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This presentation is based on:

• ”Double/De-biased Machine Learning for Causal and Treatment
E↵ects”
ArXiv 2016, with Denis Chetverikov, Esther Duflo, Christian
Hansen, Mert Demirer, Whitney Newey, James Robins



Introduction

• Main goal: Estimate and construct confidence intervals for a low-dimensional
parameter (q

0

) in the presence of high-dimensional nuisance parameter (h
0

),
where the latter may be estimated with the new generation of nonparametric
statistical methods, branded as “machine learning” (ML) methods, such as

•
random forests,

•
boosted trees,

•
lasso,

•
ridge,

•
deep and standard neural nets,

•
gradient boosting,

•
their aggregations,

•
and cross-hybrids.



Introduction

•
We build upon/extend the classic work in semi-parametric estimation which focused

on ”traditional” nonparametric methods for estimating h
0

, e.g. Bickel, Klassen,

Ritov, Wellner (1998), Andrews (1994), Linton (1996), Newey (1990, 1994), Robins

and Rotnitzky (1995), Robinson (1988), Van der Vaart (1991), Van der Laan and

Rubin (2008), many others.

•
Theoretical analyses required the estimators

bh of h
0

to take values in an

entropically simple set – a Donsker set – which really rules out most of the new

methods in the high-dimensional setting.



Literature

• Lots of recent work on inference based on lasso-type methods for estimating
h
0

• Relatively little work on the use other ML methods in high-dimensional
setting.



Two main points:

I. The ML methods seem remarkably e↵ective in prediction contexts.
However, good performance in prediction does not necessarily
translate into good performance for estimation or inference about
“causal” parameters. In fact, the performance can be poor.

II. By doing ”double/di-biased” ML or “orthogonalized” ML, and
sample splitting, we can construct high quality point and interval
estimates of ”causal” parameters.
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Main Points via a Partially Linear Model

Illustrate the two main points in a canonical example:

Y = Dq
0

+ g
0

(Z ) + U, E[U | Z ,D ] = 0,

• Y - outcome variable
• D - policy/treatment variable
• Z is a high-dimensional vector of other covariates, called “controls” or
“confounders”

• q
0

is the target parameter of interest

Z are confounders in the sense that

D = c +m
0

(Z ) + V , E[V | Z ] = 0

where m
0

6= 0, as is typically the case in observational studies.

Causal interpretation of q
0

: under conditional exogeneity/conditional random
assignment of D given Z , q

0

is the average causal e↵ect of D on potential
outcome.



Point I. “Naive” or Prediction-Based ML Approach is Bad

• Predict Y using D and Z – and obtain

Dbq
0

+ bg
0

(Z )

• For example, estimate by alternating minimization– given initial guess bh
0

, run

Random Forest of Y �Dbq
0

on Z to fit bg
0

(Z ) and the Ordinary Least
Squares on Y � bg

0

(Z ) on D to get updated bq
0

; Repeat until convergence.
• Excellent prediction performance! BUT the distribution of bq

0

� q
0

looks like
this:



Point II. The “Double” ML Approach is Good

1. Predict Y and D using Z by

\E[Y |Z ] and \E[D |Z ],
obtained using the Random Forest or other ”best performing ML” tools.

2. Residualize cW = Y � \E[Y |Z ] and bV = D � \E[D |Z ]
3. Regress cW on bV to get q̌

0

.
• Frisch-Waugh-Lovell (1930s) style. The distribution of q̌

0

� q
0

looks like this:



Moment conditions

The two strategies rely on very di↵erent moment conditions for identifying and
estimating q

0

:
E[y(W , q

0

, h
0

)] = 0

y(W , q
0

, h) = (Y �Dq
0

� g
0

(Z ))D (1)

y(W , q
0

, h
0

) = ((Y � E [Y |Z ])� (D � E [D |Z ])q
0

)(D � E [D |Z ]) (2)

• (1) - Regression adjustment score, with

h = g(Z ), h
0

= g
0

(Z ),

• (2) - Neyman-orthogonal score (Frisch-Waugh-Lovell), with

h = (`(Z ),m(Z )), h
0

= (`
0

(Z ),m
0

(Z )) = (E[Y | Z ],E[D | Z ])
Both estimators solve the empirical analog of the moment conditions:

1

n

n

Â
i=1

y(Wi , q, bh
0

) = 0,

where instead of unknown nuisance functions we plug-in their ML-based
estimators, obtained using auxiliary (set-aside) sample.



