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Abstract

This paper develops a New Keynesian model with a time-varying natural rate of inter-
est (r-star) and a zero lower bound (ZLB) on the nominal interest rate. The representative
agent contemplates the possibility of an occasionally binding ZLB that is driven by switch-
ing between two local rational expectations equilibria, labeled the “targeted”and “defla-
tion”solutions, respectively. Sustained periods when the real interest rate remains below
the central bank’s estimate of r-star can induce the agent to place a substantially higher
weight on the deflation equilibrium, causing it to occasionally become self-fulfilling. I solve
for the time series of stochastic shocks and endogenous forecast rule weights that allow
the model to exactly replicate the observed time paths of the U.S. output gap and quar-
terly inflation since 1988. In model simulations, raising the central bank’s inflation target
to 4% from 2% can reduce, but not eliminate, the endogenous switches to the deflation
equilibrium.
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1 Introduction

The sample period from 1988 onwards is generally viewed as an example of consistent U.S.

monetary policy aimed at keeping inflation low while promoting sustainable growth and full

employment. The nature of this policy is typically described in standard New Keynesian

models by a Taylor-type rule in which movements in the federal funds rate are driven by

fluctuations in recent inflation and a measure of real activity. Amazingly, the U.S. federal

funds rate has been pinned close to zero for about one-fourth of the elapsed time since 1988.

The U.S. economy is not alone in experiencing an extended period of zero or mildly negative

nominal interest rates in recent decades.

Figure 1 plots three-month nominal Treasury bill yields in the United States, Japan,

Switzerland, and the United Kingdom. Nominal interest rates in the United States encoun-

tered the zero lower bound during the 1930s and from 2008.Q4 though 2015.Q4. Nominal

interest rates in Japan have remained near zero since 1998.Q3, except for the relatively brief

period from 2006.Q4 to 2008.Q3. Nominal interest rates in Switzerland have been zero or

slightly negative since 2008.Q4. Nominal interest rates in the United Kingdom have been ap-

proximately zero since 2009.Q1. Outside of these episodes, all four countries exhibit a strong

positive correlation between nominal interest rates and inflation, consistent with the Fisher

relationship.

Benhabib, Schmitt-Grohé and Uribe (2001a,b) show that imposing a zero lower bound

(ZLB) on the nominal interest rate in a standard New Keynesian model gives rise to two

long-run endpoints (steady states).1 The basic idea is illustrated in Figure 2, which is adapted

from Bullard (2010). The two intersections of the ZLB-augmented monetary policy rule (solid

red line) with the Fisher relationship (dashed black line) define two long-run endpoints. I refer

to these as the “targeted equilibrium”and “deflation equilibrium,” respectively. Data since

2008.Q4 lie closer to the deflation equilibrium than the targeted equilibrium.

This paper develops a New Keynesian model with a time-varying natural rate of interest

(r-star), i.e., the real short-term interest rate that is consistent with full utilization of eco-

nomic resources and steady inflation at the central bank’s target rate. R-star is an important

benchmark for monetary policy because it determines the real interest rate that policymakers

should aim for once shocks to the economy have dissipated and the central bank’s macroeco-

1 I use the terminology “long-run endpoints”rather than “steady states”because the model developed here
allows for permanent shifts in the natural rate of interest which, in turn, can shift the long-run values of some
macroeconomic variables.
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nomic goals have been achieved.2 The times series process for r-star in the model is calibrated

to closely approximate the path of the U.S. natural rate series estimated by Laubach and

Williams (2016).3

As is well known, the New Keynesian deflation equilibrium is locally indeterminate. I

therefore consider a minimum state variable (MSV) solution that rules out sunspot variables

and extra lags of fundamental state variables. The decision rules associated with the deflation

equilibrium induce more volatility in the output gap and inflation in response to real interest

rate shocks. Model variables in the deflation equilibrium have distributions with lower means

and higher variances than those in the targeted equilibrium. But the significant overlap in

the various distributions creates a dilemma for an agent who seeks to determine the likelihood

that a string of recent data observations are drawn from one equilibrium or the other.

The representative agent in the model contemplates the possibility of an occasionally bind-

ing ZLB that is driven by switching between the two local equilibria. This view turns out to

be true in the simulations, validating the agent’s beliefs. The agent constructs forecasts using

a form of model averaging, where the time-varying forecast weights are determined by recent

performance, as measured by the root mean squared forecast errors for the output gap and

inflation. Sustained periods when the real interest rate remains below the central bank’s es-

timate of r-star can induce the agent to place a substantially higher weight on the deflation

equilibrium, causing it to occasionally become self-fulfilling. These episodes are accompanied

by highly negative output gaps and a binding ZLB, reminiscent of the U.S. Great Recession.

But even outside of recessions or when the ZLB is not binding, the agent may continue to

assign a nontrivial weight to the deflation equilibrium, causing the central bank to persistently

undershoot its inflation target, similar to the U.S. economy since mid-2012.

