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Abstract

Modifying the objective function of a discretionary central bank to include an interest-rate

smoothing objective increases the welfare of an economy in which large contractionary shocks

occasionally force the central bank to lower the policy rate to its effective lower bound. The

central bank with an interest-rate smoothing objective credibly keeps the policy rate low for

longer than the central bank with the standard objective function. Through expectations, the

temporary overheating of the economy associated with such a low-for-long interest rate policy

mitigates the declines in inflation and output when the lower bound constraint is binding. In

a calibrated quantitative model, we find that the introduction of an interest-rate smoothing

objective can reduce the welfare costs associated with the lower bound constraint by about

one-half.
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1 Introduction

As a general rule, the Federal Reserve tends to adjust interest rates incrementally, in a

series of small or moderate steps in the same direction.

Ben S. Bernanke, on May 20, 20041

Gradual adjustment in the federal funds rate has been a key feature of monetary policy in

the United States. Over the two decades prior to December 2008—the beginning of the most

recent lower-bound episode—the Federal Open Market Committee (FOMC) changed its target for

the federal funds rate at 89 out of 191 meetings. At these 89 meetings, the FOMC adjusted the

federal funds target rate, on average, just 33 basis points in absolute terms. More recently, when

announcing the first increase in its target range for the federal funds rate in December 2015 after

seven years of zero-interest rate policy, the FOMC emphasized that it expected the policy rate

to increase only gradually (Federal Open Market Committee (2015)). Indeed, as of July 2017,

the federal funds target range has been raised only four times, in steps of 25 basis points, since

December 2015.

While there are likely myriad factors behind this gradual adjustment in the policy rate, some

evidence suggests that the observed inertia in the policy rate reflects the central bank’s deliberate

desire to smooth the interest rate path beyond what the intrinsic inertia in economic conditions

calls for (Coibion and Gorodnichenko (2012); Givens (2012)). As we will review, several studies

suggest that interest-rate smoothing can improve society’s welfare in various environments.

In this paper, we revisit the desirability of interest-rate smoothing in an economy in which

large contractionary shocks occasionally force the central bank to lower the policy rate to the

zero lower bound (ZLB). We conduct our analysis in the framework of policy delegation in which

society designs the central bank’s objective function and the central bank, in turn, acts under

discretion and sets the policy rate in accordance with the objective.2 In so doing, we stick to

the optimal delegation literature’s focus on simple non-state-contingent objective functions that

involve only a small number of target variables.3 Using a stochastic New Keynesian model, we ask

how modifying the central bank’s objective function to include an interest-rate smoothing (IRS)

objective affects stabilization policy and society’s welfare, as measured by the expected lifetime

1Bernanke (2004), “Gradualism,” speech delivered at an economics luncheon co-sponsored by the Federal Reserve
Bank of San Francisco (Seattle Branch) and the University of Washington, Seattle, Washington, May 20, https:
//www.federalreserve.gov/boarddocs/speeches/2004/200405202/default.htm.

2Prominent examples of adopting the policy delegation approach to the design of the central bank’s objective
include Rogoff (1985), Persson and Tabellini (1993), Walsh (1995, 2003), and Svensson (1997). For a literature
review, see Persson and Tabellini (1999).

3In principle, it is often possible to design more complex state-contingent objective functions that better approx-
imate the optimal commitment solution within a particular model than simple objective functions do. However, the
literature on policy delegation has found that such more elaborated objective functions are typically too complicated
to be of practical interest. See, e.g., Walsh (1995). Our goal, shared with much of the literature, is to analyze
the design of objective functions that can be rendered implementable and communicable in practice. Interestingly,
Yellen (2012), then Vice Chair of the Board of Governors of the Federal Reserve System, in a speech presents some
model-based counterfactual policy simulations in which the central bank’s objective function is formalized in a way
that is very similar to our specification.
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utility of the representative household. We first use a stylized version of the model to transparently

describe the key trade-off involved in adopting a gradualist policy. We then move on to the analysis

of a quantitative model to understand the quantitative relevance of gradualism.

Our main finding is that adding an IRS objective to central banks’ standard inflation and

output gap stabilization objectives can go a long way in mitigating the adverse consequences of

the ZLB constraint. In the aftermath of a deep recession involving a binding ZLB constraint, a

gradualist central bank increases the policy rate more slowly than a central bank with the standard

objective. Such a slow increase of the policy rate generates a temporary overheating of the economy,

which mitigates the declines in inflation and output while the ZLB constraint is binding, by raising

expectations of future inflation and real activity. A smaller contraction at the ZLB, in turn,

alleviates the deflationary bias—the systematic undershooting of the inflation target—away from

the ZLB via expectations. In equilibrium, interest-rate smoothing increases society’s welfare by

improving stabilization outcomes not only when the policy rate is at the ZLB but also when the

policy rate is away from it.

Interest-rate smoothing, however, does not provide a free lunch. In particular, interest-rate

smoothing prevents the central bank from responding sufficiently to less severe shocks that could

be neutralized by an appropriate policy rate adjustment without hitting the ZLB. From a normative

perspective, when the policy rate is away from the ZLB, the central bank should reduce the policy

rate one-for-one to a downward shift in the natural real rate of interest—the real interest rate

prevailing in an economy with flexible prices—to offset completely the effect of the shock to the

natural real rate. A gradualist central bank will reduce the policy rate by less on impact, thus

failing to keep inflation and the output gap fully stabilized.4 The optimal degree of interest-rate

gradualism balances this cost against the aforementioned benefits. We find that the welfare gains

from interest-rate smoothing are quantitatively important. In our quantitative model calibrated

to match key features of the U.S. economy, a central bank with an optimized weight on its IRS

objective improves society’s welfare by about one-half.

We also explore a refinement to our baseline IRS objective function that enhances the welfare

gains from interest-rate gradualism. Instead of a smoothing objective for the actual policy rate,

the refinement requires the central bank to be concerned with smoothing of the shadow policy

rate—the policy rate that it would like to set given the current state of the economy if the ZLB

were not a constraint for nominal interest rates. If the policymaker aims to smooth the shadow

rate, the lagged shadow rate becomes an endogenous state variable that remembers the history

of inflation rates and output gaps. In particular, the larger the economic downturn in a liquidity

trap, the lower the shadow rate and the longer the actual policy rate remains low. The resulting

history dependence is akin to that observed under the optimal commitment policy, and increases

4Interest-rate gradualism also prevents the central bank from neutralizing shocks that lead to an increase in the
natural real rate, thereby allowing for above-target inflation rates and output gaps. As described in section 3.3,
while such transitory overshootings are by themselves associated with lower welfare, they can improve welfare in an
economy with an occasionally binding ZLB constraint, as they raise inflation and output gap expectations in states
in which the natural rate is low and the policy rate is close to or at the ZLB.
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the welfare gains from interest-rate smoothing.

Our paper is related to a body of work that has examined various motives for gradualist mone-

tary policy.5 The strand of the literature closest to our paper emphasizes the benefits of interest-rate

smoothing arising from its ability to steer private-sector expectations by inducing history depen-

dence in the policy rate (Woodford (2003b); Giannoni and Woodford (2003)).6 Another strand of

the literature emphasizes the benefit of interest-rate smoothing arising from its ability to better

manage uncertainties about data, parameter values, or the structure of the economy facing the

central bank (Sack (1998); Orphanides and Williams (2002); Levin, Wieland, and Williams (2003);

Orphanides and Williams (2007)). Some studies emphasize the costs and benefits of interest-rate

smoothing arising from its effects on financial stability (Cukierman (1991); Stein and Sunderam

(2015)). None of these studies, however, accounts for the ZLB on nominal interest rates. Our con-

tribution is to show that the presence of the ZLB provides a novel rationale for guiding monetary

policy by gradualist principles.

Our work is also closely related to a set of papers that explores ways to mitigate the adverse

consequences of the ZLB constraint while preserving time consistency. In particular, several ap-

proaches try to mimic the prescription of the optimal commitment policy for liquidity traps to keep

the policy rate low for long, thus generating a temporary overheating of the economy. Eggertsson

(2006) and Burgert and Schmidt (2014) show that in models with non-Ricardian fiscal policy and

nominal government debt, discretionary policymakers can provide incentives to future policymakers

to keep policy rates low for long periods of time by means of expansionary fiscal policy that raises

the nominal level of government debt. Jeanne and Svensson (2007), Berriel and Mendes (2015),

and Bhattarai, Eggertsson, and Gafarov (2015) find that central banks’ balance sheet policies can,

under certain conditions, operate as a commitment device for discretionary policymakers that fa-

cilitates the use of “low-for-long” policies. Finally, Billi (2016) explores policy delegation schemes

in which the discretionary central bank’s standard inflation and output gap stabilization objectives

are replaced by either a price-level or a nominal-income stabilization objective. He finds that these

delegation schemes can generate low-for-long policies and thereby improve welfare.7 Compared with

these approaches, the relative appeal of our approach is that it neither requires an additional policy

instrument nor does it represent a fundamental departure from the inflation-targeting framework

currently embraced by many central banks.8

The paper is organized as follows. Section 2 describes the baseline model. Section 3 presents

the main results on the effect of interest-rate smoothing in the baseline model. Section 4 presents

additional results for the baseline model. The first part considers a refinement of the interest-rate

5For an early literature overview, see Sack and Wieland (2000).
6For the analyses of other monetary policy regimes that induce history dependence, see, for instance, Vestin (2006)

and Bilbiie (2014).
7Nakata and Schmidt (2014) show that the appointment of an inflation-conservative central banker improves

welfare by mitigating the deflationary bias associated with discretionary policy in the presence of the ZLB. However,
an inflation-conservative central banker does not follow low-for-long policies.