Key Di↵erence between (1) and (2) is Neyman
Orthogonality

• The Neyman orthogonality condition:

D = ∂hEy(W , q
0

, h)|h=h
0

= 0

• Heuristically, the conditions says that the moment condition remains ”valid”
under “local” mistakes in the nuisance function.

• The condition does hold for the score (2) and fails to hold for the score
(1),
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Heuristics: The Role of Neyman Orthogonality

• We have expansion

J
p
n(bq � q

0

) = An +
p
nD(bh � h

0

) + C
p
nO(kbh � h

0

k2) + op(1),

where the leading term An is well-behaved and approximately Gaussian under
weak conditions, if sample-splitting is used and kbh � h

0

k ! 0.

• When D 6= 0, since kbh � h
0

k = OP (n�j), 0 < j < 1/2,
p
nD(bh � h

0

) is of order
p
nn�j ! •.

and the estimator without Neyman orthogonality is not root-n consistent.
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Heuristics: The Role of Neyman Orthogonality?

• Under Neyman orthogonality D = 0, then

p
nD(bh � h) = 0,

and for root-n consistency we only need,

C
p
nO(kbh � h

0

k2) ! 0,

which requires kbh � h
0

k = oP (n�1/4) if C � 0.

• This is attainable rate for many ML estimators, especially aggregated
estimators.

• In some problems C = 0, like optimal IV problem in Belloni et al (2010) or
when m

0

= 0 (as in the randomized control trials).

• In the partially linear model, the rate condition is finer, just requiring the
product of rates to me of order o(1/

p
n).
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Heuristics: The Role of Sample Splitting

• Need to show
An = Gn(y(W , q

0

, bh)) N(0,W),

where Gn is the empirical process:
Gn(f ) = n�1/2 Ân

i=1

(f (Wi )�
R

f (w)dP(w)).

• So we need
Gn(y(W , q

0

, bh)� Gn(y(W , q
0

, h
0

) !P 0.

• If bh is based on the auxiliary sample, not used in the main estimation, then
this follows from kbh � h

0

k ! 0 and Chebyshev inequality.

• If bh is based on the main sample, need maximal inequalities to control

sup
h2Mn

�

�

�

Gn(y(W , q
0

, h)� Gn(y(W , q
0

, h
0

)
�

�

�

We need to control the rate of entropy growth for Mn 3 bh...

• See our ”Program Evaluation Paper..” in Econometrica for the rates at which
entropy can grow. The condition is reasonable, but it might be hard to check
for each new ML method...



General Results for Moment Condition Models

Moment conditions model:

E[yj (W , q
0

, h
0

)] = 0, j = 1, . . . , dq (3)

• y = (y
1

, . . . ,ydq
)0 is a vector of known score functions

• W is a random element; observe random sample (Wi )Ni=1

from the
distribution of W

• q
0

is the low-dimensional parameter of interest

• h
0

is the true value of the nuisance parameter h 2 T for some convex set T
equipped with a norm k · ke (can be a function or vector of functions)



Key Ingredient I: Neyman Orthogonality Condition

Key orthogonality condition:

y = (y
1

, . . . ,ydq
)0 obeys the orthogonality condition with respect to T ⇢ T if

the Gateaux derivative map

Dr ,j [h � h
0

] := ∂r

⇢

EP

h

yj (W , q
0

, h
0

+ r (h � h
0

))
i

�

• exists for all r 2 [0, 1), h 2 T , and j = 1, . . . , dq

• vanishes at r = 0: For all h 2 T and j = 1, . . . , dq,

∂hEPyj (W , q
0

, h)
�

�

�

h=h
0

[h � h
0

] := D
0,j [h � h

0

] = 0.

