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Figure 1 : U.S. Monthly Unemployment Rates, April 1929 to December 2012

1930 1940 1950 1960 1970 1980 1990 2000 2010
0

5

10

15

20

25

30

U
ne

m
pl

oy
m

en
t r

at
es

, %

1 Introduction

Figure 1 plots the monthly unemployment rate in the United States from April 1929 to December

2012. The mean unemployment rate is 7.1%, and the median rate is 5.7%. The most striking

feature of the series is the extraordinarily high levels of unemployment in the 1930s, known as the

Great Depression. From January 1931 to December 1939, the average unemployment rate is 18.5%,

and the highest unemployment rate reaches 25.7% in August 1932. In contrast, such large dynamics

are absent in the postwar sample. We fit a three-state Markov chain on the series via maximum

likelihood. Identifying months in which the unemployment rate is above 20% as a crisis state, we

estimate the unconditional probability of an unemployment crisis to be 3.47% and its persistence

(the probability of a crisis next period conditional on a crisis in the current period) to be 82.35%.

We ask whether a Diamond-Mortensen-Pissarides model of equilibrium unemployment, when

calibrated to the mean and volatility of unemployment in the postwar sample, can explain the large

unemployment dynamics in the Great Depression. Perhaps surprisingly, the answer is affirmative.

In the model, unemployed workers search for vacancies posted by a representative firm. A matching

function takes vacancies and unemployed workers as inputs to produce the number of new hires in
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the labor market. Because of the congestion effect arising from matching frictions, the vacancy filling

rate decreases with the tightness of the labor market (the ratio of the number of vacancies over the

number of unemployed workers). Deviating from the standard wage determination via a generalized

Nash bargaining game, we follow Hall and Milgrom (2008) to derive the equilibrium wage as the

outcome of a credible bargaining game. In this setup, both parties make alternating offers that can

be accepted, rejected to make a counteroffer, or rejected to take outside options. Relative to the

Nash wage, the credible bargaining wage is more insulated from conditions in the labor market.

Our key insight is that the search model endogenizes unemployment crises as in the Great De-

pression, even though the exogenous driving force is the standard first-order autoregressive process

with homoscedastic lognormal shocks. When calibrated to the mean of 5.84% and the volatility

of 13.1% for the unemployment rate in the postwar sample, the model implies the persistence of

the crisis state to be 84.18% and its unconditional probability 3.21%. These moments are close

to 82.35% and 3.47%, respectively, in the long historical series. The unemployment dynamics in

the model are large and highly nonlinear. In recessions the unemployment rate rises drastically,

whereas in booms it declines only gradually. Its empirical stationary distribution is highly skewed

with a long right tail. The skewness in the model is 3.09 (with a cross-simulation standard deviation

of 0.90). For comparison, the skewness in the long historical series is 1.98.

The welfare cost of business cycle fluctuations is large in the model. We calculate the welfare

cost to be on average 1.2% of consumption in perpetuity, which is 150 times the Lucas (1987)

estimate. Intuitively, due to its strong nonlinearity, the mean consumption in simulations from

the (stochastic) model is lower than the deterministic steady state of consumption. The difference

amounts to 0.95% of the steady state consumption. In addition, recessions are deep and occasionally

catastrophic, precisely when a risk averse agent’s marginal utility is high. Finally, the welfare cost

is countercyclical, and its stationary distribution has a long right tail. In particular, its 5 percentile

is −0.38% relative to the median of 1.01%. In contrast, the 95 percentile is further away at 3.42%.
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We also shed new light on the second moments of the labor market. Drawing from a variety of

data sources, we construct a long vacancy series from April 1929 to December 2012. Together with

the unemployment rate series, we calculate the volatility of the labor market tightness to be 0.37 in

the long sample. This volatility is even higher than that of 0.27 in the postwar sample after January

1951. Moreover, the U.S. Beveridge curve is flatter in the long sample than in the postwar sample

(the unemployment-vacancy correlations are −0.83 and −0.93 across the two samples, respectively).

Notably, the model comes close to matching the volatility of the market tightness, 0.33 in crises and

0.27 in normal periods, as well as a flatter Beveridge curve in crises. However, the unemployment-

vacancy correlations are somewhat lower in magnitude than those in the data.

Credible bargaining plays a key role in driving our results. As in Hall and Milgrom (2008), by

allowing bargaining parties to make alternating offers instead of taking outside options, credible

bargaining gives rise to equilibrium wages that are relatively insulated to conditions in the labor

market. The congestion externality also plays a role. In recessions many unemployed workers

compete for a small pool of vacancies. An extra vacancy is quickly filled, and the vacancy filling rate

hardly increases. Consequently, the marginal cost of hiring declines very slowly (downward rigidity).

Consider a large negative productivity shock. Output falls, but profits plummet more because the

credible bargaining wage is insensitive to aggregate conditions. To make matters worse, the marginal

cost of hiring runs into the downward rigidity, failing to decline to offset the impact of falling profits

on the firm’s incentives of hiring. As a result, unemployment rises drastically, giving rise to crises.

Comparative statics show that the probability of breakdown in bargaining and the delaying cost

incurred by the firm during each round of alternating offers (two key parameters in the credible

bargaining game) are quantitatively important for the crisis dynamics. A higher probability of

breakdown, in which both parties take outside options, brings credible bargaining closer to Nash

bargaining and makes the equilibrium wage more responsive to labor market conditions. As such,

unemployment crises are dampened. In contrast, a higher delaying cost makes the equilibrium wage

more insulated from labor market conditions. As such, crisis dynamics are strengthened.
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The theoretical foundations for the search and matching model are provided by Diamond (1982),

Mortensen (1982), and Pissarides (1985). Shimer (2005) contributes a simple yet profound insight

that the unemployment volatility in the baseline search model is too low relative to that in the

data.1 As noted, our model is built on Hall and Milgrom (2008), who show that replacing the Nash

wage with the credible bargaining wage helps explain the unemployment volatility puzzle. Going

beyond the second moments of the labor market, we push the search model of unemployment to

explain the unemployment crisis in the Great Depression.2 Our work is also related to Cole and

Ohanian (2004) and Ohanian (2009), who quantify important deviations from the neoclassical equi-

librium conditions in the labor market in the Great Depression. Their results emphasize the impact

of real wage rigidity as well as frictions in the labor market. As such, we view our work based on

the search-theoretical approach as complementary to their findings.

The rest of the paper is organized as follows. Section 2 documents the crisis dynamics in the

historical U.S. unemployment rates and the Beveridge curve. Section 3 describes the search and

matching model with credible bargaining. Section 4 presents the quantitative results. Section 5 cal-

culates the welfare cost of business cycles in the model with log utility. Finally, Section 6 concludes.

Supplementary results including detailed data description are provided in the appendices.

2 Evidence

We construct our monthly U.S. unemployment rate series from April 1929 to December 2012 by

drawing from NBER macrohistory files and Federal Reserve Economic Data at Federal Reserve

Bank of St. Louis. We adjust and concatenate four different series: (i) seasonally adjusted unem-

1A large subsequent literature has developed to address the volatility puzzle. Hall (2005) shows how wage
stickiness, which satisfies the condition that no worker-firm pair has any unexploited opportunity for mutual gain,
increases labor market volatilities. Mortensen and Nagypál (2007) and Pissarides (2009) show that the fixed
recruiting cost can explain the volatility puzzle. Hagedorn and Manovskii (2008) show that a calibration with small
profits and a low bargaining power for the workers can produce realistic volatilities. Petrosky-Nadeau and Wasmer
(2013) show how incorporating financial frictions can generate higher labor market volatilities.

2Petrosky-Nadeau, Zhang, and Kuehn (2013) embed the search and matching model into an equilibrium asset
pricing framework. Instead of asset prices, we focus on unemployment crises as well as the second moment of the
labor market. We also move beyond the Nash bargaining to the Hall and Milgrom (2008) credible bargaining.
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ployment rates from April 1929 to February 1940; (ii) seasonally adjusted unemployment rates from

March 1940 to December 1946; (iii) unemployment rates (not seasonally adjusted) from January

1947 to December 1947; and (iv) seasonally adjusted civilian unemployment rates from January

1948 to December 2012 from Bureau of Labor Statistics at U.S. Department of Labor. We detail

the data sources and our procedures for adjusting the raw series in Appendix A.1.

We also construct a long vacancy rate series stretching back to April 1929 by drawing from four

different sources for U.S. job openings: (i) the Metropolitan Life Insurance company help-wanted

advertising index in newspapers from January 1919 to August 1960 from the NBER macrohistory

files; (ii) the Conference Board help-wanted advertising index from January 1951 to July 2006; (iii)

the Barnichon (2010) composite print and online help-wanted index from January 1995 to Decem-

ber 2012; and (iv) the seasonally adjusted job openings series from December 2000 to December

2012 obtained from the Job Openings and Labor Turnover Survey released by U.S. Bureau of La-

bor Statistics. To convert the help-wanted index to a vacancy rate series, we utilize the series of

the civilian labor force over 16 years of age from Current Employment Statistics released by U.S.

Bureau of Labor Statistics from January 1948 to December 2012 as well as annual observations of

total population from 1929 to 1947 from the U.S. Census Bureau. We detail the data sources and

our procedures for adjusting the raw data in Appendix A.2.

2.1 Unemployment Crises

To model the tail behavior in the U.S. unemployment rate series in Figure 1, we follow Chatterjee

and Corbae (2007) to fit a three-state Markov chain model via maximum likelihood. The aggregate

state of the economy, η ∈ {g, b, c}, evolves through good (g), bad (b), and crisis (c) states with

different employment prospects. Let the transition matrix of the Markov chain be given by:

Λ =







λgg λbg λcg

λgb λbb λcb

λgc λbc λcc






, (1)
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in which, for example, λgb ≡ Prob{ηt+1 = g|ηt = b} is the probability of the economy being in

state g next period conditional on the economy being in state b in the current period.