8See also Nakata (2014) for a reputational approach to make the temporary overheating of the economy in the
aftermath of the crisis time-consistent.
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smoothing objective that helps to further mitigate the welfare costs associated with the ZLB. The

second part explores the role of cost-push shocks for the welfare results. Section 5 extends the

analysis to a more elaborate quantitative model of the U.S. economy. A final section concludes.

2 The model

This section presents the model, lays down the policy problem of the central bank, and defines the

equilibrium.

2.1 Private sector

The private sector of the economy is given by the standard New Keynesian structure formulated in

discrete time with an infinite horizon as developed in detail in Woodford (2003a) and Gali (2008).

A continuum of identical infinitely living households consumes a basket of differentiated goods and

supplies labor in a perfectly competitive labor market. The consumption goods are produced by

firms using (industry-specific) labor. Firms maximize profits subject to staggered price setting as

in Calvo (1983). Following the majority of the literature on the ZLB, we put all model equations

except for the ZLB constraint in semi-loglinear form.

The equilibrium conditions of the private sector are given by the following two equations:

πt =κyt + βEtπt+1 (1)

yt =Etyt+1 − σ (it − Etπt+1 − rnt ) , (2)

where πt is the inflation rate between periods t − 1 and t, yt denotes the output gap, it is the

level of the nominal interest rate between periods t and t + 1, and rnt is the exogenous natural

real rate of interest. Equation (1) is a standard New Keynesian Phillips curve, and equation (2)

is the consumption Euler equation. The parameters are defined as follows: β ∈ (0, 1) denotes

the representative household’s subjective discount factor, σ > 0 is the intertemporal elasticity of

substitution in consumption, and κ represents the slope of the New Keynesian Phillips curve.9

In the baseline model, the only source of uncertainty is the natural real interest rate shock rnt .

In section 4.2 we consider a version of the model augmented with cost-push shocks. The natural

real rate is assumed to follow a stationary autoregressive process of order one:

rnt = (1− ρr)rn + ρrr
n
t−1 + εrt , (3)

where rn ≡ 1
β −1 is the steady state level of the natural rate, ρr ∈ [0, 1) is the persistence parameter

and εrt is a i.i.d. N(0, σ2r ) innovation.

9κ is related to the structural parameters of the economy as follows. κ = (1−θ)(1−θβ)
θ(1+ηε)

(
σ−1 + η

)
, where θ ∈ (0, 1)

denotes the share of firms that cannot reoptimize their price in a given period, η > 0 is the inverse of the elasticity
of labor supply, and ε > 1 denotes the price elasticity of demand for differentiated goods.
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2.2 Society’s welfare and the central bank’s problem

Society’s welfare is represented by a second-order approximation to the representative household’s

expected lifetime utility:

Vt = u(πt, yt) + βEtVt+1, (4)

where

u(π, y) = −1

2

(
π2 + λy2

)
. (5)

Society’s relative weight on output gap stabilization, λ, is a function of the structural parameters

and is given by λ = κ
ε .10 In the remainder of the paper, we will often refer to society’s welfare

simply as welfare.

The value for the central bank with an IRS objective generically differs from society’s welfare

and is given by

V CB
t = uCB(πt, yt,∆it) + βEtV

CB
t+1 , (6)

where ∆it = it − it−1 denotes the change in the one-period nominal interest rate between periods

t− 1 and t. The central bank’s contemporaneous objective function, uCB(·, ·), is given by

uCB(π, y,∆i) = −1

2

[
(1− α)

(
π2 + λy2

)
+ α∆i2

]
. (7)

The last term, α∆i2, captures the IRS objective, and the parameter α ∈ [0, 1] determines how the

smoothing objective weighs against the central bank’s inflation and output gap objectives. When

α = 0, then uCB(·) = u(·).
We assume that the central bank does not have a commitment technology. Each period t, the

central bank chooses the inflation rate, the output gap, and the nominal interest rate to maximize

its objective function subject to the behavioral constraints of the private sector, with the policy

functions at time t+1 taken as given

V CB
t (rnt , it−1) = max

πt,yt,it
uCB(πt, yt,∆it) + βEtV

CB
t+1 (rnt+1, it), (8)

subject to the ZLB constraint

it ≥ 0 (9)

and the private-sector equilibrium conditions (1) and (2) previously described. A Markov-Perfect

equilibrium with an IRS objective is defined as a set of time-invariant value and policy functions

{V CB(·), π(·), y(·), i(·)} that solves the central bank’s problem above together with society’s value

function V (·) that is consistent with π(·) and y(·).

Because units of welfare are not particularly meaningful, we express the social welfare of an

economy in terms of the perpetual consumption transfer (as a share of its steady state) that

10See Woodford (2003a) and Gali (2008).
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would make the household in the artificial economy without any shocks indifferent to living in the

stochastic economy:

W := (1− β)
ε

κ

(
σ−1 + η

)
E[V ], (10)

where the mathematical expectation is taken with respect to the unconditional distribution of rnt .11

2.3 Calibration and model solution

The values of the structural parameters are listed in Table 1. The interest rate elasticity is set to 2,

consistent with the value used in Christiano, Eichenbaum, and Rebelo (2011). Inverse labor supply

elasticity, price elasticity of demand, and the share of firms keeping the price unchanged are from

Eggertsson and Woodford (2003). The parameters ρr and σr of the natural real rate shock process

are estimated using U.S. data for the period 1984-Q1 to 2016-Q4, following the approach by Adam

and Billi (2006). The details of the estimation procedure are described in Appendix B. Under this

baseline calibration, the probability of being at the ZLB is about 20 percent when the central bank

puts no weight on the IRS objective (α = 0).

Table 1: Parameter values for the baseline model

Parameter Value Economic interpretation

β 0.99 Subjective discount factor
σ 2 Intertemporal elasticity of substitution in consumption
η 0.47 Inverse labor supply elasticity
ε 10 Price elasticity of demand
θ 0.8106 Share of firms per period keeping prices unchanged
ρr 0.85 AR coefficient natural real rate
σr

0.4
100 Standard deviation natural real rate shock

To solve the model, we approximate the policy functions using a projection method. The details

of the solution algorithm and an assessment of the solution accuracy are described in Appendix C.

3 Results

This section analyzes how the introduction of the IRS objective affects the dynamics of the econ-

omy and welfare. We first describe how society’s welfare depends on the degree of interest-rate

gradualism, captured by α. We then analyze how the IRS objective affects the dynamics of the

economy to understand the key forces behind the welfare result.

11For a derivation of the expression for the welfare-equivalent consumption transfer, see, for instance, Billi (2016).
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3.1 Welfare effects of policy gradualism

Figure 1 plots the social welfare measure as defined in equation (10) for alternative values of α over

α ∈ [0, 0.35].12 The black solid line indicates welfare outcomes when accounting for the ZLB, and

the blue dashed line indicates welfare when ignoring the ZLB. In the model without the ZLB, welfare

declines monotonically with the degree of interest-rate smoothing α, and it is optimal for society

if the central bank focuses only on inflation and output gap stabilization. The reason why welfare

declines with interest-rate gradualism is straightforward: The central bank can completely absorb

any shock to the natural real rate of interest by setting the policy rate such that in equilibrium, the

actual real interest rate equals the natural real rate at each point in time. Indeed, if the central bank

is not concerned with interest-rate smoothing, the central bank can completely stabilize output and

inflation—in other words, the so-called divine coincidence holds—and welfare is at its maximum

value.

Figure 1: Welfare effects of interest-rate smoothing

α

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

Model with ZLB
Model without ZLB

Note: The figure shows how welfare as defined in equation (10) varies with the relative weight α on the IRS objective.

The vertical dashed black line indicates the optimal relative weight on the IRS objective in the model with ZLB.