Heuristically, small deviations in nuisance functions do not invalidate moment
conditions.



How to Builds Orthogonal Scores

Can generally construct moment/score functions with desired orthogonality
property building upon classic ideas of Neyman (1958, 1979)

Neyman’s construction in parametric likelihood case.

Suppose log-likelihood function is given by `(W , q, b)

• q d-dimensional parameter of interest

• b p
0

-dimensional nuisance parameter

Under regularity, true parameter values satisfy

E[∂q`(W , q
0

, b
0

)] = 0, E[∂b`(W , q
0

, b
0

)] = 0

j(W , q, b) = ∂q`(W , q, b) in general does not possess the orthogonality property



How to Builds Orthogonal Scores: in Parametric
Likelihood Model

Can construct new estimating equation with desired orthogonality property:

y(W , q, h) = ∂q`(W , q, b)� µ∂b`(W , q, b),

• Nuisance parameter: h = (b0,vec(µ)0)0 2 T ⇥D ⇢ Rp, p = p
0

+ dp
0

• µ is the d ⇥ p
0

orthogonalization parameter matrix. True value (µ
0

) is
chosen such that

Jqb � µJbb = 0 (i.e., µ
0

= JqbJ
�1

bb )

for the Hessian (Information Matrix):

J =

✓

Jqq Jqb

Jbq Jbb

◆

= ∂(q0,b0)E
h

∂(q0,b0)0`(W , q, b)
i

�

�

�

q=q
0

; b=b
0

• Will have E[y(W , q
0

, h
0

)] = 0 for h
0

= (b0
0

,vec(µ
0

)0)0 (provided µ
0

is
well-defined)

• Importantly, y obeys the orthogonality condition: ∂hE[y(W , q
0

, h)]
�

�

�

h=h
0

= 0

• y is the e�cient score for inference about q
0



How to Builds Orthogonal Scores: in Moment Conditions
Models

More generally, can construct orthogonal estimating equations as in the
semiparametric estimation literature.

One key approach is to project the initial score/moment function onto
orthocomplement of tangent space induced by nuisance function

• E.g. Chamberlain (1992), van der Vaart (1998), van der Vaart and
Wellner (1996))

Many worked out examples, some follow later in the talk.

Orthogonal scores/moment functions will often have nuisance parameter h
that is of higher dimension than “original” nuisance function b.

• Also see in partially linear model where nuisance parameter in orthogonal
moment conditions involve two conditional expectations



Key Ingredient II: Sample Splitting

Results will make use of sample splitting:

• {1, ...,N} = set of all observation names;

• I= main sample = set of observation numbers, of size n, is used to estimate
q
0

;

• I c = auxilliary sample = set of observations, of size pn = N � n, is used to
estimate h

0

;

• I and I c form a random partition of the set {1, ...,N}

Use of sample splitting allows to get rid of ”entropic” requirements and boil
down requirements on ML estimators bh of h

0

to just rates.



Theory: Regularity Conditions for General Framework

Denote

J
0

:= ∂q0

n

EP [y(W , q, h
0

)]
o

�

�

�

q=q
0

Let w, c
0

, and C
0

be strictly positive (and finite) constants, n
0

> 3 be a positive
integer, and (B

1n)n>1 and (B
2n)n>1 be sequences of positive constants, possibly

growing to infinity, with B
1n > 1 for all n > 1.

