MC Findings for DGP-I(a)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.9770 0.0001 0.0029 1.001 1.046 0.946 0.933

300 0.9665 0.0001 0.0036 1.003 1.084 0.930 0.915

Lasso 100 0.9726 0.0546 0.4690 1.021 1.512 0.908 0.091

300 0.9675 0.0285 0.5619 1.029 1.718 0.895 0.061

A-Lasso 100 0.8927 0.0060 0.0879 1.022 2.427 0.698 0.542

300 0.8972 0.0061 0.1768 1.030 2.867 0.712 0.456

Sica 100 0.6796 0.0051 0.0960 1.054 5.545 0.339 0.231

300 0.6199 0.0011 0.0723 1.066 6.785 0.267 0.211

Hard 100 0.6808 0.0016 0.0361 1.051 5.798 0.405 0.361

300 0.6447 0.0005 0.0372 1.060 6.638 0.362 0.334

Boosting 100 0.9853 0.3356 0.8884 1.062 3.695 0.945 0.000

300 0.9810 0.2748 0.9536 1.116 6.708 0.933 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.

Chudik, Kapetanios and Pesaran OCMT Approach to Variable Selection



Table 8: Additional MC Findings for DGP-I(b)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.9770 0.0002 0.0047 1.002 1.054 0.945 0.924

300 0.9683 0.0001 0.0051 1.003 1.079 0.931 0.908

Lasso 100 0.9719 0.0550 0.4745 1.021 1.504 0.905 0.086

300 0.9681 0.0299 0.5821 1.028 1.716 0.896 0.052

A-Lasso 100 0.8910 0.0061 0.0892 1.023 2.427 0.697 0.544

300 0.8961 0.0057 0.1808 1.029 2.788 0.707 0.447

Sica 100 0.6747 0.0051 0.0992 1.057 5.615 0.332 0.232

300 0.6135 0.0012 0.0796 1.071 6.908 0.259 0.206

Hard 100 0.6735 0.0016 0.0373 1.054 6.012 0.391 0.352

300 0.6352 0.0006 0.0410 1.064 6.598 0.348 0.322

Boosting 100 0.9836 0.3217 0.8839 1.064 3.657 0.940 0.000

300 0.9804 0.2583 0.9507 1.118 6.436 0.930 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 9: Additional MC Findings for DGP-I(c)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.9774 0.0001 0.0023 1.001 1.080 0.945 0.936

300 0.9687 0.0001 0.0027 1.003 1.110 0.933 0.923

Lasso 100 0.9742 0.0412 0.4104 1.018 1.442 0.913 0.118

300 0.9712 0.0214 0.5012 1.024 1.615 0.905 0.079

A-Lasso 100 0.8920 0.0042 0.0649 1.022 2.441 0.697 0.577

300 0.8965 0.0037 0.1221 1.026 2.763 0.706 0.518

Sica 100 0.7091 0.0050 0.0934 1.048 5.065 0.378 0.260

300 0.6520 0.0012 0.0746 1.059 6.148 0.305 0.237

Hard 100 0.6901 0.0017 0.0339 1.049 5.819 0.409 0.372

300 0.6549 0.0005 0.0349 1.057 6.527 0.365 0.340

Boosting 100 0.9871 0.3272 0.8852 1.059 5.203 0.951 0.000

300 0.9835 0.2124 0.9406 1.090 6.991 0.940 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 10: Additional MC Findings for DGP-I(d), ω = 0.2 (low
pair-wise correlation of signals)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.9160 0.0001 0.0032 1.015 1.720 0.830 0.820

300 0.8964 0.0000 0.0039 1.020 1.990 0.807 0.797

Lasso 100 0.9845 0.0784 0.5786 1.029 2.582 0.948 0.028

300 0.9797 0.0402 0.6695 1.041 3.193 0.936 0.015

A-Lasso 100 0.9477 0.0074 0.1014 1.022 2.473 0.855 0.621

300 0.9481 0.0073 0.2079 1.031 3.345 0.859 0.477

Sica 100 0.8777 0.0032 0.0588 1.032 3.459 0.696 0.597

300 0.8391 0.0010 0.0605 1.044 4.419 0.626 0.555

Hard 100 0.8770 0.0020 0.0395 1.029 3.299 0.695 0.630

300 0.8490 0.0008 0.0500 1.040 4.070 0.649 0.594

Boosting 100 0.9950 0.3392 0.8885 1.066 5.378 0.981 0.000

300 0.9918 0.2698 0.9523 1.119 9.722 0.969 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 11: Additional MC Findings for DGP-II(a)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂ π̂∗