The welfare effects of interest-rate gradualism change markedly once we account for the ZLB

constraint. In the model with the ZLB, welfare depends on the degree of interest-rate smoothing in

a nonmonotonic way—it initially increases with the degree of policy gradualism α before starting

to decrease. Under our baseline calibration, the optimal weight on the IRS term is α = 0.029,

as indicated by the vertical dashed line. Welfare can be lower than under the standard objective

12For each candidate, we conduct 2,000 simulations, each consisting of 1,100 periods, with the first 100 periods
discarded as burn-in periods.
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function (α = 0) when the degree of interest-rate smoothing is sufficiently high, which happens in

our model for values of α larger than 0.3.

The welfare effects of interest-rate smoothing are quantitatively important. According to Table

2, modifying the objective function of a central bank acting under discretion to include an IRS

objective with a relative weight of 0.029 reduces the welfare costs associated with the presence of

the ZLB constraint by more than one-half (negative 2.11 in the first row versus negative 5.55 in

the second row).

Table 2: Results for the baseline model

Regime Optimal α Welfare (W × 100) ZLB frequency (in %)

Interest-rate smoothing 0.029 -2.11 5
Standard discretion - -5.55 20
Commitment - -0.32 11
Shadow-rate smoothing 0.014 -1.19 7

Note: The welfare measure is defined in equation (10).

While the stabilization performance of optimized interest-rate smoothing falls short of the opti-

mal plan under commitment—shown by the third row in Table 2—this welfare improvement due to

interest-rate gradualism is significant. In section 4.1, we consider a refinement of the IRS objective

function that brings the optimal discretionary policy closer to the optimal commitment policy.

3.2 Why some degree of gradualism is desirable

To understand the benefits of interest-rate smoothing in the model with the ZLB, we consider the

following liquidity trap scenario. The economy is initially in the risky steady state.13 In period

0, the natural real rate of interest falls into negative territory and stays at the new level for three

quarters before jumping back to its steady state level. At each point in time, households and

firms account for the uncertainty regarding the future path of the natural real rate in making their

decisions. The considered scenario is arguably rather extreme given the assumed autoregressive

process for the natural real rate, but it is useful in cleanly illustrating the implications of the IRS

objective for monetary policy and stabilization outcomes.

Figure 2 plots the dynamics of the economy in this experiment for three regimes: the standard

discretionary regime without an IRS objective (solid black lines), the augmented discretionary

regime with an optimally weighted objective for policy gradualism of α = 0.029 (dashed blue lines),

and the optimal commitment policy (dash-dotted red lines). The exogenous path of the natural

real rate is shown in the lower-right chart (solid green line).

Under the standard discretionary regime, the central bank immediately lowers the nominal

13The risky steady state describes the point at which the economy eventually settles as existing economic distur-
bances dissipate, while taking into account the uncertainty associated with future disturbances. In our model, the
presence of ZLB risk introduces a wedge between the risky steady state and the deterministic steady state. See also
Hills, Nakata, and Schmidt (2016).
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Figure 2: Liquidity trap scenario
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Note: In the considered liquidity trap scenario, the economy is initially in the risky steady state. In period 0, the

natural real rate falls into negative territory and stays at the new level for three quarters before jumping back to its

steady-state level.

interest rate to zero. The real interest rate stays strictly positive, leading to large declines in

output and inflation, which drop by 12.4 and 1.8 percent, respectively. When the economy exits

the liquidity trap in period 3, the nominal interest rate is raised immediately to its risky steady-state

level, and the real interest rate closely tracks the natural rate.

Now, consider the IRS regime. Due to its desire for a gradual adjustment in the policy rate,

the central bank refrains from immediately lowering the policy rate all the way to zero in period 0.

Nevertheless, the declines in output and inflation are smaller (10.8 and 1.2 percent, respectively)

than under the standard discretionary regime. In period 1, the policy rate reaches the ZLB and

the real interest rate declines further. At the same time, output and inflation slightly rise beyond

their previous period’s troughs. Upon exiting the liquidity trap in period 3, the policy rate is raised

only gradually, resulting in a temporarily negative real rate gap—that is, a real interest rate that

is below its natural rate counterpart. This negative real rate gap boosts output and inflation above

their longer-run targets. In period 4, output and inflation are 2.1 and 0.1 percent, respectively.
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Because households and firms are forward-looking, the anticipated temporary overheating of the

economy leads to less deflation and smaller output losses at the outset of the liquidity trap event

compared with the standard discretionary regime.

The history dependence just described manifests itself in one of the optimality conditions of the

gradualist central bank’s maximization problem:

0 =α(1 + β)it − αit−1 − βαEti(rnt+1, it)

+ β(1− α)
∂Etπ(rnt+1, it)

∂it
πt + (1− α)

(
∂Ety(rnt+1, it)

∂it
+ σ

∂Etπ(rnt+1, it)

∂it

)
(λyt + κπt)

− (1− α)σ(λyt + κπt)− φZLBt . (11)

The optimality condition shows that for given economic conditions, a gradualist central bank

aims to set the contemporaneous policy rate such that the deviations from the lagged policy rate

as well as from the expected future policy rate are small in equilibrium. Notice that if α = 0—that

is, if the central bank has no smoothing objective—then the right-hand side terms in the first two

rows of equation (11) vanish and the equation is reduced to the familiar static target criterion

(accounting for the ZLB) of the standard discretionary regime.14

The policy of keeping the interest rate low for long under gradualism is shared by the opti-

mal commitment policy. Under the commitment policy, the central bank lowers the policy rate

immediately all the way to zero and keeps the policy rate at the ZLB even after the natural rate

becomes positive. The promise of an extended period of holding the policy rate at the ZLB leads

to an even larger overshooting of inflation and the output gap than observed under the gradualist

central bank, which in turn results in smaller deflation and output losses during the crisis period.

The benefit of interest-rate gradualism—smaller declines in inflation and output at the ZLB—

spills over to the stabilization outcomes when the policy rate is away from the ZLB through ex-

pectations. As described in detail in Nakata and Schmidt (2014) and Hills, Nakata, and Schmidt

(2016), the standard discretionary regime fails to fully stabilize inflation and output even at the

risky steady state—in which the policy rate is comfortably above the ZLB—due to the asymmetry

in the distribution of future inflation and output induced by the possibility of returning to the

ZLB. For our calibration, under the standard discretionary regime, the inflation rate is negative

0.18 and the output gap is 0.46 at the risky steady state.15 Because the decline in inflation at the

ZLB is smaller under the IRS regime than under the standard discretionary regime, the distribu-

tion is less asymmetric and inflation and output away from the ZLB are better stabilized under

interest-rate gradualism. With the optimized IRS weight, the inflation rate and the output gap

are negative 0.03 and 0.19, respectively, at the risky steady state. Thus, interest-rate smoothing

improves stabilization outcomes not only at the ZLB but also at the risky steady state.

14The second row on the right-hand side of equation (11) vanishes if α = 0 because the nominal interest rate ceases
to be a state variable and hence the partial derivative terms become zero.

15The welfare costs associated with this stabilization shortfall are non-negligible. If we take the welfare loss of an
economy that stays permanently in the risky steady state associated with the standard discretionary regime as a
proxy, they make up 25 percent of the overall welfare costs.
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3.3 Why too much gradualism is undesirable

While the introduction of an IRS objective improves welfare for a wide range of weights α, we

have seen that putting too much weight on the smoothing objective delivers lower welfare than the

central bank with the standard objective function (α = 0) (see Figure 1). This section takes a

closer look at the costs associated with excessive interest-rate gradualism.

Figure 3 shows impulse responses to a natural real rate shock of one unconditional standard

deviation when the economy is initially at the risky steady state for the three regimes previously

considered as well as for an IRS regime with a higher-than-optimal weight on the gradualism

objective, α = 0.2 (thin purple solid line with circles).

Figure 3: Impulse responses to a positive natural rate shock
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Note: In the considered scenario, the economy is initially in the risky steady state. In period 0, the natural real rate

increases by one unconditional standard deviation. The shock recedes in subsequent periods according to its law of

motion.

Under the standard discretionary regime, the central bank raises the policy rate such that the

real interest rate closely tracks the path of the natural real rate, making the latter hardly visible

in the lower-right chart. The larger buffer against hitting the ZLB slightly mitigates the downward

bias in expected output and inflation, which attenuates the stabilization trade-off for the central
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bank. Output and inflation move closer to their target levels so long as the shock prevails, albeit

by a small amount.

Under the two IRS regimes—one with the optimal weight and the other with a higher-than-

optimal weight—the central bank raises the nominal interest rate only sluggishly so that the path

of the real interest rate is temporarily below that of the natural rate. This more accommodative

monetary policy stance stimulates output and inflation, and both variables overshoot their targets

for a few quarters. The larger the weight on the smoothing objective, the more gradually interest

rates respond and the larger the positive deviations of output and inflation from target. Such

overshooting, while costly in terms of contemporaneous utility flows, has the desirable effect of in-

creasing inflation expectations in states in which the ZLB constraint is binding, as rational agents

take into account how the central bank responds to shocks in the future when forming expectations.