Assume for all n > n
0

and P 2 Pn

• (Parameter not on boundary) q
0

satisfies (3), and Q contains a ball of radius
C
0

n�1/2 log n centered at q
0

• (Di↵erentiability) The map (q, h) 7! EP [y(W , q, h)] is twice continuously
Gateaux-di↵erentiable on Q ⇥ T

•
Does not require y to be di↵erentiable

• (Neyman Orthogonality) y obeys the orthogonality condition for the set
T ⇢ T



Theory: Regularity Conditions on Model (Continued)

• (Identifiability) For all q 2 Q, we have
kEP [y(W , q, h

0

)]k > 2�1kJ
0

(q � q
0

)k ^ c
0

where the singular values of J
0

are between c
0

and C
0

• (Mild Smoothness) For all r 2 [0, 1), q 2 Q, and h 2 T
• EP [ky(W , q, h)� y(W , q

0

, h
0

)k2] 6 C

0

(kq � q
0

k _ kh � h
0

ke )w

• k∂rEP [y(W , q, h
0

+ r (h � h
0

))] k 6 B

1nkh � h
0

ke
• k∂2r EP [y(W , q

0

+ r (q � q
0

), h
0

+ r (h � h
0

))]k 6 B

2n(kq � q
0

k2 _ kh � h
0

k2e )



Theory: Conditions on Estimators of Nuisance Functions

Second key condition is that nuisance functions are estimated “well-enough”:

Let (Dn)n>1 and (tpn)n>1 be some sequences of positive constants converging to
zero, and let a > 1, v > 0, K > 0, and q > 2 be constants.

Assume for all n > n
0

and P 2 Pn

• (Estimator and Truth) (i) w.p. at least 1� Dn, bh
0

2 T and (ii) h
0

2 T .
•

Recall that “parameter space” for h is T

• (Convergence Rate) For all h 2 T , kh � h
0

ke 6 tpn



Theory: Conditions on Estimators of Nuisance Functions
(Continued)

• (Pointwise Entropy) For each h 2 T , the function class
F
1,h = {yj (·, q, h) : j = 1, ..., dq, q 2 Q} is suitably measurable and its

uniform entropy numbers obey

sup
Q

logN(ekF
1,hkQ,2

,F
1,h, k · kQ,2

) 6 v log(a/e), for all 0 < e 6 1

where F
1,h is a measurable envelope for F

1,h that satisfies kF
1,hkP,q 6 K

• (Moments) For all h 2 T and f 2 F
1,h, c0 6 kf kP,2 6 C

0

• (Rates) tpn satisfies (a) n�1/2 6 C
0

tpn, (b)
(B

1ntpn)w/2 + n�1/2+1/q 6 C
0

dn, and (c) n1/2B2

1nB2nt2pn 6 C
0

dn.

Rate of convergence is tpn - needs to be faster than n�1/4

• Same as rate condition widely used in semiparametrics employing classical
nonparametric estimators



Theory: Main Theoretical Result

Let ”Double ML” or ”Orthogonalized ML” estimator

q̌
0

= q̌
0

(I , I c )

be such that
�

�

�

�

�

1

n Â
i2I

y(W , q̌
0

, bh
0

)

�

�

�

�

�

6 en, en = o(dnn
�1/2)

Theorem (Main Result)

Under assumptions stated above, q̌
0

obeys

p
nS�1/2

0

(q̌
0

� q
0

) =
1p
n

Â
i2I

ȳ(Wi ) +OP (dn) N(0, I ),

uniformly over P 2 Pn, where ȳ(·) := �S�1/2
0

J�1

0

y(·, q
0

, h
0

) and
S
0

:= J�1

0

EP [y2(W , q
0

, h
0

)](J�1

0

)0.



Theory: Attaining full e�ciency by Cross-Fitting

• full e�ciency not obtained, but can follow Belloni et al (2010,2012) to do the
following:

Corollary

Can do a random 2-way split with p = 1, obtain estimates q̌
0

(I , I c ) and q̌
0

(I c , I )
and average them

ˇ̌q
0

=
1

2
q̌
0

(I , I c ) +
1

2
q̌
0

(I c , I )

to gain full e�ciency.