As discussed in Chatterjee and Corbae (2007), the maximum likelihood estimate of λkj , which

is the (j, k)th element of the aggregate state transition matrix, is the ratio of the number of times

the economy switches from state j to state k to the number of times the economy is in state j.

Let, for example, 1{η
t
=j} denote the indicator function that takes the value of one if the economy

in period t is in state j and zero otherwise. The maximum likelihood estimate of λkj is given by:

λ̂kj =

∑T−1

t=1
1{η

t+1=k}1{η
t
=j}

∑T−1

t=1
1{η

t
=j}

. (2)

In addition, the asymptotic standard error for λ̂kj is given by:

Ste(λ̂kj) =

√

√

√

√

λ̂kj(1− λ̂kj)
∑T

t=1
1{η

t
=j}

. (3)

In practice, we identify the good state, g, as months in which the unemployment rates are

below the median unemployment rate of 5.7%. We define the crisis state, c, as months in which the

unemployment rates are above or equal to 20%. The bad state, b, is then identified as months in

which the unemployment rates are below 20% but above or equal to the median of 5.7%. We choose

the crisis cutoff rate of 20% judiciously such that the cutoff rate is relatively high, but there are

still a sufficient number of months in which the economy hits the crisis state so that the transition

probability estimates can be (relatively) precise.

Table 1 reports the estimated aggregate state transition matrix. The crisis state is persistent

in that the probability of the economy remaining in the crisis state conditional on it being in the

crisis state is 82.35%. This estimate is also precise, with a small standard error of 0.065. With a

probability of 17.65%, the economy switches from the crisis state to the bad state. Unconditionally,

the tail probability of the economy being in the crisis state is estimated to be 3.47%.
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Table 1 : Estimated Aggregate State Transition Matrix and Unconditional Probabilities of
the Three Economic States, April 1929–December 2012

This table reports the estimated state transition matrix in equation (1). The transition probabilities are

defined as in equation (2), and the standard errors (in parentheses) are in equation (3). The last row reports

the unconditional probabilities of the states, calculated by raising the transition matrix to the power 1,000.

Good Bad Crisis

Good 0.9586 0.0414 0
(0.0091) (0.0091) (0)

Bad 0.0390 0.9487 0.0123
(0.0088) (0.0100) (0.0050)

Crisis 0 0.1765 0.8235
(0) (0.0654) (0.0654)

Unconditional probability 0.4683 0.4970 0.0347

2.2 The Beveridge Curve

Figure 2 reports the vacancy rates from April 1929 to December 2012 (Panel A) as well as the

vacancy-unemployment ratio (labor market tightness) over the sample period (Panel B). We see

that World War II is an important outlier during which the vacancy rate, especially the labor

market tightness, reaches abnormally high levels that are otherwise absent in other periods.

Figure 3 reports the U.S. Beveridge curve by plotting the vacancy rates against the

unemployment rates from April 1929 to December 2012. Several patterns emerge. First, the

scatter points display a clear convex shape, a pattern consistent with the congestion externality

due to matching frictions in the labor market. Second, the early period prior to January 1951

shows dramatic movements in the unemployment and vacancy rates. In particular, when the

unemployment rates exceed 20% in the Great Depression, the vacancy rates are below 0.75%. When

the unemployment rates are below 2% during the World War II, the vacancy rates are close to the

maximum value of 5%. In contrast, such large movements are absent from the later period. Finally,

the Great Depression (with high unemployment and low vacancy rates) makes the Beveridge curve

substantially flatter than it otherwise would have been. The observations from the Great Recession

(the period after January 2008) seem well aligned with the flattened Beveridge curve.
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Figure 2 : U.S. Monthly Vacancy Rates and Labor Market Tightness (the
Vacancy-unemployment Ratio), April 1929 to December 2012
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Figure 3 : The U.S. Beveridge Curve, April 1929 to December 2012
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2.3 Labor Market Volatilities

We report a standard set of second moments for the labor market for the long sample from April

1929 to December 2012 as well as the postwar sample since January 1951 to compare with existing

studies (e.g., Shimer (2005)). We measure the labor productivity as the seasonally adjusted real

average output per job in the nonfarm business sector (Series id: PRS85006163) from the Bureau

of Labor Statistics. Unlike the unemployment and vacancy rates, the labor productivity is avail-

able only for the postwar sample. We take quarterly averages of the monthly series to convert to

quarterly series. We detrend the quarterly series in log deviations from the Hodrick-Prescott (HP,

1997) trend with a smoothing parameter of 1,600.

Table 2 reports the data moments. In the long sample that includes the Great Depression, the

unemployment volatility is 0.218, which is more than 65% higher than the volatility of 0.131 in the

postwar sample. The unemployment-vacancy correlation is −0.827 in the long sample but −0.931

in the postwar sample. As such, the Great Depression flattens somewhat the slope of the Beveridge

curve (see also Figure 3). The vacancy volatility is 0.168 in the long sample, which is slightly higher

than 0.142 in the postwar sample. The standard deviation for the labor market tightness is 0.368

in the long sample and is higher than 0.269 in the postwar sample. It is clear that the World War

II has an important impact on this volatility estimate (see Figure 2).

3 The Model

We construct a search model of unemployment embedded with credible bargaining in determining

the equilibrium wage as in Hall and Milgrom (2008).

3.1 The Environment

The model is populated by a representative household and a representative firm that uses labor as

the single productive input. Following Merz (1995) and Andolfatto (1996), we use the representative

family construct, which implies perfect consumption insurance. The household has a continuum
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Table 2 : Labor Market Volatilities in the Data

Both the unemployment rates, U , and the vacancy rates, V , are converted to quarterly averages of monthly

series. The labor market tightness is then defined as θ = V/U . The labor productivity, X , is seasonally

adjusted real average output per person in the nonfarm business sector from the Bureau of Labor Statistics.

The X series is not available in the early sample. All the variables are in log deviations from the HP-trend

with a smoothing parameter of 1,600.

U V θ U V θ X

Panel A: Crisis sample, Panel B: Non-crisis sample
April 1929–December 2012 January 1951–December 2012

Standard deviation 0.218 0.168 0.368 0.131 0.142 0.269 0.013

Autocorrelation 0.887 0.912 0.907 0.888 0.910 0.905 0.768

Correlation matrix U −0.827 −0.967 −0.931 −0.981 −0.232
V 0.943 0.984 0.391
θ 0.320

with a unit mass of members who are, at any point in time, either employed or unemployed. The

fractions of employed and unemployed workers are representative of the population at large. The

household pools the income of all the members together before choosing per capita consumption

and asset holdings. Finally, the household is risk neutral with a time discount factor of β.

The representative firm posts a number of job vacancies, Vt, to attract unemployed workers, Ut.

Vacancies are filled via a constant returns to scale matching function, G(Ut, Vt), specified as:

G(Ut, Vt) =
UtVt

(U ι
t + V ι

t )
1/ι
, (4)

in which ι > 0 is a constant parameter. This matching function, specified as in Den Haan, Ramey,

andWatson (2000), has the desirable property that matching probabilities fall between zero and one.

Define θt ≡ Vt/Ut as the vacancy-unemployment (V/U) ratio. The probability for an unem-

ployed worker to find a job per unit of time (the job finding rate), denoted f(θt), is:

f(θt) ≡
G(Ut, Vt)

Ut
=

1
(

1 + θ−ι
t

)1/ι
. (5)
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The probability for a vacancy to be filled per unit of time (the vacancy filling rate), denoted q(θt), is:

q(θt) ≡
G(Ut, Vt)

Vt
=

1

(1 + θιt)
1/ι
. (6)

It follows that q′(θt) < 0: An increase in the scarcity of unemployed workers relative to vacancies

makes it harder to fill a vacancy. As such, θt is labor market tightness from the firm’s perspective.

The representative firm incurs costs in posting vacancies. Following Mortensen and Nagypàl

(2007) and Pissarides (2009), we incorporate a fixed component in the unit cost per vacancy:

κt ≡ κ0 + κ1q(θt), (7)

in which κ0 is the proportional cost, κ1 is the fixed cost, and both are nonnegative. The proportional

cost is standard in the literature. The fixed cost captures training, interviewing, and administrative

setup costs of adding a worker to the payroll, costs that are paid after a hired worker arrives but

before wage bargaining takes place. The marginal cost of hiring arising from the proportional cost,

κ0/q(θt), is time-varying, but the marginal cost arising from the fixed cost is constant, κ1.

Jobs are destroyed at a constant rate of s > 0 per period. Employment, Nt, evolves as:

Nt+1 = (1− s)Nt + q(θt)Vt, (8)

in which q(θt)Vt is the number of new hires. The size of the population is normalized to be unity,

Ut = 1−Nt. As such, Nt and Ut are also the rates of employment and unemployment, respectively.