However, in the case of too much gradualism, the welfare costs of these target overshootings out-

weigh the gains from improved expectations. The discretionary regime with the optimized weight

on the smoothing objective optimally trades off the gains from gradual policy rate adjustments

against these costs.

Before closing this section, it is interesting to observe that in this experiment, away from the

ZLB, the interest rate response under the optimal commitment policy is very similar to the one

under the standard discretionary regime. Thus, contrary to the casual impression one might get

from the liquidity trap scenario, policy inertia is not a generic feature of the optimal commitment

policy. Under both, the standard discretionary policy and the optimal commitment policy, the

central bank wants to adjust the policy rate to neutralize the effects of shocks to the natural real

rate of interest. If there is a sudden change in the natural real rate, both types of policy regimes

will adjust the policy rate instantaneously.

3.4 Gradualism and the frequency of hitting the zero lower bound

As shown in Table 2, under optimal IRS the ZLB constraint is binding less often than under the

standard discretionary regime and the optimal commitment regime. To put more light on how IRS

affects the frequency of hitting the ZLB, Figure 4 plot the average frequency of ZLB events as a

function of α. The vertical dashed black line indicates the frequency of ZLB events for the optimal

relative weight on the IRS objective.

The frequency of zero interest rates is declining in α. Two factors explain this result. First,

as shown in Figure 2, a discretionary central bank with an IRS objective lowers the policy rate

more gradually towards zero in response to a large contractionary natural real rate shock than a

discretionary central bank without an IRS objective does.16 Second, as explained in section 3.2,

under the standard discretionary regime, the possibility that the ZLB constraint might be binding

in the future puts downward pressure on inflation expectations, and thereby on actual inflation,

in all states of nature. This implies that in equilibrium the ZLB constraint is not only binding

16This feature of IRS regimes is not shared by the optimal commitment policy, and it is undesirable from a welfare
perspective.
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Figure 4: Frequency of a binding ZLB constraint
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Note: The figure shows how the average frequency of a binding ZLB constraint (in %) varies with the relative weight

α on the IRS objective. The vertical dashed black line indicates the optimal relative weight on the IRS objective in

the model with ZLB.

in states where the natural real rate is negative but also in states where the natural real rate is

strictly positive but close to zero. Since IRS improves stabilization outcomes at the ZLB, it also

mitigates the deflationary expectations in states where the natural real rate is above but close

to zero, with effect that the gradualist policymaker can implement a higher policy rate than the

standard discretionary policymaker in these states.

One might expect that IRS regimes also entail a channel that should increase the frequency of

periods in which the policy rate is zero. Specifically, after a liquidity trap event, the discretionary

policymaker with the standard objective function raises the policy rate approximately one-for-one

with the natural real rate of interest, whereas the policymaker with the IRS objective raises the

policy rate more gradually. However, even so the policy rate path after a liquidity trap event is

temporarily lower under IRS than under the standard objective, that path is still strictly positive.

This is because the policy rate set by the policymaker with an IRS objective is a function of three

terms: the lagged policy rate, the expected future policy rate and the weighted sum of current

inflation and output gap that prescribes the target criterion for optimal discretionary monetary

policy in the absence of IRS.17 While the first term is zero in the immediate aftermath of a liquidity

trap event, the other two terms are strictly positive.

17See optimality condition (11).
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4 Additional results

In the first part of this section, we consider a refinement of the IRS regime that further increases

the welfare gains from interest-rate gradualism by smoothing the path of the actual policy rate with

respect to the lagged shadow policy rate—the policy rate that the central bank would like to set

given current economic conditions if it had not been constrained by the ZLB—as opposed to the

actual lagged policy rate. In the second part, we assess the desirability of interest-rate smoothing

in an economy that is buffeted by both natural real rate shocks and cost-push shocks.

4.1 Shadow interest-rate smoothing

Shadow interest-rate smoothing (SIRS) aims to enhance the ability of the discretionary policymaker

to keep the policy rate low for long in the aftermath of a recession. The shadow interest rate keeps

track of the severity of the recession and makes the period for which the policy rate is kept at the

ZLB depend on the severity of the recession. The value of the central bank with a SIRS objective

is given by

V CB,SIRS
t = uCB,SIRS(πt, yt, it, i

∗
t−1) + βEtV

CB,SIRS
t+1 , (12)

where the central bank’s contemporaneous objective function, uCB,SIRS(·, ·, ·, ·), is given by

uCB,SIRS(πt, yt, it, i
∗
t−1) = −1

2

[
(1− α)

(
π2t + λy2t

)
+ α(it − i∗t−1)2

]
. (13)

Each period t, the central bank with a SIRS objective first chooses the shadow nominal interest

rate in order to maximize the value today subject to the behavioral constraints of the private

sector, with the value and policy functions at time t+ 1—V CB,SIRS
t+1 (·, ·), yt+1(·, ·), πt+1(·, ·)—taken

as given:

i∗t = argmaxx uCB,SIRS(π(x), y(x), x, i∗t−1) + βEtV
CB,SIRS
t+1 (rnt+1, x), (14)

with

y(x) =Etyt+1(r
n
t+1, x)− σ(x− Etπt+1(r

n
t+1, x)− rnt )

π(x) =κy(x) + βEtπt+1(r
n
t+1, x). (15)

The actual policy rate it is given by

it = max(i∗t , 0). (16)

That is, the actual policy rate today is zero when i∗t < 0, and it is equal to i∗t when i∗t ≥ 0.

The central bank’s value today is given by

V CB,SIRS
t (rnt , i

∗
t−1) = uCB,SIRS(πt, yt, it, i

∗
t−1) + βEtV

CB,SIRS
t+1 (rnt+1, i

∗
t ), (17)
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where inflation and the output gap are given by

yt =Etyt+1(r
n
t+1, i

∗
t )− σ(it − Etπt+1(r

n
t+1, i

∗
t )− rnt )

πt =κyt + βEtπt+1(r
n
t+1, i

∗
t ).

The definition of the Markov-Perfect equilibrium with the shadow interest-rate smoothing is

similar to that with the standard IRS objective and is relegated to Appendix A.

The fourth row of Table 2 reports the optimal weight, welfare, and ZLB frequency for the SIRS

regime. The optimal relative weight on the SIRS objective in the central bank’s objective function

is considerably smaller than under the standard IRS regime, while welfare is higher than under the

standard IRS regime.

Figure 5 compares the dynamics of the economy under the SIRS regime with those under the

standard IRS regime and the discretionary regime with zero weight on the IRS objective in the

context of the liquidity trap scenario of Section 3.2. As a result of the lower optimized weights

Figure 5: Liquidity trap scenario: Shadow interest-rate smoothing
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Note: In the considered liquidity trap scenario, the economy is initially in the risky steady state. In period 0, the

natural real rate falls into negative territory and stays at the new level for three quarters before jumping back to its

steady-state level.
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on the SIRS objective, and in contrast to standard IRS, under SIRS the policy rate is lowered

immediately to its lower bound when the shock buffets the economy. The SIRS regime also raises

the policy rate more slowly when the shock has receded, leading to a more accommodative real

interest rate path. The economic boom upon exiting the liquidity trap is therefore larger under

the SIRS regime than under the IRS regime, and as a result, the drop in the inflation rate and the

output gap during the liquidity trap is smaller.

A key difference between the SIRS framework and the standard IRS framework lies in the

endogenous state variable. Under the IRS regime, the endogenous state variable is the actual

policy rate it, while it is the shadow interest rate i∗t under the SIRS regime. Unlike the actual

policy rate, the shadow interest rate can go below zero. This unconstrained nature of the shadow

rate has two important implications for interest rate policy. The first implication is that, in the face

of large contractionary shocks, the policy rate is lowered more aggressively than under standard

IRS. This more aggressive lowering reflects the fact that the shadow rate is anticipated to enter

negative territory, while the policy rate is anticipated not to fall below zero under the standard

IRS regime. Because the SIRS regime smoothes the shadow rate path, the shadow rate declines

faster than the policy rate in the standard IRS regime. The policy rate path under the SIRS regime

simply mimics the shadow rate path subject to the ZLB constraint.

The second implication is that, as large contractionary shocks dissipate, the policy rate is kept

at the ZLB for a longer period under the SIRS regime than under the standard IRS regime. The

shadow rate remembers the severity of the recession: The larger the downturn, the lower the

shadow rate. As the policy rate follows the shadow rate path subject to the ZLB constraint, a

larger downturn thus leads to a lower path of interest rates under the SIRS regime, akin to the

optimal commitment policy.18 In contrast, under conventional interest-rate smoothing, history

dependence operates via the nominal interest rate, which has a lower bound of zero. Thus, once

the ZLB is reached, a further decline in the natural rate has no direct implications for the size of

the subsequent monetary stimulus.