Corollary

Can do also a random K-way split (I
1

, ..., IK ) of {1, ...,N}, so that p = (K � 1),
obtain estimates q̌

0

(Ik , I ck ), for k = 1, ...,K , and average them

ˇ̌q =
1

K

K

Â
k=1

q̌
0

(Ik , I
c
k )

to gain full e�ciency.



Theory: Extensions to ”Quasi” Splitting

• Given the split (I , I c ), it is tempting to use I c to build a collection of ML
estimators

bhm(I
c ), m = 1, ...,M

for the nuisance parameters h, and then pick the winner bhm(I )(I
c ) based

upon I . This does break the sample-splitting.

• The results still go through under the condition that the winning method has
the rate tpn such that

tpn

p

logM ! 0.

• The entropy is back, but in a gentle,
p
logM way.



Example 1. ATE in Partially Linear Model

Recall

Y = Dq
0

+ g
0

(Z ) + z, E[z | Z ,D ] = 0,

D = m
0

(Z ) + V , E[V | Z ] = 0.

Base estimation on orthogonal moment condition

y(W , q, h) = ((Y � `(Z )� q(D �m(Z )))(D �m(Z )), h = (`,m).

Easy to see that

• q
0

is a solution to EPy(W , q
0

, h
0

) = 0

• ∂hEPy(W , q
0

, h)
�

�

�

h=h
0

= 0



Example 2. ATE and ATT in the Heterogeneous
Treatment E↵ect Model

Consider a treatment D 2 {0, 1}. We consider vectors (Y ,D,Z ) such that

Y = g
0

(D,Z ) + z, E[z | Z ,D ] = 0, (4)

D = m
0

(Z ) + n, E[n | Z ] = 0. (5)

The average treatment e↵ect (ATE) is

q
0

= E[g
0

(1,Z )� g
0

(0,Z )].

The the average treatment e↵ect for the treated (ATT)

q
0

= E[g
0

(1,Z )� g
0

(0,Z )|D = 1].

• The confounding factors Z a↵ect the D via the propensity score m(Z ) and Y
via the function g

0

(D,Z ).

• Both of these functions are unknown and potentially complicated, and we can
employ Machine Learning methods to learn them.



Example 2 Contuned. ATE and ATT in the Heterogeneous
Treatment E↵ect Model

For estimation of the ATE, we employ

y(W , q, h) := q � D(Y � h
2

(Z ))
h
3

(Z )
� (1�D)(Y � h

1

(Z )))
1� h

3

(Z )
� (h

1

(Z )� h
2

(Z )),

h
0

(Z ) := (g
0

(0,Z ), g
0

(1,Z ),m
0

(Z ))0,

(6)

where h(Z ) := (hj (Z ))3j=1

is the nuisance parameter. The true value of this parameter is

given above by h
0

(Z ).
For estimation of ATT, we use the score

y(W , q, h) =
D(Y � h

2

(Z ))
h
4

� h
3

(Z )(1�D)(Y � h
1

(Z ))
(1� h

3

(Z ))h
4

+
D(h

2

(Z )� h
1

(Z ))
h
4

� q
D

h
4

,

h
0

(Z ) = (g
0

(0,Z ), g
0

(1,Z ),m
0

(Z ),E[D ])0,
(7)



Example 2 Continued. ATE and ATT in the
Heterogeneous Treatment E↵ect Model

It can be easily seen that true parameter values q
0

for ATT and ATE obey

EPy(W , q
0

, h
0

) = 0,

for the respective scores and that the scores have the required orthogonality
property:

∂hEPy(W , q
0

, h)
�

�

�

h=h
0

= 0.

We use ML methods to obtain:

bh
0

(Z ) := (bg
0

(0,Z ), bg
0

(1,Z ), bm
0

(Z ))0,

bh
0

(Z ) = (bg
0

(0,Z ), bg
0

(1,Z ), bm
0

(Z ),En[D ]).