The firm takes aggregate labor productivity, Xt, as given. The law of motion for xt ≡ log(Xt) is:

xt+1 = ρxt + σǫt+1, (9)

in which ρ ∈ (0, 1) is the persistence, σ > 0 is the conditional volatility, and ǫt+1 is an independently

and identically distributed standard normal shock. The firm uses labor to produce output, Yt, with
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a constant returns to scale production technology,

Yt = XtNt. (10)

The dividends to the firm’s shareholders are given by:

Dt = XtNt −WtNt − κtVt, (11)

in which Wt is the equilibrium wage rate. Taking q(θt) and Wt as given, the firm posts an optimal

number of job vacancies to maximize the cum-dividend market value of equity, denoted St:

St ≡ max
{Vt+△t,Nt+△t+1}

∞
△t=0

Et





∞
∑

△t=0

β△t [Xt+△tNt+△t −Wt+△tNt+△t − κt+△tVt+△t]



 , (12)

subject to the employment accumulation equation (8) and a nonnegativity constraint on vacancies:

Vt ≥ 0. (13)

Because q(θt) > 0, this constraint is equivalent to q(θt)Vt ≥ 0. As such, the only source of job

destruction in the model is the exogenous separation of employed workers from the firm.3

Let λt denote the multiplier on the nonnegativity constraint q(θt)Vt ≥ 0. From the first-order

conditions with respect to Vt and Nt+1, we obtain the intertemporal job creation condition:

κt
q(θt)

− λt = Et

[

β

[

Xt+1 −Wt+1 + (1− s)

[

κt+1

q(θt+1)
− λt+1

]]]

. (14)

Intuitively, the marginal cost of hiring at time t equals the marginal value of employment to the

firm, which in turn equals the marginal benefit of hiring at period t + 1, discounted to t. The

marginal benefit at t+1 includes the marginal product of labor, Xt+1, net of the wage rate, Wt+1,

plus the marginal value of employment, which equals the marginal cost of hiring at t + 1, net of

3This constraint does not bind in the model’s simulations under the benchmark calibration. As such, the constraint
does not affect our quantitative results. However, the constraint can be binding under at least some alternative
parameterizations. As such, we opt to impose the constraint in the solution algorithm for computational accuracy.
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separation. The optimal vacancy policy also satisfies the Kuhn-Tucker conditions:

q(θt)Vt ≥ 0, λt ≥ 0, and λtq(θt)Vt = 0. (15)

3.2 Credible Bargaining

To close the model, we need to specify how the wage rate, Wt, is determined in equilibrium. In the

standard Diamond-Mortensen-Pissarides model, the wage rate is derived from the sharing rule per

the outcome of a generalized Nash bargaining process between the employed workers and the firm

(e.g., Pissarides (2000, Section 1.4)). Let 0 < η < 1 be the workers’ relative bargaining weight and

b the workers’ value of unemployment activities. The Nash-bargained wage rate is:

Wt = η (Xt + κtθt) + (1− η)b. (16)

Although analytically simple, the baseline search model with the Nash wage requires a relatively

high replacement ratio (the value of unemployment activities over the average marginal product of

labor) to reproduce realistic labor market volatilities (e.g., Hagedorn and Manovskii (2008)).

The Setup

We adopt the credible bargaining wage proposed by Hall and Milgrom (2008). Built on Binmore,

Rubinstein, and Wolinsky (1986), Hall and Milgrom place a crucial distinction between a threat

point and an outside option in the wage bargaining game. Bargaining takes time. Both parties

make alternating offers which can be accepted, rejected to make a counteroffer, or rejected to aban-

don the bargaining altogether. In the standard Nash bargaining, disagreement leads immediately

to the abandonment of the bargaining game, meaning that the relevant threat point is the outside

options for both parties. In contrast, in the more realistic alternating bargaining, disagreement only

leads to another round of alternating offers. The threat point is the payoff from another round of

alternating offers, and outside options are taken only when abandoning the bargaining altogether.

The outside option for a worker is the value of unemployment. The outside option for the firm
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is to resume searching in the labor market, and its value is always driven to zero in equilibrium.

During a period in which both parties engage in another round of alternating offers, the worker

receives the flow value of unemployment activities, b, and the firm incurs the cost of delaying,

χ > 0, which can be interpreted as the cost of idle capital (e.g., Hall and Milgrom (2008)). During

this period, the negotiation can also break down with a probability of δ.

With this setup of the alternating bargaining game, the indifference condition for a worker when

considering a wage offer, Wt, from the firm is:

JW
Nt = δJUt + (1− δ)

(

b+ Et[βJ
W ′

Nt+1]
)

, (17)

in which Jt ≡ J(Nt,Xt) is the indirect utility function of the representative household, JW
Nt is the

marginal value of an employed worker to the household when accepting the wage offer from the

employer, JUt is the marginal value of an unemployed worker to the household, and JW ′

Nt+1
is the

marginal value of an employed worker to the household when rejecting the firm’s wage offer to make

a counteroffer of W ′
t+1 in the next period. The indifference condition in equation (17) says that the

payoff to the worker when accepting the wage offer from the firm, JW
Nt, is just equal to the payoff

from rejecting the offer. After rejecting the offer, with a probability of δ, the negotiation breaks

down, and the worker returns to the labor market, leaving the household with the marginal value

of an unemployed worker. With the probability of 1−δ, the worker receives the flow value of unem-

ployment, b, for the current period, and makes a counteroffer ofW ′
t+1 to the firm in the next period.

The indifference condition for the firm when considering the worker’s counteroffer, W ′
t , is:

SW ′

Nt = δ × 0 + (1− δ)
(

−χ+ Et[βS
W
Nt+1]

)

, (18)

in which SW ′

Nt is the marginal value of an employed worker to the firm when accepting the worker’s

counteroffer, and SW
Nt+1

is the marginal value of an employed worker to the firm when rejecting the

worker’s offer to make a counteroffer of Wt+1 in the next period. Intuitively, equation (18) says
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that the firm is just indifferent between the payoff from accepting the worker’s offer W ′
t and the

payoff from rejecting the offer to have an opportunity to make a counteroffer of Wt+1 in the next

period. When rejecting the offer, the firm pays the delaying cost of χ if the bargaining does not

break down. When the negotiation does break down, the firm’s payoff is zero.

The two indifference conditions collapse to the indifference conditions for the standard Nash

bargaining when the probability of breakdown, δ, equals one. During the alternating bargaining,

it is optimal for each party to make a just acceptable offer. As in Hall and Milgrom (2008), we

assume that the firm makes the first offer, which the worker accepts. As such, Wt is the equilibrium

wage, and the delaying cost, χ, is never paid in equilibrium.

Equilibrium Wages

The equilibrium wage, Wt, and the worker’s counteroffer wage, W ′
t+1, can be characterized further.

First, we note that the marginal value of an unemployed worker to the household is:

JUt = b+ Et

[

β
(

ftJ
W
Nt+1 + (1− ft)JUt+1

)]

, (19)

in which ft ≡ f(θt) is the job finding rate. The equation says that the value of unemployment

equals the flow value of unemployment activities, b, plus the discounted expected value in the next

period. With a probability of ft, the unemployed worker lands a job, which delivers the value of

JW
Nt+1

. Otherwise, the worker remains unemployed with a value of JUt+1.

In addition, the marginal value of an employed worker to the household is:

JW
Nt =Wt + Et

[

β
(

(1− s)JW
Nt+1 + sJUt+1

)]

. (20)

The equation says that the value of employment equals the flow value from the wage, Wt, plus

the discounted expected value in the next period. With a probability of s, the employed worker

separates from the firm, and returns to the labor market as an unemployed worker with a value of

JUt+1. Otherwise, the worker remains on the job, which delivers the value of JW
Nt+1

.
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The wage offer by the firm to the worker, Wt, can be expressed as (see Appendix B for details):

Wt = b+ (1− δ)βEt

[

JW ′

Nt+1 − JUt+1

]

− (1− s− δft)βEt

[

JW
Nt+1 − JUt+1

]

. (21)

Intuitively, the wage offer from the firm increases in the flow value of unemployment activities b.

The second term in equation (21) says that if the bargaining does not breakdown, the wage offer also

increases in the surplus that the worker would enjoy after making a counteroffer, W ′
t+1, to the firm.

From the last term in equation (21), the equilibrium wage, Wt, also increases in the separation rate,

s. As s goes up, the expected duration of the job shortens. As such, the worker requires a higher

wage to remain indifferent between accepting and rejecting the wage offer. Finally, Wt increases in

the job finding rate, ft. As ft rises, the worker’s outside job market prospects improve, and the firm

must offer a higher wage to make the worker indifferent. However, this impact of labor market con-

ditions on Wt becomes negligible as the probability of breakdown in the bargaining, δ, goes to zero.

The wage offer of a worker to the firm, W ′
t , can be expressed as:

W ′
t = Xt + (1− δ)χ+ βEt

[

(1− s)SW ′

Nt+1 − (1− δ)SW
Nt+1

]

. (22)

Intuitively, W ′
t increases in labor productivity, Xt, and the cost of delay to the firm, χ. A higher

χ makes the firm more likely to accept a higher wage offer from the worker to avoid any delay. As

W ′
t contains a higher constant proportion because of a higher χ, W ′

t becomes more insulated from

labor market conditions. Further, becauseW ′
t is the flow value of JW ′

Nt shown in equation (20), JW ′

Nt

also becomes more insulated. More important, as JW ′

Nt enters the second term in equation (21), the

equilibrium wage, Wt, becomes less sensitive to aggregate conditions as a result of a higher χ.

From the last term in equation (22), an increase in the separation rate reduces the wage offer

from the worker to the firm, W ′
t . As s rises, the present value of profits produced by the worker

drops. To make the firm indifferent, the worker must reduce the wage offer. Also, the worker’s offer,

W ′
t , increases (naturally) in the firm’s surplus from accepting the offer, SW ′

Nt+1
. In contrast, the
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worker’s offer would be lower if the firm’s surplus, SW
Nt+1

, from rejecting the offer to make a coun-

teroffer, Wt, is higher. However, the quantitative importance of this channel would be negligible if

the breakdown probability, δ, goes to one. As such, W ′
t increases with δ.

Finally, the two parties of the credible bargaining game would agree to accept the equilibrium

wage if the joint surplus of the match is greater than the joint value of the outside options, JUt, as

well as the joint present value of continuous delaying:

SW
Nt + JW

Nt > max



JUt, Et





∞
∑

△t=0

β△t(b− χ)







 = JUt. (23)

The last equality holds because the flow value of unemployment, b, is higher than b−χ (the delaying

cost is positive). We verify that this condition holds in simulations.

3.3 Competitive Equilibrium

In equilibrium, the household receives the firm’s dividends, and the goods market clears:

Ct + κtVt = XtNt. (24)

The competitive equilibrium consists of vacancy posting, Vt ≥ 0, multiplier, λt ≥ 0, consumption,

Ct, and wages, Wt andW
′
t , such that: (i) Vt and λt satisfy the intertemporal job creation condition

(14) and the Kuhn-Tucker conditions (15); (ii) wages, Wt andW
′
t , satisfy the indifference conditions

(17) and (18); and (iii) the goods market clears as in equation (24).