4.2 A simple model with natural real rate and cost-push shocks

In our baseline model, the only exogenous disturbance is a natural real rate shock. We now extend

the analysis to an economy that is subject to both natural real rate shocks and cost-push shocks.

The New Keynesian Phillips curve augmented with a cost-push shock then becomes:

πt = κyt + βEtπt+1 + ut, (18)

where ut follows a stationary autoregressive process of order one, ut = ρuut−1 + εut . Parameter

18The conduct of interest-rate policy under SIRS also has similarities with that observed when the interest rate is
set according to a truncated inertial Taylor rule with a lagged shadow policy rate (considered in Hills and Nakata
(2014), Hills, Nakata, and Schmidt (2016), Gust, Lopez-Salido, and Smith (2012)) or a Reifschneider-Williams (2000)
rule (Reifschneider and Williams (2000)). Under these policy rules, how long the central bank keeps the policy rate
at the ZLB also depends on the severity of the recession.
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ρu ∈ [0, 1) and εut is a i.i.d. N(0, σ2u) innovation. The remainder of the model structure stays the

same as in Section 2. We set σu = 0.17/100 as estimated by Ireland (2011) for the U.S. economy.

Figure 6 plots the social welfare measure as defined in equation (10) for alternative values of

α ∈ [0, 0.2].19 The left panel shows results for the case when cost-push shocks are purely transitory,

ρu = 0, as estimated by Ireland (2011), and the right panel shows results for the case of persistent

cost-push shocks, ρu = 0.3.20 In each panel, the black solid line indicates welfare outcomes when

accounting for the ZLB, and the blue dashed line indicates welfare when ignoring the ZLB.

Figure 6: Welfare effects of interest-rate smoothing: Model augmented with cost-push shocks
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Note: The figure shows how welfare as defined in equation (10) varies with the relative weight α on the IRS objective.

The vertical black dashed line indicates the optimal weight on the smoothing objective in the model with ZLB, and

the vertical blue dashed line indicates the optimal weight in the model without the ZLB.

First, consider the left panel. In the presence of transitory cost-push shocks, the optimal degree

of interest-rate smoothing is no longer zero, even when one ignores the ZLB constraint. This result

arises because the optimal (time-inconsistent) response to a cost-push shock entails endogenous

persistence in the inflation rate and the output gap. If the economy is buffeted by a transitory

inflationary cost-push shock, the optimal commitment policy is to raise the policy rate above the

steady state for more than one period in order to undershoot the inflation target in the second

period. Such a response improves the trade off between inflation and output gap stabilization in

the period when the shock hits the economy through the expectations channel (see, for instance,

Gali (2008)). Putting a small positive weight on the IRS objective allows a discretionary central

bank to mimic the gradual response of the optimal commitment policy to cost-push shocks.

As in our baseline model that is exposed to natural real rate shocks only, the presence of the ZLB

increases the optimal degree of interest-rate smoothing. In the model with the ZLB, the optimal

weight is α = 0.038, as indicated by the vertical dotted line, versus α = 0.004 in the model without

19For each candidate, we conduct 2,000 simulations, each consisting of 1,100 periods, with the first 100 periods
discarded as burn-in periods.

20The latter calibration is in line with estimates of the cost-push shock process in Justiniano, Primiceri, and
Tambalotti (2013) for the U.S. economy.
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the ZLB. Reflecting the additional benefit of interest-rate smoothing arising from the presence of

cost-push shocks in the model with the ZLB, this optimal weight is larger than that in the model

with natural real rate shocks only, which is 0.029, as shown in figure 1. As before, the welfare

gains from interest-rate smoothing are quantitatively important. At the optimal weight α = 0.038,

the welfare costs are more than one-third smaller than under the standard discretionary monetary

policy regime.

Now, consider the right panel. When the cost-push shocks are persistent, the optimal relative

weight on the IRS objective increases relative to the case with purely transitory cost-push shocks,

both in the model without the ZLB and in the model with the ZLB. The optimal α continues to

be larger in the model with the ZLB (α = 0.083) than in the model without the ZLB (α = 0.016),

and the difference between the optimal relative weights in the two models, i.e. the difference

between the vertical dashed black line and the vertical dashed blue line, is larger when the cost-

push shocks are persistent than when they are transitory. Hence, the mechanism that makes

interest-rate smoothing desirable in the presence of the ZLB remains quantitatively important even

if we increase the importance of the conventional mechanism associated with the stabilization bias

of discretionary policy. Finally, the relative welfare gains from including an optimally weighted

IRS objective in the central bank’s objective function are bigger when the cost-push shocks are

persistent than when they are transitory. While this is true for the model with ZLB and for the

model without the ZLB, the relative welfare gain is much larger when accounting for the ZLB.21

5 A quantitative model

In this section, we examine the desirability of gradualism in a more elaborate model. The model pro-

vides an empirically more plausible framework to quantify the desirability of interest-rate smooth-

ing.

5.1 Model and calibration

The quantitative model features price and wage rigidities as in Erceg, Henderson, and Levin (2000),

and non-reoptimized prices and wages that are partially indexed to past price inflation. Two

exogenous shocks—a natural real rate shock and a cost-push shock—buffet the economy.

The aggregate private sector behavior of the quantitative model is summarized by the following

21For ρu = 0.3, the welfare gain from an optimally-weighted IRS regime relative to the baseline regime with no
IRS objective is 50% in the model with the ZLB and 5% in the model without the ZLB.
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system of equations:

πpt − ιpπ
p
t−1 = κpwt + β

(
Etπ

p
t+1 − ιpπ

p
t

)
+ ut, (19)

πwt − ιwπ
p
t−1 = κw

((
1

σ
+ η

)
yt − wt

)
+ β

(
Etπ

w
t+1 − ιwπ

p
t

)
, (20)

πwt = wt − wt−1 + πpt , (21)

yt = Etyt+1 − σ
(
it − Etπpt+1 − r

n
t

)
, (22)

it ≥ iELB. (23)

Equation (19) captures the price-setting behavior of firms, where wt is the composite real wage

rate and ut is a cost-push shock. Equation (20) summarizes the nominal wage setting behavior of

households, where πwt denotes nominal wage inflation between periods t − 1 and t. Parameters ιp

and ιw represent the degree of indexation of prices and wages to past price inflation. Equation (21)

relates nominal wage inflation to the change in the real wage and the price inflation rate, and

equation (22) is the Euler equation and rnt is the natural rate shock. Finally, equation (23) represents

the effective lower bound (ELB) constraint on the policy rate. Parameters satisfy κp =
(1−θp)(1−θpβ)

θp

and κw = (1−θw)(1−θwβ)
θw(1+ηεw)

, where θp ∈ (0, 1) and θw ∈ (0, 1) denote share of firms and households

that cannot reoptimize their price and wage in a given period, respectively. εp > 1 is the price

elasticity of demand for differentiated goods, whereas εw > 1 is the wage elasticity of demand for

differentiated labor services. The notations for η, σ, and β are the same as in the stylized model.

The natural rate shock rnt and the price mark-up shock are assumed to follow a stationary

autoregressive process of order one:

rnt = (1− ρr)rn + ρrr
n
t−1 + εrt , (24)

ut = ρuut−1 + εut , (25)

where rn ≡ 1
β − 1 is the steady state level of the natural rate. ρr ∈ [0, 1) and ρu ∈ [0, 1) are the

persistence parameter. εrt and εut are i.i.d. N(0, σ2r ) and N(0, σ2u) innovations, respectively.

Society’s welfare at time t is given by the expected discounted sum of future utility flows.

Vt = u(πpt , yt, π
w
t , π

p
t−1) + βEtVt+1 (26)

where society’s contemporaneous utility function u(·) is given by the following second-order ap-

proximation to the household’s utility:22

u(πpt , yt, π
w
t , π

p
t−1) = −1

2

[(
πpt − ιpπ

p
t−1
)2

+ λy2t + λw
(
πwt − ιwπ

p
t−1
)2]

, (27)

22We assume that the deterministic steady-state distortions associated with imperfect competition in goods and
labor markets are eliminated by appropriate subsidies.
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where the relative weights are functions of the structural parameters.23

The central bank acts under discretion. The central bank’s contemporaneous utility function

uCB(·) is given by,

uCB(πpt , yt, π
w
t , π

p
t−1, it, it−1) =− 1

2

{
(1− α)

[(
πpt − ιpπ

p
t−1
)2

+ λy2t + λw
(
πwt − ιwπ

p
t−1
)2]

+ α(it − it−1)2
}
, (28)

where α is the weight on the interest-rate smoothing term. When α = 0, the central bank’s objective

function collapses to society’s objective function.