OCMT 100 0.9762 0.0192 0.3110 1.006 1.819 0.945 0.015 0.862

300 0.9677 0.0061 0.3060 1.007 1.824 0.930 0.018 0.836

Lasso 100 0.9639 0.0568 0.4937 1.021 1.786 0.883 0.061 0.004

300 0.9617 0.0292 0.5780 1.029 1.950 0.877 0.043 0.002

A-Lasso 100 0.8799 0.0065 0.1023 1.023 2.622 0.670 0.520 0.000

300 0.8851 0.0063 0.1872 1.030 3.087 0.685 0.438 0.000

Sica 100 0.6661 0.0058 0.1183 1.055 6.320 0.316 0.219 0.000

300 0.6081 0.0012 0.0876 1.067 7.431 0.251 0.201 0.000

Hard 100 0.6684 0.0020 0.0502 1.052 6.217 0.383 0.344 0.000

300 0.6325 0.0006 0.0477 1.060 6.819 0.345 0.319 0.000

Boosting 100 0.9773 0.3370 0.8896 1.062 3.977 0.919 0.000 0.000

300 0.9750 0.2762 0.9541 1.115 6.859 0.912 0.000 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 12: Additional MC Findings for DGP-II(b)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.9500 0.0059 0.1088 1.006 1.301 0.881 0.384

300 0.9374 0.0016 0.0958 1.008 1.353 0.862 0.420

Lasso 100 0.9730 0.0645 0.5226 1.025 1.828 0.913 0.053

300 0.9678 0.0335 0.6165 1.034 2.115 0.899 0.033

A-Lasso 100 0.9068 0.0068 0.0973 1.023 2.589 0.749 0.565

300 0.9097 0.0068 0.1932 1.031 3.064 0.757 0.455

Sica 100 0.7197 0.0039 0.0758 1.048 5.809 0.394 0.303

300 0.6663 0.0009 0.0597 1.058 7.074 0.320 0.273

Hard 100 0.7404 0.0016 0.0352 1.041 5.451 0.470 0.433

300 0.7056 0.0006 0.0405 1.050 6.257 0.424 0.396

Boosting 100 0.9877 0.3703 0.8975 1.068 4.592 0.954 0.000

300 0.9832 0.2713 0.9529 1.114 7.043 0.941 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 13: Additional MC Findings for DGP-III

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.9077 0.0001 0.0036 1.021 2.331 0.839 0.829

300 0.8872 0.0001 0.0046 1.027 2.792 0.812 0.801

Lasso 100 0.9604 0.1365 0.7246 1.056 5.612 0.893 0.003

300 0.9402 0.0685 0.7970 1.080 7.839 0.847 0.000

A-Lasso 100 0.9171 0.0120 0.1537 1.035 4.018 0.829 0.502

300 0.8984 0.0128 0.3105 1.054 5.181 0.797 0.316

Sica 100 0.8592 0.0044 0.0830 1.045 5.022 0.712 0.580

300 0.8008 0.0012 0.0818 1.064 7.036 0.628 0.541

Hard 100 0.9072 0.0024 0.0469 1.026 3.056 0.808 0.733

300 0.8748 0.0010 0.0612 1.039 3.811 0.766 0.702

Boosting 100 0.9935 0.3606 0.8951 1.077 5.112 0.977 0.000

300 0.9823 0.2559 0.9504 1.136 8.611 0.941 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 14: Additional MC Findings for DGP-IV(a)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂ π̂∗

OCMT 100 0.9088 0.0172 0.2883 1.024 2.969 0.839 0.020 0.727

300 0.8886 0.0054 0.2790 1.030 3.376 0.811 0.025 0.690

Lasso 100 0.9542 0.1391 0.7332 1.056 6.085 0.882 0.002 0.000

300 0.9338 0.0691 0.8013 1.081 8.387 0.837 0.000 0.000

A-Lasso 100 0.9080 0.0130 0.1732 1.036 4.307 0.810 0.477 0.000

300 0.8883 0.0131 0.3222 1.055 5.565 0.779 0.301 0.000

Sica 100 0.8273 0.0059 0.1212 1.051 9.685 0.610 0.493 0.000

300 0.7715 0.0016 0.1157 1.070 11.308 0.544 0.472 0.000

Hard 100 0.8930 0.0030 0.0630 1.028 3.829 0.771 0.705 0.000

300 0.8594 0.0011 0.0748 1.041 4.632 0.728 0.673 0.000

Boosting 100 0.9884 0.3623 0.8961 1.079 5.678 0.958 0.000 0.000

300 0.9774 0.2572 0.9509 1.136 9.248 0.927 0.000 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.
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Table 15: Additional MC Findings for DGP-IV(b)