4 Quantitative Results

We calibrate the model and discuss computational issues in Section 4.1. We examine the model’s

stationary distribution in Section 4.2 and quantify its performance in explaining higher moments

of unemployment in Section 4.3. We then study the second moments of the labor market in Section

4.4, nonlinear impulse response functions in Section 4.5, and comparative statics in Section 4.5.
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Table 3 : Parameter Values in the Monthly Calibration for the Benchmark Model

Notation Parameter Value

β Time discount factor e−5.524/1200

ρ Aggregate productivity persistence 0.951/3

σ Conditional volatility of productivity shocks 0.00635
s Job separation rate 0.045
ι Elasticity of the matching function 1.25
b The value of unemployment activities 0.71
δ Probability of breakdown in bargaining 0.1
χ Cost to employer of delaying in bargaining 0.25
κ0 The proportional cost of vacancy posting 0.125
κ1 The fixed cost of vacancy posting 0.2

4.1 Calibration and Computation

Our calibration strategy is to match the mean and the volatility of the unemployment rate in

the postwar sample, before quantifying the model’s performance in explaining the crisis dynamics

documented in Section 2. As the common practice in the macro labor literature, calibrating to the

unemployment dynamics in normal periods seems sensible. Because of the strong nonlinearity in the

model, steady state relations hold very poorly in simulations. As such, we do not use these relations.

Table 3 lists the parameter values for the monthly benchmark calibration of the model. The

time discount factor, β, is set to be e−5.524/1200 = 0.9954. This value implies a discount rate of

5.524% per annum, which is the leverage-adjusted aggregate discount rate in the 1951–2012 sam-

ple.4 To calibrate the log labor productivity, we set its persistence, ρ, to be 0.951/3 = 0.983 as in

Gertler and Trigari (2009). We then calibrate its conditional volatility, σ, to be 0.00635 to match

the standard deviation of 0.013 for the labor productivity in the data (see Table 2).

We set the job separation rate, s, to be 4.5%, which is higher than 3.78% from JOLTS. However,

Davis, Faberman, Haltiwanger, and Rucker (2010) show that the JOLTS sample overweights es-

4We obtain monthly series of the value-weighted stock market returns, one-month Treasury bill rates, and
inflation rates from January 1951 to December 2012 from Center for Research in Security Prices. The average real
interest rate (one-month Treasury bill rates minus inflation rates) is 0.895% per annum. The equity premium (the
value-weighted market returns in excess of one-month Treasury bill rates) is on average 6.807%. Because we do not
model financial leverage, we calculate the leverage-adjusted equity premium as (1 − 0.32) × 6.807% = 4.629%, in
which 0.32 is the aggregate market leverage ratio of U.S. corporations reported in Frank and Goyal (2008). Taken
together, the leverage-adjusted aggregate discount rate in the data is 4.629% + 0.895% = 5.524%.
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tablishments with stable hiring and separation and underweights volatile establishments with rapid

growth or contraction. Adjusting for this bias, Davis et al. (Table 5.4) estimate the separation rate

to be 4.96%. For the elasticity parameter in the matching function, ι, we set it to be 1.25, which

is close to that in Den Haan, Ramey, and Watson (2000).

Following Hall and Milgrom (2008), we calibrate the value of unemployment activities to be

0.71. The probability of breakdown in bargaining, δ, is 0.1 in our monthly frequency, and is close

to Hall and Milgrom’s value of 0.0055 in their daily calibration (with 20 working days per month).

The delaying cost parameter, χ, is set to be 0.25, which is close to 0.27 in Hall and Milgrom. To

calibrate the recruiting cost parameters, κ0 and κ1, we target the first and the second moments

of the unemployment rate in the postwar sample. As noted, the mean unemployment rate in this

sample is 5.84%, and the unemployment volatility is 0.131 (see Table 2). We end up with the

recruiting cost parameters, κ0 = 0.125 and κ1 = 0.2, which imply a mean of 5.92% and a volatility

of 0.102 for the unemployment rate in normal periods.

Because we focus on the higher moments of unemployment, the standard loglinearization cannot

be used. We instead adapt the projection algorithm in Petrosky-Nadeau, Zhang, and Kuehn (2013)

to our setting. The state space consists of employment and log productivity, (Nt, xt). The goal is

to solve for the optimal vacancy function, Vt = V (Nt, xt), the multiplier function, λt = λ(Nt, xt),

and the equilibrium wage, Wt =W (Nt, xt), from the following five functional equations:

κt
q(θt)

− λ(Nt, xt) = Et

[

β

[

Xt+1 −Wt+1 + (1− s)

[

κt+1

q(θt+1)
− λ(Nt+1, xt+1)

]]]

(25)

W (Nt, xt) = b+ (1− δ)βEt

[

JW ′

N (Nt+1, xt+1)− JU (Nt+1, xt+1)
]

− (1− s− δft)βEt

[

JW
N (Nt+1, xt+1)− JU (Nt+1, xt+1)

]

(26)

JU (Nt, xt) = b+ Et

[

β
(

ftJ
W
N (Nt+1, xt+1) + (1− ft)JU (Nt+1, xt+1)

)]

(27)

JW
N (Nt, xt) = Wt + Et

[

β
(

(1− s)JW
N (Nt+1, xt+1) + sJU (Nt+1, xt+1)

)]

(28)

JW ′

N (Nt, xt) = W ′
t +Et

[

β
(

(1− s)JW ′

N (Nt+1, xt+1) + sJU (Nt+1, xt+1)
)]

. (29)
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In addition, V (Nt, xt) and λ(Nt, xt) must also satisfy the Kuhn-Tucker condition (15). Appendix

C contains further computational details.

4.2 Properties of the Stationary Distribution

We simulate the economy for one million monthly periods from the model’s stationary distribution.5

Panel A of Figure 4 plots the unemployment rate against labor productivity in simulations. The

relation is strongly nonlinear. When labor productivity is above its mean of unity, unemployment

goes down only slightly. However, when labor productivity is below its mean, unemployment goes

up drastically. The correlation between unemployment and productivity is −0.677. Panel B plots

labor market tightness, θt, against productivity. Although the relation is nonlinear, the nonlinear-

ity is not nearly as dramatic as that of unemployment in Panel A. Apart from the region when the

labor productivity is very low, the θt-productivity relation is (virtually) linear.

Panels C and D report the empirical cumulative distribution functions of unemployment and

labor market tightness. Unemployment is skewed with a long right tail. The 2.5 percentile, 4.70%,

is close to the median of 5.40%, but the 97.5 percentile is far away, 15.15%. The 1 percentile is

4.65%, but the 99 percentile is 20.71%. Finally, the minimum rate is 4.52%, but the maximum is

55.13%. In contrast, the empirical distribution of the labor market tightness is largely symmetric.

Figure 5 illustrates a crisis episode in simulations. Panel A plots the unemployment rate, and

Panel B the log productivity. A deep crisis occurs around the 300th month when the log labor

productivity drops more than three unconditional standard deviations below the unconditional

mean of zero. In response, the unemployment rate rises above 30%. Two other episodes with high

unemployment rates around 17% occur shortly after the 400th month and the 700th month, when

the log productivity dips just below the two-unconditional-standard-deviation bound.

5To reach the stationary distribution, we start at the initial condition of zero for log labor productivity and the
deterministic steady state employment and simulate the economy for 6,000 months.

20



Figure 4 : The Unemployment-productivity Relation, the Labor Market
Tightness-productivity Relation, and Empirical Cumulative Distribution Functions of

Unemployment and Labor Market Tightness

Results are based on the one-million-month simulated data from the model’s stationary distribution.
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Figure 5 : An Illustrative Crisis Example

Using a crisis episode, we plot the unemployment rate in Panel A and log productivity in Panel B. In Panel

B, the black dashed lines indicate one unconditional standard deviation above or below the unconditional

mean of zero. The red dashdot lines indicate two unconditional standard deviations above or below zero,

and the pink dotted lines indicate three unconditional standard deviations above or low zero.
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4.3 Explaining Higher Moments of Unemployment Quantitatively

Can the search and matching model explain quantitatively the unemployment crisis dynamics in

the data, including the aggregate state transition matrix and the tail probability of the crisis state

in Table 1? To this end, from the model’s stationary distribution, we repeatedly simulate 50,000

artificial samples, each of which contains 1,005 monthly periods. The sample length matches the

number of months in the data from April 1929 to December 2012.

Because crises, which are rare by definition, do not occur in every simulated sample, we

split the 50,000 samples into two groups, non-crisis samples and crisis samples. If the maximum

unemployment rate in an artificial sample is greater than or equal to 20%, we categorize it as a crisis

sample (otherwise a non-crisis sample). The cutoff threshold of 20% is consistent with our empirical

procedure in Section 2. Out of the 50,000 simulations, we have in total 20,057 crisis samples (about

40%). On each crisis sample (i.e., conditional on at least one crisis), we calculate the state transition

matrix and unconditional probabilities of the states using the exactly the same procedure as in Table
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Table 4 : The Aggregate State Transition Matrix and Unconditional Probabilities of the
Three Economic States, the Benchmark Model with Credible Bargaining

From the model’s stationary distribution, we simulate 50,000 artificial samples, each with 1,005 months.

We split the samples into two groups, non-crisis samples (in which the maximum unemployment rate is less

than 20%) and crisis samples (in which the maximum rate is greater than or equal to 20%). On each crisis

sample, we calculate the state transition matrix and unconditional probabilities of the states as in Table 1.

We report the cross-simulation averages and standard deviations (in parentheses) across the crisis samples.