Each period t, the central bank chooses the price and wage inflation rate, the output gap, the

real wage, and the nominal interest rate to maximize its objective function subject to the private-

sector equilibrium conditions (equation (19) - (23)), with the value and policy functions at time

t+ 1 taken as given:

V CB
t (ut, r

n
t , it−1, π

p
t−1, wt−1) = max

(πpt ,π
w
t ,yt,wt,it)

uCB(πpt , yt, π
w
t , π

p
t−1, it, it−1)

+ βEtV
CB
t+1 (ut+1, r

n
t+1, it, π

p
t , wt). (29)

We quantify the effects of gradualism on society’s welfare by the perpetual consumption transfer

(as a share of its steady state) that would make a household in the artificial economy without any

fluctuations indifferent to living in the economy just described. This welfare-equivalent consumption

transfer is given by

W := (1− β)
εp
κp
E[V ]. (30)

Parameter values, shown in Table 3, are chosen so that the key moments implied by the model

under α = 0 are in line with those in the U.S. economy over the last two decades.24 The model-

implied standard deviations of inflation, output, and the policy rate are 0.63 percent (annualized),

2.9 percent, and 2.3 percent. The same moments from the U.S. data are 0.52 percent (annualized),

2.8 percent, and 2.2 percent.25 The model-implied probability of being at the ELB is about 28

percent, while the federal funds rate was at the ELB constraint 35 percent of the time over the

past two decades.

23Specifically, λ = κp
(
1
σ

+ η
)

1
εp

and λw = λ εw
κw( 1

σ
+η)

.
24The first order conditions to the policy problem and the numerical algorithm for model solution are described in

Appendix D.
25Our sample is from 1997:Q3 to 2017Q2. Inflation rate is computed as the annualized quarterly percentage change

(log difference) in the personal consumption expenditure core price index. The measure of the output gap is based
on the FRB/US model. The quarterly average of the (annualized) federal funds rate is used as the measure for the
policy rate.
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Table 3: Parameter values for the quantitative model

Parameter Description Parameter Value

β Discount rate 0.9925
σ Intertemporal elasticity of substitution in consumption 4
η Inverse labor supply elasticity 2
εp Price elasticity of substitution among intermediate goods 11
εw Wage elasticity of substitution among labor services 11
θp Share of firms per period keeping prices unchanged 0.9
θw Share of households per period keeping wages unchanged 0.9
ιp Degree of indexation of prices to past price inflation 0.1
ιw Degree of indexation of wages to past price inflation 0.1
iELB Effective lower bound 0.125

400
ρr AR(1) coefficient for natural real rate shock 0.85
σr The standard deviation of natural real rate shock 0.31

100
ρu AR(1) coefficient for price markup shock 0
σu The standard deviation of price markup shock 0.17

100

5.2 Results

Figure 7 shows how the degree of gradualism (α) affects welfare of the economies with and without

the ELB constraint—indicated by black solid and blue dashed lines, respectively.

Figure 7: Welfare effects of interest rate smoothing in the quantitative model
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Note: The figure shows how welfare as defined in equation (30) varies with the relative weight α on the IRS objective.

The vertical dashed black line indicates the optimal relative weight on the IRS objective in the model with ZLB.

Consistent with our earlier analysis of the stylized model, the welfare of the economy without
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the ELB constraint monotonically decreases as α increases. In principle, the presence of a cost-push

shock can make some degree of gradualism desirable. In response to a positive cost-push shock, the

central bank with commitment adjusts the interest rates gradually in order to create some history

dependence (Woodford (2003a) and Gali (2015)). Such history-dependence in the policy rate can

be partially mimicked by the interest-rate smoothing. See the analysis from the stylized model with

cost-push shocks in Section 4.2 for more details on this argument. However, in the quantitative

model, other factors—such as sticky wages and price/wage indexation—induce the inertia in the

policy rate even in the absence of gradualism, making any weight on the interest-rate smoothing

term welfare-reducing.

Figure 8: Liquidity trap scenario in the quantitative model
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Note: In the considered liquidity trap scenario, the economy is initially in the deterministic steady state. In period

1, the natural rate shock falls to a level that is 2.5 unconditional standard deviations from its steady state level.

Thereafter, the natural rate shock returns to its steady state level according to the autoregressive process described

in the main text.

In the model with the ELB constraint, the optimal weight on the interest-rate smoothing term

is positive, as indicated by the vertical dashed line. This is consistent with what we saw in the

stylized model. The optimal α is 0.37. The welfare gain from policy gradualism is quantitatively
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important. The welfare cost of business cycles is about 50 percent smaller at the optimal α than

at α = 0.

To understand the effect of gradualism on the dynamics of the economy with the ELB, Figure 8

compares the IRFs under two different values of α when the natural real rate of interest is initially

2.5 unconditional standard deviations below the steady state. Dashed blue and solid black lines

are the IRFs under α = 0.37 and under α = 0, respectively. At the beginning of the recession,

gradualism prevents the central bank from reducing the policy rate to the ELB as quickly as in the

case with no gradualism. The recession is substantially less severe with α = αopt than with α = 0

due to the stabilizing effect of interest-rate smoothing. In equilibrium, because the recession is less

severe, the policy rate lifts off from the ELB earlier with gradualism than without gradualism.

Due to the stabilizing effects of gradualism, the probability of being at the ELB is lower with the

optimal α than with α = 0 (15 percent versus 28 percent). A lower ELB probability manifests itself

in better economic outcomes at the risky steady state. In particular, due to a lower possibility of

being at the ELB, price and wage inflation are nontrivially higher (and closer to zero), and output

and real wages are slightly lower (closer to zero), at the risky steady state with α = 0.37 than with

α = 0. These effects of the ELB risk on the steady-state allocations are consistent with the analysis

in 3.2, Hills, Nakata, and Schmidt (2016), and Nakata and Schmidt (2014).

6 Conclusion

Our analysis provides a novel rationale for policy rate gradualism. In a liquidity trap, a gradualist

central bank keeps the policy rate low for longer than is warranted by the dynamics of output and

inflation alone, mimicking a key feature of the optimal commitment policy. This low-for-long policy

creates a transitory boom in future inflation and output, which damps the declines of inflation and

real activity during the liquidity trap via expectations.

A discretionary central bank that is only concerned with output and inflation stabilization will

find itself unable to credibly commit to keep the policy rate low, for it has an incentive to renege

on its past promise and increase the policy rate once the liquidity-trap conditions recede. However,

modifying the objective function of a discretionary central bank to include an IRS objective allows

society to make low-for-long policies credible. An optimally chosen weight on the IRS objective

relative to the central bank’s objectives for inflation and output stabilization leads to a significant

improvement in society’s welfare even though society itself is not intrinsically concerned with the

stabilization of changes in the policy rate.
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Technical Appendix for Online Publication

A Interest-rate smoothing regimes

A.1 Interest-rate smoothing

The Lagrange problem of the central bank with an IRS objective at period t is given by

V CB
t (rnt , it−1) = max

πt,yt,it

[
−1

2

[
(1− α)

(
π2t + λy2t

)
+ α(it − it−1)2

]
+ βEtV

CB
t+1 (rnt+1, it)

+ φPCt (πt − βEtπt+1(r
n
t+1, it)− κyt)

+ φISt (yt − Etyt+1(r
n
t+1, it) + σ(it − Etπt+1(r

n
t+1, it)− rnt ))

+ φZLBt it

]
(A.1)

where the central banker takes the value and policy functions next period as given. The FONC are

(1− α)πt − φPCt = 0 (A.2)

(1− α)λyt + κφPCt − φISt = 0 (A.3)

α(it − it−1)− β
∂EtV

CB
t+1 (rnt+1, it)

∂it
+ β

∂Etπ(rnt+1, it)

∂it
φPCt

+

(
∂Ety(rnt+1, it)

∂it
+ σ

∂Etπ(rnt+1, it)

∂it
− σ

)
φISt − φZLBt = 0 (A.4)

as well as the complementary slackness conditions and the NKPC and IS equation. Combining the

first two conditions, we get

(1− α)(λyt + κπt) = φISt (A.5)

Furthermore, note that
∂V CB

t (rnt , it−1)

∂it−1
= α(it − it−1) (A.6)

We can then consolidate the third optimality condition to obtain an interest-rate target criterion

0 =α(1 + β)it − αit−1 − βαEti(rnt+1, it)

+ β(1− α)
∂Etπ(rnt+1, it)

∂it
πt + (1− α)

(
∂Ety(rnt+1, it)

∂it
+ σ

∂Etπ(rnt+1, it)

∂it

)
(λyt + κπt)

− (1− α)σ(λyt + κπt)− φZLBt (A.7)

A.2 Shadow interest-rate smoothing

The value of the central bank with a shadow interest-rate smoothing (SIRS) objective is given by

V CB,SIRS
t = uCB,SIRS(πt, yt, it, i

∗
t−1) + βEtV

CB,SIRS
t+1 (A.8)
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where the central bank’s contemporaneous objective function, uCB,SIRS(·, ·, ·, ·), is given by

uCB,SIRS(πt, yt, it, i
∗
t−1) = −1

2

[
(1− α)

(
π2t + λy2t

)
+ α(it − i∗t−1)2

]
(A.9)

Each period t, the central bank with a SIRS objective first chooses the shadow nominal interest

rate in order to maximize the value today subject to the behavioral constraints of the private

sector, with the value and policy functions at time t+ 1—V CB,SIRS
t+1 (·, ·), yt+1(·, ·), πt+1(·, ·)—taken

as given:

i∗t = argmaxx uCB,SIRS(π(x), y(x), x, i∗t−1) + βEtV
CB,SIRS
t+1 (rnt+1, x) (A.10)

with

y(x) =Etyt+1(r
n
t+1, x)− σ(x− Etπt+1(r

n
t+1, x)− rnt )

π(x) =κy(x) + βEtπt+1(r
n
t+1, x) (A.11)

The actual policy rate it is given by

it = max(i∗t , 0) (A.12)

That is, the actual policy rate today is zero when i∗t < 0, and it is equal to i∗t when i∗t ≥ 0.