Summary statistics are averaged across T and R2

n TPR FPR FDR rRMSFE rRMSEβ̃ π̂k π̂

OCMT 100 0.8573 0.0074 0.1435 1.023 2.936 0.584 0.102

300 0.8321 0.0022 0.1332 1.028 3.359 0.518 0.087

Lasso 100 0.9282 0.0977 0.6344 1.041 4.209 0.782 0.008

300 0.9031 0.0481 0.7168 1.057 5.367 0.707 0.003

A-Lasso 100 0.8457 0.0092 0.1172 1.036 4.644 0.647 0.441

300 0.8284 0.0094 0.2374 1.049 5.470 0.604 0.300

Sica 100 0.7315 0.0039 0.0769 1.051 7.226 0.537 0.415

300 0.6625 0.0009 0.0637 1.064 8.685 0.449 0.371

Hard 100 0.7811 0.0018 0.0378 1.038 6.159 0.620 0.566

300 0.7420 0.0006 0.0440 1.046 6.860 0.570 0.527

Boosting 100 0.9862 0.3820 0.9008 1.075 5.278 0.951 0.000

300 0.9703 0.2637 0.9523 1.123 8.039 0.898 0.000

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1.

Chudik, Kapetanios and Pesaran OCMT Approach to Variable Selection



Table 16: Additional MC Findings for DGP-V

Summary statistics are averaged across T and R2

n TPR∗ FPR∗ FDR∗ rRMSFE∗ rRMSE∗
β̃

π̂11 P̂

OCMT 100 0.2822 0.0002 0.0037 0.985 0.417 0.000 1.000

300 0.2679 0.0001 0.0050 0.985 0.418 0.000 1.000

Lasso 100 0.3455 0.0525 0.4458 1.001 0.570 0.000 -

300 0.3115 0.0266 0.5621 1.007 0.646 0.000 -

A-Lasso 100 0.1447 0.0017 0.0298 1.011 0.888 0.000 -

300 0.1553 0.0024 0.0869 1.011 0.928 0.000 -

Sica 100 0.1234 0.0012 0.0277 1.012 1.372 0.000 -

300 0.1118 0.0003 0.0225 1.015 1.433 0.000 -

Hard 100 0.1292 0.0010 0.0240 1.010 1.259 0.000 -

300 0.1220 0.0004 0.0305 1.013 1.326 0.000 -

Boosting 100 0.5764 0.3703 0.8366 1.045 1.689 0.001 -

300 0.5112 0.2732 0.9336 1.088 2.619 0.000 -

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%, and boosting is
reported for v = 0.1. (∗) Findings are reported assuming the first 11 variables
are signals.
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Empirical Illustration: Forecasting GDP growth and
inflation

We present a macroeconomic forecasting exercise for US GDP
growth and CPI inflation using a set of 109 macroeconomic
variables from Stock and Watson (2012, JBES).

The dataset is quarterly and individual series are transformed
to achieve stationarity. The transformed series span 1960Q3
to 2008Q4.

We consider a rolling forecasting scheme with a rolling
window of 120 observations. The forecast evaluation period is
1990Q3 to 2008Q4. We also consider the pre-crisis evaluation
sub-period 1990Q3-2007Q2.

Chudik, Kapetanios and Pesaran OCMT Approach to Variable Selection



Forecasting methods:

1 AR(1) benchmark;

2 AR(1) augmented with principal components selected in a
rolling scheme by the PCp1 Bai and Ng (2002) information
criterion.

3 Lasso and adaptive Lasso regressions of the dependent
variable yt on yt−1, lagged principal components, and x t−1.
For these regressions, both dependent variables and regressors
(including principal components) are demeaned while
regressors are normalised to have unit standard deviation.
Then, the regression is run. Finally, the mean of yt is added
to produce the final forecast.