Good Bad Crisis

Good 0.9793 0.0207 0
(0.0067) (0.0067) (0)

Bad 0.0217 0.9748 0.0035
(0.0071) (0.0075) (0.0024)

Crisis 0 0.1573 0.8418
(0) (0.2214) (0.2228)

Unconditional probability 0.4942 0.4731 0.0321
(0.0395) (0.0448) (0.0672)

1. We then report the cross-simulation averages and standard deviations across the crisis samples.6

Table 4 reports the model output. A comparison with Table 1 shows that the model does a

good job in explaining the large unemployment dynamics in the data. In particular, the crisis state

is about as persistent in the model as in the data. The probability of the economy remaining in

the crisis state next period conditional on the crisis state in the current period is 84.18%, which

is close to 82.35% in the data. In addition, the unconditional probability of the crisis state in the

model is 3.21%, which is also close to 3.47% in the data. The cross-simulation standard deviation

of this estimate is 6.72% in the model. This level of dispersion is perhaps not surprising for a tail

probability estimate. In all, the model’s estimate seems empirically plausible.

4.4 Labor Market Volatilities

The crisis dynamics in the model have important implications for the second moments such as

volatilities and correlations, which are the traditional focus in the macro labor literature. In partic-

6We have experimented with simulating only 5,000 artificial samples, and the quantitative results are hardly
changed under the benchmark calibration. However, we find that in comparative static experiments (Section 4.5)
the results with 5,000 simulations can be sensitive to the increase of the number of simulations. Intuitively, the
percentage of crisis samples can be small under alternative parameterizations. As such, the cross-simulation averages
can be sensitive because of the small number of crisis samples being averaged over. To ensure accuracy in our
quantitative results, we opt to work with 50,000 artificial samples for all the parameterizations in the paper.
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Table 5 : Labor Market Volatilities in the Model

We simulate 50,000 artificial samples from the model, with 1,005 months in each sample. We split the

samples into two groups, non-crisis samples (in which the maximum unemployment rate is less than 20%)

and crisis samples (in which the maximum rate is greater than or equal to 20%). We implement the

same empirical procedure as in Table 2 and report cross-simulation averages and standard deviations (in

parentheses) conditionally on the non-crisis samples and on the crisis samples.

U V θ X U V θ X

Panel A: Non-crisis samples Panel B: Crisis samples

Standard deviation 0.102 0.191 0.274 0.013 0.149 0.216 0.331 0.014
(0.033) (0.026) (0.050) (0.001) (0.028) (0.023) (0.045) (0.001)

Autocorrelation 0.789 0.681 0.764 0.773 0.838 0.657 0.781 0.781
(0.051) (0.060) (0.043) (0.036) (0.034) (0.055) (0.037) (0.030)

Correlation matrix U −0.732 −0.880 −0.742 −0.630 −0.861 −0.710
(0.069) (0.026) (0.062) (0.055) (0.025) (0.057)

V 0.966 0.950 0.937 0.926
(0.016) (0.018) (0.014) (0.016)

θ 0.938 0.925
(0.022) (0.020)

ular, it can be misleading to focus only on the second moments in normal periods (non-crisis sam-

ples). The second moments in the crisis samples can deviate greatly from those in normal periods.

Panel A of Table 5 reports the results conditional on the non-crisis samples. The unemployment

volatility is 0.102, which is lower than but close to 0.131 in the data (see Table 2). Although not

a direct target, the standard deviation of labor market tightness is 0.274 in the model, which is

close to 0.269 in the data. However, the model predicts a vacancy volatility of 0.191, which over-

shoots 0.142 in the data. Although negative, the unemployment-vacancy correlation is −0.732 in

the model, which is lower in magnitude than −0.931 in the data. Overall, our quantitative results

(based on a globally nonlinear algorithm) lend support to Hall and Milgram (2008) in that credible

bargaining strengthens the model’s ability to explain the unemployment volatility puzzle.

However, focusing only on normal periods suffers from a severe sample selection bias that arises

from ignoring the crisis samples. Panel B reports the results conditional on the crisis samples. The

unemployment volatility rises to 0.149, which is almost 50% higher than 0.102 in normal periods.

However, the estimate of 0.149 falls short of 0.218 in the 1929–2012 sample in the data (see Table

24



2). The volatilities of vacancy and labor market tightness increase somewhat from 0.191 and 0.274

to 0.216 and 0.331, respectively. In particular, the 0.331 estimate is close to the volatility of 0.368

for the labor market tightness in the long sample. This result seems notable because this volatility

in the crisis sample is not an explicit target of our calibration.

The model also predicts that the unemployment-vacancy correlation drops in magnitude from

−0.732 in the non-crisis samples to −0.630 in the crisis samples. This result is consistent with a flat-

ter Beveridge curve in the long sample than in the postwar sample, as evident in Figure 3. However,

we note that the magnitude of these correlations in the model are lower than those in the data.

These results are intrinsically linked to the nonlinear dynamics in Figures 4. Precisely because

unemployment exhibits a long right tail, ignoring crises by focusing only on the second moments

in normal periods understates its volatility greatly. Also, because the nonlinearity of the vacancy

rate is weaker than that of unemployment, ignoring crises does not materially affect its volatility

but does overstate the unemployment-vacancy correlation.

4.5 Intuition: What Drives Unemployment Crises?

We turn to the economic mechanisms behind the unemployment crises in the model. We illustrate

the intuition in two ways, impulse responses and comparative statics.

Impulse Responses

We calculate the impulse responses from three different starting points: bad, median, and good.

The bad economy is the 5 percentile of the model’s bivariate stationary distribution of employment

and log productivity, the median is the median, and the good economy is the 95 percentile. (Across

the bad, median, and good economies, the unemployment rates are 11.54%, 5.40%, and 4.75%,

and the log labor productivity levels are −0.0567, 0, and 0.0567, respectively.) Both positive and

negative one-standard-deviation shocks to the log productivity are examined.

Panels A to C of Figure 6 report responses in the labor market tightness. We observe that the
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responses are substantially larger in the bad economy than in the good economy. In the bad econ-

omy, a positive one-standard-deviation shock to the log labor productivity increases the tightness

by 32.45%. In contrast, the response is only 6.12% in the good economy, and is less than 20% of

the response in the bad economy. A negative impulse decreases the tightness by 6.08% in the good

economy, which is around 20% of the response in the bad economy, 28.94%.

We also see large and asymmetric responses in unemployment. After a negative impulse, the

unemployment rate shoots up 1.58% in the bad economy (Panel D). This response is about 23 times

as large as that of 0.07% in the good economy (Panel F). From Panel E, the response in the median

economy is only 0.20%, which is closer to that in the good economy than to that in the bad economy.

Panels G to I demonstrate the limited wage responses in the model. Starting from the good

economy, the negative impulse reduces wages by 0.42%, which is only about 1.3% of the response

in the market tightness, 32.45%. Even starting from the bad economy, a one-standard-deviation

negative impulse reduces wages by about 0.60%, which is only slightly more than 2% of the response

in the market tightness, 28.94%. These results clearly show that, consistent with Hall and Milgrom

(2008), wages in the credible bargaining model are relatively insulated from conditions in the labor

market. Most important, this insulation holds up quantitatively even in the bad economy, forcing

negative shocks to be mostly absorbed into unemployment to give rise to crises.

Comparative Statics

We also conduct an array of comparative statics to gain more intuition. We perform six computa-

tional experiments: (i) raising the probability of breakdown in bargaining to δ = 0.15; (ii) reducing

the delaying cost to χ = 0.20; (iii) lowering the proportional cost of vacancy posting to κ0 = 0.05;

(iv) decreasing the fixed cost of vacancy posting with κ1 = 0.1; (v) lowering the job separation

rate to s = 0.035; and (vi) cutting the matching function function parameter to ι = 0.9. In each

experiment, all the other parameters remain fixed as in the benchmark calibration. We quantify

how the results reported in Tables 4 and 5 change as we vary each of the parameter values.

26



Figure 6 : Impulse Response Functions

We compute the impulse response functions from three different initial points: the five percentile, the median,

and the 95 percentile of the model’s bivariate distribution of employment and log productivity, respectively.

The responses in wages and labor market tightness are in percentage deviations from the values at a given

initial point, and the responses in unemployment are in levels. We average the impulse responses across

5,000 simulations, each of which has 120 months. The blue solid (red broken) lines are the responses to a

positive (negative) one-standard-deviation shock to log productivity.
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Table 6 reports the results for the crisis moments. From Panel A, increasing the probability of

breakdown in negotiation, δ, weakens the crisis dynamics. The percentage of the crisis samples out

of 50,000 simulations drops from 40% under the benchmark calibration to only 1.85%. Conditional

on the crisis samples, the persistence of crisis weakens somewhat from 0.84 to 0.79, and the uncon-

ditional crisis probability falls from 3.21% to 2.01%. Panel A of Table 7 shows further that raising

δ decreases somewhat the labor market volatilities in both non-crisis and crisis samples.

Intuitively, a higher probability of breakdown in negotiation brings credible bargaining closer

to Nash bargaining. In the extreme case of δ = 1, credible bargaining collapses to Nash bargaining,

which implies more flexible wages. As such, a higher δ makes equilibrium wages less insulated

to labor market conditions. In bad times, the productivity drops, but wages also fall with the

deteriorating labor market, providing the firm with more incentives to creating jobs. As such, the

unemployment volatility falls, consistent with Hall and Milgrom (2008). More important, we push

their argument further by quantifying the impact of wage rigidity on unemployment crises.

The delaying cost is also quite important for explaining the crisis moments. From Panel B

of Table 6, reducing χ from 0.25 under the benchmark calibration to 0.2 lowers the percentage

of the crisis samples out of 50,000 simulations from 40% to only 1.54%. Conditional on the crisis

samples, the persistence of crisis weakens from 0.84 to 0.73, and the unconditional crisis probability

falls from 3.21% to 1.70%. Panel B of Table 7 shows further that reducing χ lowers the mean

unemployment rate to 4.90% and the unemployment volatility to 0.032 in normal times and 0.108

in crises. Intuitively, a lower delaying cost makes equilibrium wages more responsive to labor market

conditions. As such, the crisis dynamics are weakened, and the labor market volatilities are lowered.

Also, the unemployment-vacancy correlation is −0.847 in normal periods but −0.596 in crises. As

the crises become more infrequent, the difference across normal periods and crises becomes starker.