The central bank’s value today is given by

V CB,SIRS
t (rnt , i

∗
t−1) = uCB,SIRS(πt, yt, it, i

∗
t−1) + βEtV

CB,SIRS
t+1 (rnt+1, i

∗
t ) (A.13)

where inflation and the output gap are given by

yt =Etyt+1(r
n
t+1, i

∗
t )− σ(it − Etπt+1(r

n
t+1, i

∗
t )− rnt )

πt =κyt + βEtπt+1(r
n
t+1, i

∗
t )

it ≥0 (A.14)

A Markov-Perfect equilibrium with a SIRS objective is defined as a set of time-invariant value and

policy functions {V CB,SIRS(·), π(·), y(·), i∗(·), i(·)} that solves the problem of the central bank

above, together with the value function V (·) that is consistent with π(·) and y(·).

B Calibration of the process of the natural real rate shock

To calibrate the process of the natural real rate shock, we follow the procedure used by Adam

and Billi (2006). Specifically, we construct conditional output gap and inflation expectations. We

then plug these expectations along with actual values for the output gap and inflation into the

consumption Euler equation

yt = Ẽtyt+1 − σ(it − i− Ẽtπt+1) + dt, (B.1)
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where Ẽtyt+1 and Ẽtπt+1 are conditional expectations, i is the mean of the policy rate and dt is

the equation residual. We then identify the natural real rate shock as

rnt − rn =
1

σ
dt. (B.2)

We use quarterly data for the U.S. economy from 1984-Q1 to 2016-Q4. For the inflation rate

we use the quarterly percentage change of the GDP implicit price deflator. The output gap is

constructed as the log difference between real GDP and real potential GDP (both in billions of

chained 2009 U.S. dollars). For the policy rate we use the quarterly average of the effective federal

funds rate. All data series are obtained from FRED. We then subtract the respective sample mean

from the three constructed data series.

Following Adam and Billi (2006), we use actual future values of the output gap and inflation

for the conditional expectations. We then estimate an AR(1) model for rnt − rn using OLS, and

obtain ρr = 0.851 (standard error: 0.045) and σ2r = 0.1588/1002 (standard error: 0.0165/1002), or

σr = 0.399/100.

C Numerical algorithm and solution accuracy for the simple model

We use the policy function iteration algorithm described below to solve the simple model for the

various monetary policy regimes.

C.1 Numerical algorithm

We approximate the policy functions for the inflation rate, output and the policy rate with a finite

elements method using collocation. For the basis functions we use cubic splines. The algorithm

uses fixed-point iteration and proceeds in the following steps (here exemplified for the IRS regime):

1. Construct the collocation nodes. The nodes are chosen such that they coincide with the

spline breakpoints. Use a Gaussian quadrature scheme to discretize the normally distributed

innovation to the natural real rate shock.

2. Start with a guess for the basis coefficients.

3. Use the current guess for the basis coefficients to approximate the expectation terms.

4. Solve the system of equilibrium conditions for inflation, output and the policy rate at the

collocation nodes, assuming that the zero lower bound is not binding. For those nodes where

the zero bound constraint is violated solve the system of equilibrium conditions associated

with a binding zero bound.

5. Update the guess for the basis coefficients. If the new guess is sufficiently close to the old

one, the algorithm has converged. Otherwise, go back to step 3.
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C.2 Solution accuracy

We assess the solution accuracy by evaluating the residual functions associated with, the New

Keynesian Phillips curve (RPC,t), the consumption Euler equation (REE,t) and the target criterion

(A.7) (RTC,t) along a simulated equilibrium path with a length of 100,000 periods. For each

equation, the residual function is defined as the absolute value of the difference between the left-

hand side and the right-hand side of the equation. Table 4 reports the average and the maximum

of these residuals for the optimized interest-rate smoothing regime.

Table 4: Solution accuracy: Simple model with α = 0.029

Mean
[
log10(Rk,t)

]
Max

[
log10(Rk,t)

]
k = PC: Sticky-price error −6.54 −4.50
k = EE: Euler equation error −5.46 −3.08
k = TC: Target criterion error −7.66 −5.16

D Numerical algorithm and solution accuracy for the quantitative

model

D.1 First-order necessary conditions for central bank’s problem

Including private-sector equilibrium conditions (equation (19) - (23)), first-order necessary condi-

tions for the central bank’s maximization problem are enumerated as follows:

0 =− (1− α)λyt + φ1,t − κw
(

1

σ
+ η

)
φ2,t, (D.1)

0 =− (1− α)λw(πwt − ιwπ
p
t−1) + φ2,t + φ4,t, (D.2)

0 =− (1− α)(πpt − ιpπ
p
t−1) + β(1− α)ιp(Etπ

p
t+1 − ιpπ

p
t ) + β(1− α)λwιw(Etπ

w
t+1 − ιwπ

p
t )

− φ1,t
(
∂Etyt+1

∂πpt
+ σ

∂Etπ
p
t+1

∂πpt

)
− φ2,tβ

(
∂Etπ

w
t+1

∂πpt
− ιw

)
− βιwEtφ2,t+1

+ φ3,t

(
1− β

(
∂Etπ

p
t+1

∂πpt
− ιp

))
− βιpEtφ3,t+1 − φ4,t, (D.3)

0 =− φ1,t
(
∂Etyt+1

∂wt
+ σ

∂Etπ
p
t+1

∂wt

)
+ φ2,t

(
κw − β

∂Etπ
w
t+1

∂wt

)
− φ3,t

(
κp + β

∂Etπ
p
t+1

∂wt

)
− φ4,t + βEtφ4,t+1, (D.4)

0 =− α(it − it−1) + βα(Etit+1 − it) + φ1,t

(
σ − ∂Etyt+1

∂it
− σ

∂Etπ
p
t+1

∂it

)
− φ2,tβ

∂Etπ
w
t+1

∂it
− φ3,tβ

∂Etπ
p
t+1

∂it
+ φ5,t, (D.5)

where φ1,t - φ5,t are Lagrangian multipliers for equation (19) - (23), respectively.
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D.2 Solution method

There are total of five state variables, which we denote by St 3 [ut, r
n
t , π

p
t−1, wt−1, it−1]. The problem

is to find a set of policy functions, {πp(St), πw(St), y(St), w(St), i(St), φ1(St), φ2(St), φ3(St), φ4(St),
and φ5(St)} that solves the following system of functional equations:

πp(St)− ιpπpt−1 = κpw(St) + β (Etπ
p(St+1)− ιpπp(St)) + ut, (D.6)

πw(St)− ιwπpt−1 = κw

((
1

σ
+ η

)
y(St)− w(St)

)
+ β (Etπ

w(St+1)− ιwπp(St)) , (D.7)

πw(St) = w(St)− wt−1 + πp(St), (D.8)

y(St) = Ety(St+1)− σ (i(St)− Etπp(St+1)− rnt ) , (D.9)

i(St) ≥ iELB. (D.10)

0 =− (1− α)λy(St) + φ1(St)− κw
(

1

σ
+ η

)
φ2(St), (D.11)

0 =− (1− α)λw(πw(St)− ιwπpt−1) + φ2(St) + φ4(St), (D.12)

0 =− (1− α)(πp(St)− ιpπpt−1) + β(1− α)ιp(Etπ
p(St+1)− ιpπp(St))

+ β(1− α)λwιw(Etπ
w(St+1)− ιwπp(St))

− φ1(St)
(
∂Ety(St+1)

∂πp(St)
+ σ

∂Etπ
p(St+1)

∂πp(St)