The resulting “double ML” estimator q̌
0

solves the empirical analog:

En,I y(W , q̌
0

, bh
0

) = 0, (8)

and the solution q̌
0

can be given explicitly since the scores are a�ne with respect
to q.



Example 3. LATE and LATTE in Heterogeneous
Treatment E↵ect Models with Endogenous Treatment

• LATE can be written as a ratio of ATE of a binary instrument on D and Y ,
so can use Example 2 to estimate each piece.

• Similar construction works for LATTE.

• By defining
Ỹt = 1(Y 6 t)

can study Distributional and Quantile Treatment E↵ects.

• See ”Program Evaluation ...” paper for details.



Example 4. Moment Condition Models

Very common framework in structural econometrics.

• See the paper for the partially linear IV models.

• See Chernozhukov, Hansen, Spindler ARE, 2015 for parametric GMM case

• See ”Program Evaluation ...” (Econometrica, 2016) for semi-parametric case.

• See the paper with Whitney on ”Locally Robust Semi-parametric
Estimation”, with applications to dynamic games.



Empirical Example: 401(k) Pension Plan

Follow Poterba et al (97), Abadie (03). Data from 1991 SIPP, n = 9, 915

• Y is net total financial assets

• D is indicator for working at a firm that o↵ers a 401(k) pension plan

• Z includes age, income, family size, education, and indicators for married,
two-earner, defined benefit pension, IRA participation, and home ownership

D is plausibly exogenous at the time when 401(k) was introduced

Controlling for Z is important due to 401(k) mostly o↵ered by firms employing
mostly workers from middle and above middle class (Poterba, Venti, and Wise 94,
95, 96, 01)



Empirical Example: 401(k)

Table: Estimated ATE of 401(k) Eligibility on Net Financial Assets

RForest PLasso B-Trees Nnet BestML

A. Part. Linear Model

ATE 8845 8984 8612 9319 8922

(1317) (1406) (1338) (1352) (1203)

B. Interactive Model

ATE 8133 8734 8405 7526 8295

(1483) (1168) ( 1193) (1327) (1162)

Estimated ATE and heteroscedasticity robust standard errors (in parentheses) from a linear model (Panel B)

and heterogeneous e↵ect model (Panel A) based on orthogonal estimating equations. Column labels denote the

method used to estimate nuisance functions. Further details about the methods are provided in the main text.



Application to Ghana Data (Duflo et al, 2017) with 2000
controls

• Study e↵ect of secondary education.
• Ground truth: experimental estimates of the e↵ect of secondary education.
• Try to recover experimental estimates from observational/non-experimental
data using 2,000 controls.

Returns To Secondary School Completion for Males

Outcome Experimental Observ.: OLS (5 controls) Observ.: DML

Standardized Score 0.502 0.595 0.486
(0.205) (0.069) (0.066)

Wage Worker 0.057 0.091 0.082
(0.109) (0.036) (0.037)

Log Earnings -0.195 -0.094 -0.064
(0.245) (0.087) (0.088)

Partner pregnant -0.089 -0.167 -0.120
(0.093) (0.032) (0.030)



Concluding Comments

We provide a general set of results that allow
p
n-consistent estimation and

provably valid (asymptotic) inference for causal parameters, using a wide class of
flexible (ML, nonparametric) methods to fit the nuisance parameters.

Three key elements:

1. Neyman-Orthogonal estimating equations

2. Fast enough convergence of estimators of nuisance quantities

3. Sample splitting allows a wide Class of ML estimators.
•

Really eliminates requirements on the entropic complexity on the realizations

of

bh
•

Allows establishment of results using only rate conditions, not exploiting

specific structure of ML estimators (as in, e.g., results for inference following

lasso-type estimation in full-sample)



Thank you!
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