The proportional and the fixed costs of vacancy posting impact the results in the same direction

as the cost of delaying, but to a lesser extent quantitatively. From Table 6, reducing κ0 to 0.05 lowers

28



Table 6 : Comparative Statics, Aggregate State Transition Matrix and Unconditional
Probabilities of the Three Economic States

We consider six comparative static experiments: (i) increasing the probability of breakdown in bargaining

to δ = 0.15; (ii) reducing the delaying cost to χ = 0.2; (iii) lowering the proportional cost of vacancy

t0 κ0 = 0.05; (iv) reducing the fixed cost of vacancy, κ1 = 0.1; (v) decreasing the job separation rate

to s = 0.035; and (vi) cutting the curvature parameter of the matching function to ι = 0.9. In each

experiment, all the other parameters remain identical to those in the benchmark calibration. Under each

alternative calibration, we simulate 50,000 artificial samples (each with 1,005 months) from the model’s

stationary distribution. We split the samples into two groups: non-crisis samples (in which the maximum

unemployment rate is less than 20%) and crisis samples (in which the maximum rate is greater than or equal

to 20%). On each crisis sample, we calculate the state transition matrix and unconditional probabilities of

the states per the procedure in Table 1 and report cross-simulation averages.

Good Bad Crisis Good Bad Crisis

Panel A: δ = 0.15 Panel B: χ = 0.2
(% crisis samples = 1.85) (% crisis samples = 1.54)

Good 0.9807 0.0193 0 0.9801 0.0199 0
Bad 0.0197 0.9780 0.0023 0.0199 0.9779 0.0023
Crisis 0 0.2127 0.7873 0 0.2660 0.7340

Unconditional probability 0.4946 0.4852 0.0201 0.4901 0.4929 0.0170

Panel C: κ0 = 0.05 Panel D: κ1 = 0.1
(% crisis samples = 26.21) (% crisis samples = 12.73)

Good 0.9784 0.0216 0 0.9798 0.0202 0
Bad 0.0214 0.9758 0.0028 0.0208 0.9766 0.0026
Crisis 0 0.1725 0.8264 0 0.1531 0.8458

Unconditional probability 0.4830 0.4888 0.0276 0.4926 0.4810 0.0257

Panel E: s = 0.035 Panel F: ι = 0.9
(% crisis samples = 8.80) (% crisis samples = 41.71)

Good 0.9801 0.0199 0 0.9794 0.0206 0
Bad 0.0204 0.9771 0.0025 0.0217 0.9747 0.0036
Crisis 0 0.2160 0.7833 0 0.1424 0.8570

Unconditional probability 0.4935 0.4839 0.0222 0.4954 0.4701 0.0340
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Table 7 : Comparative Statics, Labor Market Volatilities

We consider six comparative static experiments: (i) increasing the probability of breakdown in bargaining

to δ = 0.15; (ii) reducing the delaying cost to χ = 0.2; (iii) reducting the proportional cost of vacancy t0

κ0 = 0.05; (iv) reducing the fixed cost of vacancy, κ1 = 0.1; (v) reducing the job separation rate to s = 0.035;

and (vi) reducing the curvature parameter of the matching function to ι = 0.9. In each experiment, all the

other parameters remain identical to those in the benchmark calibration. Under each alternative calibration,

we simulate 50,000 artificial samples (each with 1,005 months) from the model’s stationary distribution. We

split the samples into two groups: non-crisis samples (in which the maximum unemployment rate is less than

20%) and crisis samples (in which the maximum rate is greater than or equal to 20%). We implement the

same procedure as in Table 2 and report the cross-simulation averages.

U V θ X U V θ X

Non-crisis samples Crisis samples

Panel A: δ = 0.15 (mean U in normal times: 5.72%)

Standard deviation 0.070 0.150 0.209 0.013 0.106 0.162 0.245 0.014
Autocorrelation 0.792 0.708 0.772 0.775 0.849 0.686 0.791 0.785
Correlation matrix −0.781 −0.895 −0.792 U −0.650 −0.863 −0.735

0.977 0.970 V 0.944 0.950
0.960 θ 0.949

Panel B: χ = 0.2 (mean U in normal times: 4.91%)

Standard deviation 0.032 0.128 0.155 0.013 0.108 0.173 0.253 0.014
Autocorrelation 0.763 0.747 0.769 0.775 0.855 0.709 0.803 0.786
Correlation matrix −0.847 −0.901 −0.776 U −0.596 −0.834 −0.502

0.993 0.968 V 0.939 0.883
0.951 θ 0.819

Panel C: κ0 = 0.05 (mean U in normal times: 4.91%)

Standard deviation 0.074 0.241 0.298 0.013 0.146 0.283 0.390 0.014
Autocorrelation 0.741 0.727 0.759 0.774 0.833 0.709 0.785 0.783
Correlation matrix −0.736 −0.838 −0.613 U −0.607 −0.814 −0.546

0.985 0.934 V 0.955 0.913
0.903 θ 0.869

Panel D: κ1 = 0.1 (mean U in normal times: 5.46%)

Standard deviation 0.076 0.171 0.233 0.013 0.131 0.200 0.300 0.014
Autocorrelation 0.779 0.707 0.766 0.775 0.846 0.679 0.788 0.784
Correlation matrix −0.763 −0.882 −0.728 U −0.618 −0.849 −0.640

0.976 0.953 V 0.939 0.918
0.932 θ 0.895

Panel E: s = 0.035 (mean U in normal times: 4.51%)

Standard deviation 0.093 0.185 0.260 0.013 0.141 0.205 0.312 0.014
Autocorrelation 0.791 0.695 0.768 0.775 0.851 0.674 0.789 0.785
Correlation matrix −0.732 −0.876 −0.730 U −0.603 −0.849 −0.682

0.968 0.953 V 0.933 0.929
0.937 θ 0.922

Panel F: ι = 0.9 (mean U in normal times: 7.25%)

Standard deviation 0.097 0.175 0.257 0.013 0.130 0.200 0.303 0.014
Autocorrelation 0.813 0.663 0.767 0.773 0.848 0.651 0.781 0.781
Correlation matrix −0.759 −0.896 −0.815 U −0.677 −0.873 −0.779

0.969 0.950 V 0.949 0.926
0.956 θ 0.944
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the persistence of the crisis state slightly to 0.83 and the unconditional probability to 2.76%. The

percentage of the crisis samples also drops to 26.21% (Panel C). Similarly, reducing κ1 to 0.1 does

not seem to affect the persistence of the crisis state but lowers its unconditional probability to 2.57%.

Also, the percentage of crisis samples drops to 12.73%. From Table 7, reducing κ0 and κ1 also

lowers the unemployment volatility, especially in normal times. Intuitively, lowering vacancy costs

stimulates job creation flows to starve off unemployment crises. In particular, the fixed matching

cost buttresses the downward rigidity in the marginal cost of hiring. Reducing the fixed cost weakens

the rigidity, allowing the marginal cost of hiring to decline and more jobs to be created in recessions.

From Panel E of Table 6, reducing the job separation rate, s, to 3.5% makes unemployment

crises less frequent and less persistent. The persistence of the crisis state falls from 0.84 to 0.78, and

the unconditional crisis probability from 3.21% to 2.22%. The percentage of the crisis samples also

drops from 40% to 8.8%. From Table 7, a lower s also reduces the mean unemployment rate to 4.51%

but leaves the labor market volatilities largely unaffected. Intuitively, because jobs are destroyed at

a lower rate, all else equal, the economy is more capable of offsetting job destruction flows through

job creation. As such, the mean unemployment rate is reduced, and the crisis dynamics dampened.

From Panel F of Table 6, reducing the curvature of the matching function, ι, from 1.25 to 0.9

strengthens the crisis dynamics. The persistence of the crisis state increases from 0.84 slightly to

0.86, and the unconditional crisis probability from 3.21% from 3.40%. Intuitively, a decrease in ι

increases the elasticity of new hires with respect to vacancies. As vacancies fall in recessions, new

hires drop faster with a lower ι, meaning that the congestion effect for unemployed workers becomes

more severe. As such, the crisis dynamics are reinforced. A lower ι also increases the mean unem-

ployment rate to 7.25% in normal times but reduce slightly the unemployment volatilities (Table 7).

5 The Welfare Cost of Business Cycles

Lucas (1987, 2003) argues that the welfare cost of business cycles is negligible. Assuming log utility

for the representative consumer and a log-normal distribution for the consumption growth, Lucas
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calculates that the consumer would only sacrifice a mere 0.008% of their consumption in perpetuity

to get rid of all its aggregate fluctuations. However, Lucas’s analysis might underestimate the wel-

fare cost by overlooking crisis states, in which the agent’s marginal utility is high (e.g., Chatterjee

and Corbae (2007)). In addition, eliminating business cycles can also affect the mean consumption

level. We show that the welfare cost in our model (with linear utility replaced by log utility) is

about two orders of magnitude larger than the Lucas estimate.7

Following Lucas (1987), we define the welfare cost of business cycles as the permanent percent-

age of the consumption flow that the representative household would sacrifice to eliminate aggregate

fluctuations. Formally, for a given current state of the economy, (Nt, xt), at date t, we calculate

the welfare cost, denoted ψt ≡ ψ(Nt, xt), implicitly from:

Et





∞
∑

△t=0

β△t log [(1 + ψt)Ct+△t]



 =

∞
∑

△t=0

β△t log (C⋆) , (30)

in which C⋆ is the aggregate consumption at the deterministic steady state. C⋆ is the constant

level of consumption implied by the model after the shocks are eliminated. Solving for ψt yields:

ψt = exp (log (C⋆)− (1− β)Jt)− 1, (31)

in which Jt ≡ Et
∑∞

△t=0
log (Ct+△t) is the indirect utility function. In practice, we solve for

Jt = J(Nt, xt) on the N -x grid from the recursion J(Nt, xt) = logC(Nt, xt) + βEt[J(Nt+1, xt+1)].