4 We apply OCMT to yt using as regressors yt−1, lagged
principal components, and x t−1. In every OCMT regression
the set of lagged principal components are always included.
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Table 17: RMSFE performance of the AR, factor–augmented
AR, Lasso, adaptive Lasso and OCMT methods

Evaluation sample: Full Pre-crisis
1990Q3-2008Q4 1990Q3-2007Q2

RMSFE Relative RMSFE Relative
(×100) RMSFE (×100) RMSFE

Real output growth
AR (1) benchmark 0.560 1.000 0.504 1.000
Factor-augmented AR (1) 0.488 0.870 0.467 0.927
Lasso 0.507 0.905 0.463 0.918
Adaptive Lasso 0.576 1.028 0.515 1.021
OCMT 0.487 0.869 0.464 0.920

Inflation
AR (1) benchmark 0.655 1.000 0.469 1.000
Factor-augmented AR (1) 0.621 0.949 0.452 0.965
Lasso 0.655 1.001 0.488 1.040
Adaptive Lasso 0.715 1.093 0.518 1.105
OCMT 0.626 0.957 0.477 1.017

Notes: OCMT is reported for (δ, δ∗) = (1, 2) and p = 1%.
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Conclusion

Model specification and selection are recurring and
fundamental topics in econometric analysis.

Both become considerably more difficult for large-dimensional
datasets.

In the context of linear regression models, the penalised
regression approach has become the de facto benchmark in
the literature. However, issues such as the choice of penalty
function and tuning parameters remain contentious.

We provided an alternative ‘multiple testing’ (OCMT)
approach, which is computationally much simpler and
performs well in the case of sparse regression functions.

There are a number of avenues for future research both in
extending the OCMT approach to other modelling contexts
and in its applications.
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Lemma 16: Statement of assumptions. Let yt , for
t = 1, 2, ...,T , be given by the DGP (1) and suppose that ut and
xnt = (x1t , x2t , ..., xnt)′ satisfy Assumptions 1-4, with
s = min(sx , su) > 0. Let q ·t = (q1,t , q2,t , ..., qlT ,t)

′ contain a
constant and a subset of xnt , and let ηt = x ′b,tβb + ut , where xb,t

is kb-dimensional vector of signals that do not belong to q ·t , with
the associated coefficients, βb. Assume Σqq = 1

T ∑T
t=1 E (q ·tq ′·t)

and Σ̂qq = Q′Q/T are both invertible, where
Q = (q1·, q2·, ..., q lT ·) and q i · = (qi1, qi2, ..., qiT )

′, for

i = 1, 2, ..., lT . Let lT = o(T 1/3) and suppose Assumption 5 holds
for all the pairs xit and q ·t , and yt and (q ′·t , xt)′, where xt is a
generic element of {x1t , x2t , ..., xnt} that does not belong to q ·t ,
and denote the corresponding orthogonal projection residuals as
ux ,t = xt − γ′qx ,Tq ·t and et = yt − γ′yqx ,T (q

′
·t , xt)

′. Define

x = (x1, x2, ..., xT )
′, y = (y1, y2, ..., yT )

′, e = (e1, e2, ..., eT )
′,

Mq = IT −Q(Q′Q)−1Q′, and θ = E
(
T−1x ′MqXb

)
βb, where

Xb = (xb,1, xb,2, ..., xb,T )
′. ∃ κ > 0 such that n = O (T κ).
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Lemma 16: Statement of results. Under the assumptions listed
above, for any π in the range 0 < π < 1, dT > 0 and bounded in
T , and for some finite positive constants C0 and C1,

Pr [|tx | > cp(n) |θT = 0 ] ≤ exp

− (1− π)2 σ2
e,(T )σ

2
x ,(T )c

2
p (n)

2 (1 + dT )
2 ω2

xe,T


(12)

+ exp
[
−C0T

C1

]
,

where

tx =
T−1/2x ′Mqy√
(e′e/T )

(
x′Mqx
T

) , (13)

σ2
e,(T ) = E

(
T−1e′e

)
, σ2

x ,(T ) = E
(
T−1x′Mqx

)
, (14)

and

ω2
xe,T =

1

T

T

∑
t=1

E
[
(ux ,tηt)

2
]

. (15)
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Lemma 16: Statement of results (continued). Under the
assumptions listed above and under σ2

t = σ2 and/or
E
(
u2x ,t
)
= σ2

xt = σ2
x , for all t = 1, 2, ...,T ,

Pr [|tx | > cp(n) |θT = 0 ] ≤ exp

[
− (1− π)2 c2p (n)

2 (1 + dT )
2

]
+ exp

(
−C0T

C1

)
. (16)

In the case where θT 6= 0, let θT = O
(
T−ϑ

)
, for some

0 ≤ ϑ < 1/2, where cp(n) = O
(
T 1/2−ϑ−C8

)
, for some positive

C8. Then, for some bounded positive sequence dT , and for some
C2,C3 > 0, we have

Pr [|tx | > cp(n) |θT 6= 0 ] > 1− exp
(
−C2T

C3

)
. (17)
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