)
− φ2(St)β

(
∂Etπ

w(St+1)

∂πp(St)
− ιw

)
− βιwEtφ2(St+1)

+ φ3(St)
(

1− β
(
∂Etπ

p(St+1)

∂πp(St)
− ιp

))
− βιpEtφ3(St+1)− φ4(St), (D.13)

0 =− φ1(St)
(
∂Ety(St+1)

∂w(St)
+ σ

∂Etπ
p(St+1)

∂w(St)

)
+ φ2(St)

(
κw − β

∂Etπ
w(St+1)

∂w(St)

)
− φ3(St)

(
κp + β

∂Etπ
p(St+1)

∂w(St)

)
− φ4(St) + βEtφ4(St+1), (D.14)

0 =− α(i(St)− it−1) + βα(Eti(St+1)− i(St)) + φ1(St)
(
σ − ∂Ety(St+1)

∂i(St)
− σ∂Etπ

p(St+1)

∂i(St)

)
− φ2(St)β

∂Etπ
w(St+1)

∂i(St)
− φ3(St)β

∂Etπ
p(St+1)

∂i(St)
+ φ5(St), (D.15)

Following the idea of Christiano and Fisher (2000), we decompose these policy functions into

two parts using an indicator function: one in which the policy rate is allowed to be less than 0, and

the other in which the policy rate is assumed to be 0. That is, for any variable Z,

Z(·) = I{R(·)≥0}ZNZLB(·) + (1− I{R(·)≥0})ZZLB(·). (D.16)

The problem then becomes finding a set of a pair of policy functions, {
[
πpNZLB(·), πpZLB(·)

]
,
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{
[
πwNZLB(·), πwZLB(·)

]
, {
[
yNZLB(·), yZLB(·)

]
,
[
wNZLB(·), wZLB(·)

]
,
[
iNZLB(·), iZLB(·)

]
,
[
φ1,NZLB(·),

φ1,ZLB(·)
]
,
[
φ2,NZLB(·), φ2,ZLB(·)

]
,
[
φ3,NZLB(·), φ3,ZLB(·)

]
,
[
φ4,NZLB(·), φ4,ZLB(·)

]
, and

[
φ5,NZLB(·)

φ5,ZLB(·)
]
} that solves the system of functional equations above. This approach of Christiano and

Fisher (2000) can achieve a given level of accuracy with a considerable less number of grid points

relative to the standard approach.

The time-iteration method aims to find the values for the policy and value functions consistent

with the equilibrium conditions on a finite number of grid points within the pre-determined grid

intervals for the model’s state variables. Let X(·) be a vector of policy functions that solves the

functional equations above and let X(0) be the initial guess of such policy functions.26 At the s-th

iteration, given the approximated policy function X(s−1)(·), we solve the system of nonlinear equa-

tions given by equations (D.6)-(D.15) to find today’s πpt , π
w
t , yt, wt, it, φ1,t, φ2,t, φ3,t, φ4,t, and φ5,t at

each grid point. In solving the system of nonlinear equations, we use Gaussian quadrature (with

10 Gauss-Hermite nodes) to discretize and evaluate the expectation terms in the Euler equation,

the price and wage Phillips curves, and expectational partial derivative terms.

The values of the policy function that are not on any of the grid points are interpolated or

extrapolated linearly. The values of the partial derivatives of the policy functions not on any of the

grid points are approximated by the slope of the policy functions evaluated from the adjacent two

grid points. That is, for any variable X and Z,

∂X(δt+1,t )

∂Zt
=
X(δt+1, Z

′′
)−X(δt+1, Z

′
)

Z ′′ − Z ′
. (D.17)

where Z
′

and Z
′′

are two adjacent grid points to Zt such that Z
′
< Zt < Z

′′
. When Zt is outside

the grid interval, the partial derivative is approximated by the slope evaluated at the edge of the

grid interval.

The system is solved numerically by using a nonlinear equation solver, dneqnf, provided by

the IMSL Fortran Numerical Library. If the updated policy functions are sufficiently close to the

previously approximated policy functions, then the iteration ends. Otherwise, using the former

as the guess for the next period’s policy functions, we iterate on this process until the difference

between the guessed and updated policy functions is sufficiently small (
∥∥vec(Xs(δ)−Xs−1(δ))

∥∥
∞ <

1e-12 is used as the convergence criteria). The solution method can be extended to models with

multiple (non-perfectly correlated) exogenous shocks and with multiple endogenous state variables

in a straightforward way.

D.3 Solution accuracy

In this section, we report the accuracy of our numerical solutions for the quantitative model.

Following Fernández-Villaverde, Gordon, Guerrón-Quintana, and Rubio-Ramı́rez (2015) and Maliar

and Maliar (2015), we evaluate the residuals functions along a simulated equilibrium path. The

length of the simulation is 100,000.

26For all models and all variables, we use flat functions at the deterministic steady-state values as the initial guess.
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For the quantitative model, there are six key residual functions of interest. The first three

residual functions, denoted by R1,t, R2,t, and R3,t, are associated with the sticky-price equation,

the sticky-wage equation, and the Euler equation, respectively (equations (19), (20), and (22)).

The last three residual functions, denoted by R4,t, R5,t, and R6,t, are associated with the first-

order conditions of the central bank’s optimization problem with respect to price inflation, real

wage, and the policy rate, respectively (equations (D.3), (D.4), and (D.5)). For each equation, the

residual function is defined as the absolute value of the difference between the left-hand side and

the right-hand side of the equation. Table 5 shows the average and the maximum of the six residual

functions over the 100,000 simulations.

The size of the residuals are comparable to those reported in other numerical works on the

New Keynesian model with the ELB constraint, such as Fernández-Villaverde, Gordon, Guerrón-

Quintana, and Rubio-Ramı́rez (2015), Hills, Nakata, and Schmidt (2016), Hirose and Sunakawa

(2015), and Maliar and Maliar (2015).

Table 5: Solution accuracy: Quantitative model with α = 0.37

Mean
[
log10(Rk,t)

]
Max

[
log10(Rk,t)

]
k = 1: Sticky-price error −6.46 −4.86
k = 2: Sticky-wage error −6.05 −4.40
k = 3: Euler equation error −4.10 −2.25

k = 4: Error in the FONC w.r.t price inflation −5.07 −4.12
k = 5: Error in the FONC w.r.t real wage −3.90 −3.41
k = 6: Error in the FONC w.r.t. policy rate −2.94 −2.78

E Sensitivity of results with respect to the calibration of the nat-

ural real rate shock process

This section documents how the optimal relative weight on the IRS regime, the welfare gains from

IRS, and the frequency of a binding ZLB constraint depend on the calibration of the process of the

natural real rate shock rnt . The first subsection summarizes results for the simple model of Section

2, and the second subsection for the quantitative model of Section 5.

E.1 Simple model

Figure 9 shows how the calibration of the persistence parameter of the natural real rate shock

process, ρr, affects the optimal relative weight on the IRS objective (left panel), welfare under the

optimal IRS regime and under the standard discretionary regime (middle panel) and the frequency

of a binding ZLB constraint under the optimal IRS regime and under the standard discretionary

regime (right panel). All other parameters, including the standard deviation of the innovation to

the natural real rate shock remain unchanged. Results are only shown for the model with the

ZLB, as in the model without the ZLB the efficient equilibrium can be replicated by the standard

35



discretionary regime.

Figure 9: The role of the persistence of the natural rate shock in the simple model with ZLB
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Note: The baseline calibration is ρr = 0.85. The welfare measure is defined in equation (10).

The optimal relative weight on the IRS objective and the welfare gains from optimal IRS—

represented by the difference between the blue dashed line and the solid black line in the middle

panel—are both increasing in ρr. These two results are intuitive since all else equal, the ZLB is

binding more often the higher the persistence of the natural real rate shock. This can be seen from

the results for the frequency of ZLB events under the standard discretionary regime (solid black

line in the right panel). Finally, we find that in the case of the optimized IRS regime, ρr has only

small (and non-monotonic) effects on the frequency of ZLB events. This reflects the fact that the

optimal relative weight on the IRS objective itself is varying with ρr.

Figure 10 shows how results depend on the calibration of the standard deviation of the natural

real rate shock innovation, σr.

Figure 10: The role of the volatility of the natural rate shock in the simple model with ZLB
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Note: The baseline calibration is σr = 0.40/100. The welfare measure is defined in equation (10).

Results are qualitatively similar to those obtained for the persistence parameter ρr. In par-

ticular, both the optimal relative weight on the IRS objective and the relative welfare gains from

optimal IRS are increasing in the standard deviation of the natural real rate shock innovation.

The only notable difference is that under the optimal IRS regime, the frequency of a binding ZLB
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constraint is strictly declining in σr.

E.2 Quantitative model

TO BE COMPLETED
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