To evaluate the magnitude of the welfare cost in our model, we simulate one million months

of ψt from the model’s stationary distribution. Using the simulated data, we calculate the mean

of the welfare cost to be 1.2%, which is 150 times of the Lucas estimate of 0.008%. The mean

consumption in the stochastic model is 0.95% lower than the steady state consumption. In ad-

dition, the welfare cost is time-varying. Panel A of Figure 7 plots the welfare cost function, ψt,

against the labor productivity. We see that ψt is clearly countercyclical in that it decreases almost

7Replacing the linear utility with log utility does not change the quantitative results of our model. In Appendix
D, we report that the persistence of the crisis state and its unconditional probability as well as the second moments
of the labor market in the model with log utility are quantitatively similar to those from the model with linear utility.
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Figure 7 : The Welfare Cost of Business Cycles in the Model with Log Utility

Panel A: The welfare cost vs. labor productivity
Panel B: Empirical cumulative distribution

function of the welfare cost
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monotonically with productivity. Panel B plots the empirical cumulative distribution function for

ψt. The welfare cost has a long right tail. Its median is 1.01%, and the 2.5 and 5 percentiles are

−0.61% and −0.38%, whereas the 95 and 97.5 percentiles are 3.42% and 4.23%, respectively. The

maximum welfare cost in the simulated data can reach as high as 16.3%.

6 Conclusion

A search and matching model, when calibrated to the mean and volatility of unemployment in the

postwar sample, can potentially explain the unemployment crisis in the Great Depression. The key

ingredient of the model is the Hall and Milgrom (2008) credible bargaining game for determining

equilibrium wages. The limited responses of the wages to conditions in the labor market, along

with the congestion externality from matching frictions, cause the unemployment rate to rise

sharply in recessions but decline gradually in booms. The frequency, severity, and persistence of

unemployment crises in the model are quantitatively consistent with U.S. historical time series. The

welfare gain from eliminating business cycle fluctuations is large, amounting to 1.2% of consumption

in perpetuity, which is two orders of magnitude larger than the Lucas (1987) estimate.
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A Data

We describe our data on unemployment rates in Section A.1 and on vacancy rates in Section A.2.

A.1 Unemployment Rates

We construct our monthly U.S. unemployment rate series from April 1929 to December 2012 by

drawing from NBER macrohistory files (chapter 8: Income and employment) and Federal Reserve

Economic Data (FRED) at Federal Reserve Bank of St. Louis.

We concatenate four different U.S. unemployment rate series:

• The seasonally adjusted unemployment rates from April 1929 to February 1940 (NBER data

series m08292a, FRED series id: M0892AUSM156SNBR. Source: National Industrial Confer-

ence Board, published by G. H. Moore Business Cycle Indicators, vol. II, p. 35 and p. 123).

• The seasonally adjusted unemployment rates from March 1940 to December 1946 (NBER

data series m08292b, FRED series id: M0892BUSM156SNBR. Source: U.S. Bureau of the

Census, Current Population Reports, Labor Force series P-50, no. 2, 13, and 19).

• The seasonally adjusted unemployment rates from January 1947 to December 1947. To

construct this series, we first obtain the monthly unemployment rates (not seasonally ad-

justed) from January 1947 to December 1966 (NBER data series m08292c, FRED series id:

M0892CUSM156NNBR. Source: Employment and Earnings and Monthly Report on the La-

bor Force, vol. 13, no. 9, March 1967). We then pass the entire monthly series from 1947 to

1966 through the X-12-ARIMA seasonal adjustment program from the U.S. Census Bureau

and take the seasonally adjusted series from January to December of 1947.

• The seasonally adjusted civilian unemployment rates from January 1948 to December 2012

from Bureau of Labor Statistics at U.S. Department of Labor (FRED series id: UNRATE).

Following Owyang, Ramey, and Zubairy (2013), we adjust the pre-1948 unemployment rate

series as follows. We use the monthly unemployment rates from January 1930 to December 1947

to interpolate annual unemployment rates data from Weir (1992) using the Denton (1971) propor-

tional interpolation procedure. In addition, we scale the nine monthly unemployment rates from

April to December 1929 so that their average matches the annual unemployment rate for 1929 re-

ported in Weir. (We cannot apply the Denton procedure on the nine monthly observations because

the procedure requires the complete data for 12 months in a given year.)

Figure A.1 plots the adjusted monthly U.S. unemployment rate series from April 1929 to Decem-

ber 1947, along with the raw series from the NBER macrohistory files. The two series seem to track

each other closely. The mean unemployment rate for the adjusted series is 11.66%, which is slightly

higher than 11.03% for the raw series. To compute the unemployment volatilities, we convert both
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Figure A.1 : The Adjusted and Raw Monthly U.S. Unemployment Rate Series, April 1929 to
December 1947

The blue solid line plots the adjusted unemployment rate series from the Denton proportional interpolation

procedure. The red broken line plots the unadjusted raw series from the NBER macrohistory files.
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monthly series to quarterly averages and then take the HP-filtered proportional deviations from

the mean. The volatility of the adjusted unemployment rates is 22.18%, which is somewhat lower

than 25.85% for the raw series. Their first-order autocorrelations are also close, 0.85 versus 0.89.

A.2 Vacancy Rates

To construct a long vacancy rate series from April 1929 to December 2012, we draw from four

different series of U.S. job openings:

• The Metropolitan Life Insurance company (MetLife) help-wanted advertising index in news-

paper from April 1929 to August 1960. The series (not seasonally adjusted) is obtained from

the NBER macrohistory files (series id: m08082a, FRED series id: M0882AUSM349NNBR).

The NBER scales the series to average 100 over the 1947–1949 period. To seasonally adjust the

series, we pass the raw series through the X-12-ARIMA program from the U.S. Census Bureau.

• The help-wanted advertising index from the Conference Board, seasonally adjusted, from

January 1951 to July 2006. The Conference Board scales the series to average 100 in 1987.

• The composite print and online help-wanted index from Barnichon (2010). The series, ranging

from January 1995 to December 2012, is obtained from Regis Barnichon’s Web site.

• The seasonally adjusted job openings series (total nonfarm, level in thousands) from the Job

Openings and Labor Turnover Survey (JOLTS) released by U.S. Bureau of Labor Statistics.

We obtain the series from December 2000 to December 2012 from FRED (id: JTSJOL).
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Figure A.2 : Four Series of U.S. Job Openings, All Seasonally Adjusted

Panel A: MetLife help-wanted index, April 1929 to
August 1960

Panel B: Conference Board help-wanted index,
January 1951 to July 2006
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Panel C: Barnichon’s help-wanted index, January
1995 to December 2012

Panel D: JOLTS job openings, December 2000 to
December 2012
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Figure A.2 plots the four original series of U.S. job openings, all seasonally adjusted.

The MetLife help-wanted index, developed and overseen by William A. Berridge, was initiated

in 1927 to construct national measures of the labor demand (e.g., Berridge (1929, 1961)) and to pro-

vide MetLife with a statistical tool to evaluate the performance of their sales force (e.g., Zagorsky

(1998)). Past issues of print newspapers were collected to construct a historical series back to Jan-

uary 1919. However, not all newspapers were able to provide MetLife with back issues, particularly

prior to 1923. We use the data after April 1929 to be consistent with the unemployment rate series.

According to Zagorsky (1998), Berridge worked with the Conference Board as he neared re-

tirement for it to take over the help-wanted index program. The Conference Board index is close,

statistically and methodologically, to the MetLife series. Zagorsky also details the construction of

the MetLife and Conference Board help-wanted indices. The Conference Board began its series

in 1960 and constructed a historical series dating back to 1951 with old print issues submitted by

newspapers. However, 14% of the newspapers were not able to provide data back to 1951.

To compare the MetLife series with the Conference Board series, Figure A.3 plots both for the

overlapping period from January 1951 to August 1960. We scale the Conference Board index (mul-

tiply the index by 2.08) so that its value for January 1960 equals the MetLife index value for the

same month.8 The figure shows that the two series track each other tightly in the late 1950s and in

1960. However, the Conference Board series has in general lower values in the early sample, likely

because fewer back print issues were provided by the newspapers. As such, we use the MetLife

index from April 1929 to December 1959 and the Conference Board series thereafter.

Since the mid 1990s, as advertising for jobs over the internet becomes more and more prevalent,

the print help-wanted index from the Conference Board has become increasingly unrepresentative.

In response, the Conference Board started in 2005 to publish an online help-wanted index. Combin-

ing the information on both print and online advertising, Barnichon (2010) constructs a composite

index for total (print and online) help-wanted advertising. Figure A.4 plots the Barnichon compos-

ite index together with the Conference Board print index. The two series have diverged significantly

since 1996. As such, we use the Conference Board index until December 1994 and the Barnichon in-

dex thereafter. In addition, because the two series have the same unit, we scale the Barnichon index

in the same way as we scale the Conference Board index to concatenate with the MetLife series.

As noted, the JOLTS job openings series becomes available after December 2000. Figure A.5

plots the JOLTS series together with the Barnichon series for the overlapping period after Decem-

ber 2000. To be comparable, we scale the JOLTS series (multiply by 0.0195) so that its value in

December 2000 equals the Barnichon index value for the same month. We see that the two series

track each other tightly up to 2005. Since then the JOLTS series has taken somewhat lower values

8It is important to emphasize that scaling different vacancy indices (to make their units comparable) does not
affect the standard deviations of the vacancy rate and the vacancy-unemployment ratio. The reason is that we
calculate the standard deviations of their HP-filtered cyclical components, as in Shimer (2005). The different scales
are absorbed into the trend components that do not enter the calculations.
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Figure A.3 : A Comparison of the MetLife and the Conference Board Help-wanted Indices,
January 1951 to August 1960

The blue solid line plots the MetLife help-wanted index. The red broken line plots the Conference Board

index, scaled to equate its index value for January 1960 with the MetLife index value for the same month.
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Figure A.4 : A Comparison of the Barnichon Composite Help-wanted Index and the
Conference Board Print Help-wanted Index, January 1995 to June 2006

The blue solid line plots the Barnichon (2010) composite (print and online) help-wanted index. The red

broken line plots the Conference Board print help-wanted index.
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Figure A.5 : A Comparison of the (Scaled) JOLTS Job Openings Series and the Barnichon
Composite Help-wanted Index, December 2000 to December 2012

The blue solid line plots the (scaled) JOLTS job openings series. The red broken line plots the Barnichon

(2010) composite help-wanted index.
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than the Barnichon series for most months. Because of the deviation, we use the JOLTS series

(scaled by 2.08 × 0.0195 = 0.04) after December 2000 in our overall help-wanted index.

Figure A.6 reports our overall help-wanted index from April 1929 to December 2012.

To convert the help-wanted index into vacancy rates, we need to construct a labor force series.

We first obtain the civilian labor force over 16 years of age in thousands of persons from FRED

(series id: CLF16OV). The series (seasonally adjusted) is based on Current Employment Statistics

released by U.S. Bureau of Labor Statistics. The sample is from January 1948 to December 2012.

To construct the labor force series for the period from April 1929 to December 1947, we obtain

the annual observations of total population from the U.S. Census.9 We then construct a monthly

series by linearly interpolating two adjacent annual observations across the 12 months in question.

Finally, we multiply the total population estimates by the fraction of the population over 16 years of

age in 1948 and the average labor force participation rate in 1948. The implicit assumption is that

both rates are largely constant from 1929 to 1947. Figure A.7 reports the overall labor force series.

The last step in constructing the vacancy rate series is to divide the overall help-wanted index

by the labor force series, while rescaling the resulting series to a known estimate of the job vacancy

rate. In particular, we multiply the resulting series by 13.47 so that the series averages to 2.05%

in 1965, which is the vacancy rate documented by Zagorsky (1998, Table A1). The scaling again

does not affect our key results (see footnote 8).

9See http://www.census.gov/popest/data/national/totals/pre-1980/tables/popclockest.txt.
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Figure A.6 : The Overall Help-wanted Index, April 1929 to December 2012
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Figure A.7 : The U.S. Labor Force in Thousands of Persons, April 1929 to December 2012

1930 1940 1950 1960 1970 1980 1990 2000 2010
0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

5

U.
S.

 L
ab

or
 F

or
ce

, t
ho

us
an

ds
 o

f p
er

so
ns

42



B Derivations

To prove equation (21), we plug equations (19) and (20) into equation (17) to obtain:

Wt+Et

[

β
(

(1− s)JW
Nt+1 + sJUt+1

)]

= b+ δEt

[

β
(

ftJ
W
Nt+1 + (1− ft)JUt+1

)]

+(1− δ)Et

[

βJW ′

Nt+1

]

.

(B.1)

Solving for Wt yields:

Wt = b+ [δft − (1− s)]Et

[

βJW
Nt+1

]

+ [δ(1− ft)− s]Et [βJUt+1] + (1− δ)Et

[

βJW ′

Nt+1

]

. (B.2)

Rearranging the right-hand side yields equation (21).

To characterize the worker’s counteroffer, W ′
t , as in equation (22), we first rewrite equation (12)

recursively (while making explicitly the dependence of St on Wt with the notation SW
t ):

SW
t = XtNt −WtNt − κtVt + λtq(θt)Vt + Et

[

βSW
t+1

]

, (B.3)

The first-order condition with respect to Vt yields:

κ0
q(θt)

+ κ1 − λt = Et

[

βSW
Nt+1

]

. (B.4)

Also, replacing Wt with W
′
t in equation (B.3) and differentiating with respect to Nt yield:

SW ′

Nt = Xt −W ′
t + (1− s)Et

[

βSW ′

Nt+1

]

. (B.5)

Plugging equation (B.4) into the firm’s indifference condition (18) yields:

SW ′

Nt = (1− δ)

[

κ0
q(θt)

+ κ1 − λt − χ

]

. (B.6)

Combining with equation (B.5) yields:

Xt −W ′
t + (1− s)Et

[

βSW ′

Nt+1

]

= (1− δ)

[

κ0
q(θt)

+ κ1 − λt − χ

]

. (B.7)

Isolating W ′
t to one side of the equality:

W ′
t = Xt + (1− δ)χ+ (1− s)Et

[

βSW ′

Nt+1

]

− (1− δ)

[

κ0
q(θt)

+ κ1 − λt

]

(B.8)

= Xt + (1− δ)χ+ (1− s)Et

[

βSW ′

Nt+1

]

− (1− δ)Et

[

βSW
Nt+1

]

(B.9)

= Xt + (1− δ)χ+ βEt

[

(1− s)SW ′

Nt+1 − (1− δ)SW
Nt+1

]

, (B.10)

which is identical to equation (22). Leading equation (B.6) by one period, plugging it along with

43



equation (B.4) into equation (B.7), and solving for W ′
t yield:

W ′
t = Xt − (1− δ)

[[

κ0
q(θt)

+ κ1 − λt − χ

]

− (1− s)Et

[

β

[

κ0
q(θt+1)

+ κ1 − λt+1 − χ

]]]

. (B.11)

We further characterize the agreement condition (23) as follows. Rewriting equation (B.5) with

Wt and combining with equation (B.4) yield SW
Nt = Xt−Wt+(1− s) [κ0/q(θt) + κ1 − λt]. As such,

the agreement condition becomes:

Xt −Wt + (1− s)

[

κ0
q(θt)

+ κ1 − λt

]

+ JW
Nt > JUt. (B.12)

Although equations (22) and (23) are easier to interpret, we implement equations (B.11) and (B.12)

in our numerical algorithm.

C Computation

We parameterize the conditional expectation in the right-hand side of equation (25) as Et ≡

E(Nt, xt), as well as four other functions, W (Nt, xt), JU (Nt, xt), J
W
N (Nt, xt), and J

W ′

N (Nt, xt). As in

Christiano and Fisher (2000), we then exploit a convenient mapping from Et to policy and multiplier

functions to eliminate the need to parameterize the multiplier function separately. Specifically, af-

ter obtaining the parameterized Et, we first calculate q̃(θt) ≡ κt/Et. If q̃(θt) < 1, the nonnegativity

constraint is not binding, we set λt = 0 and q(θt) = q̃(θt). We then solve θt = q−1(q̃(θt)), in which

q−1(·) is the inverse function of q(·) from equation (6), and Vt = θt(1 − Nt). If q̃(θt) ≥ 1, the

nonnegativity constraint is binding, we set Vt = 0, θt = 0, q(θt) = 1, and λt = κt − Et.

We approximate the log productivity process, xt, in equation (9) based on the discrete state

space method of Rouwenhorst (1995).10 We use 17 grid points to cover the values of xt, which are

precisely within four unconditional standard deviations from the unconditional mean of zero. For

the Nt grid, we set the minimum value to be 0.001 and the maximum 0.99, and Nt never hits one

of the bounds in simulations. On each grid point of xt, we use cubic splines with 20 basis functions

on the Nt space to approximate the five functions. We use extensively the approximation toolkit

in the Miranda and Fackler (2002) CompEcon Toolbox in MATLAB. To obtain an initial guess,

we use the loglinear solution to a simplified model without the fixed matching cost.

Figure C.1 reports the approximation errors for the five functional equations from (25) to (29).

The error for each equation is the left-hand side minus the right-hand side of the equation. The

errors, in the magnitude no greater than 10−13, are extremely small. As such, our projection

algorithm does an accurate job in characterizing the competitive search equilibrium.

10Kopecky and Suen (2010) show that the Rouwenhorst method is more accurate than other methods in
approximating highly persistent autoregressive processes.
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Figure C.1 : Approximation Errors

The approximation errors are for the five functional equations from (25) to (29). The error for each equation

is the left-hand side minus the right-hand side of the equation.
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Table D.1 : Aggregate State Transition Matrix and Unconditional Probabilities of the Three
Economic States, the Model with Log Utility

From the model’s stationary distribution, we simulate 50,000 artificial samples, each with 1,005 months. We

split the samples into two groups: non-crisis samples (in which the maximum unemployment rate is less

than 20%) and crisis samples (in which the maximum rate is greater than or equal to 20%). On each crisis

sample, we calculate the state transition matrix and unconditional probabilities of the states as in Table 1.

We report the cross-simulation averages and standard deviations (in parentheses) across the crisis samples.

Good Bad Crisis

Good 0.9794 0.0206 0
(0.0068) (0.0068) (0)

Bad 0.0218 0.9750 0.0032
(0.0072) (0.0074) (0.0021)

Crisis 0 0.1228 0.8764
(0) (0.1854) (0.1869)

Unconditional probability 0.4939 0.4673 0.0383
(0.0443) (0.0492) (0.0781)

D The Log Utility Model

We show that replacing the linear utility with log utility does not materially affect the quantitative

results from the benchmark model with linear utility. Other than the change in utility, all the

parameter values remain unchanged from the benchmark model.

Table D.1 repeats the analysis in Table 4 but with log utility. The results are quantitatively simi-

lar to those in Table 4 in the benchmark model with linear utility. The probability of the economy re-

maining in the crisis state next period conditional on being in the crisis state in the current period is

87.64%, which is slightly higher than 84.18% with linear utility. The unconditional probability of the

crisis state in the log utility model is 3.83%, which is slightly higher than 3.21% with linear utility.

Table D.2 shows further that the change to log utility does not affect materially the second

moments of the labor market either. From Panel A, the unemployment volatility in the non-crisis

samples is 0.105, which is very close to 0.102 with linear utility (Panel B of Table 5). In addi-

tion, the unemployment-vacancy correlation is −0.742, which is also close to −0.732 with linear

utility. In the crisis samples, the unemployment volatility is 0.147, and the unemployment-vacancy

correlation is −0.663, which are close to those with linear utility, 0.149 and −0.630, respectively.
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Table D.2 : Labor Market Volatilities, the Model with Log Utility

We simulate 50,000 artificial samples from the model’s stationary distribution, with 1,005 months in each
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