In one exercise, I solve for the time series of stochastic shocks and endogenous forecast

rule weights that allow the switching model to exactly replicate the observed time paths of the

CBO output gap and quarterly PCE inflation since 1988. The model-implied weight on the

targeted equilibrium starts to decline in 2008.Q4, eventually reaching a minimum in 2011.Q3.

The weight subsequently increases as the U.S. economy recovers from the Great Recession.

But even towards the end of the data sample, the weight on the targeted equilibrium remains

well below 1.0, helping the model to account for the persistent undershooting of the Fed’s

inflation target since mid-2012. The path of expected inflation from the switching model

2Willamson (2017a) provides a discussion of the distinctions between the “natural,” “equilibrium,” and
“neutral”real rates of interest– terms that are often used interchangeably in the literature.

3Updated data are from www.frbsf.org/economic-research/files/Laubach_Williams_updated_estimates.xlsx.
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starts to decline after 2008.Q4 and remains below the Fed’s 2% inflation target at the end of

the data sample. This pattern is similar to some measures of expected inflation in U.S. data.

The framework developed here is similar to that of Aruoba and Schorfheide (2016) and

Aruoba, Cuba-Borda, and Schorfheide (2017). These authors construct a stochastic two-regime

model in which the economy can switch between a targeted-inflation regime and a deflation

regime, depending on the realization of a sunspot variable. The probability of transitioning

from one regime to the other is exogenous. In contrast, the regime switching here is driven

by the recent performance of forecast rules that employ observed data on macroeconomic

variables. Hence, the transition probabilities that govern the regime switches are endogenous

and can be influenced by a change in the monetary policy rule. Moreover, the probability

assigned by the agent to being in one regime or the other is not restricted to be zero or one,

but rather can take on intermediate values, depending on recent data.

Another related paper is one by Dordal-i-Carrera et al. (2016). These authors develop

a New Keynesian model with volatile and persistent “risk shocks” (i.e., shocks that drive a

wedge between the nominal policy rate and the short-term bond rate) to account for infrequent

but long-lived ZLB episodes. A risk shock in their model is isomorphic to a real interest rate

shock here. Large adverse risk shocks are themselves infrequent and long-lived. As the binding

ZLB episode becomes more frequent or more long-lived, the optimal inflation target increases.

Unlike here, their analysis does not consider model solutions near the deflation equilibrium, but

rather focuses on scenarios in which fundamental shocks are large enough to push the targeted

equilibrium to a point where ZLB becomes binding.4 In contrast, the model developed here

accounts for infrequent but long-lived ZLB episodes via endogenous switching between two

local equilibria, i.e., the shock process itself is not the sole driving force for the infrequent and

long-lived ZLB episodes.

As part of the quantitative analysis, I examine how raising the central bank’s inflation

target can influence the ZLB binding frequency and the volatility of macro variables in the

switching model. I find that even with an inflation target of 4%, the ZLB binding frequency

remains elevated at 9.9%, the average duration of a ZLB episode is 11.2 quarters, and the max-

imum duration of a ZLB episode is 132 quarters, or 33 years. Once the deflation equilibrium

is taken into account, raising the inflation target is a less effective solution for avoiding ZLB

episodes. Reducing the degree of interest rate smoothing in the monetary policy rule serves

4This is also the methodology pursued by Reifschneider and Williams (2000), Schmitt-Grohé and Uribe
(2010), Chung et al. (2012), Coibion, Gorodnichenko, and Wieland (2012), Dennis (2016), and Kiley and
Roberts (2017).
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to increase the ZLB binding frequency, but the episodes exhibit shorter duration on average.

Lastly, I introduce an adaptive learning algorithm into a simplified version of the model.

When the agent estimates correctly specified decision rules, the algorithm quickly converges

to the vicinity of the targeted equilibrium and remains there. But when the agent estimates

misspecified decision rules that fail to control for some white noise shocks, the model exhibits

low frequency oscillations between the two local equilibria that are qualitatively similar to

those observed in the original switching model with full-knowledge.

1.1 Related literature

A number of papers introduce adaptive learning type mechanisms to examine the dynamics

of convergence to either the targeted or the deflation equilibrium. A typical conclusion is that

the targeted equilibrium is locally (but not globally) stable under least squares learning (Evans

and Honkapohja 2005, Eusepi 2007, Evans, Guse, and Honkapohja 2008, Benhabib, Evans and

Honkapohja 2014, Christiano, Eichenbaum, and Johanssen 2016). Arifovic, Schmitt-Grohé,

and Uribe (2017) demonstrate that both equilibria can be locally stable under a form of social

learning. Hursey and Wolman (2010) examine the global perfect-foresight dynamics of the

ZLB-augmented New Keynesian model. They conclude that “the model only tells us what

equilibria exist, not how likely they are to occur”(p. 335).

Alstadheim and Henderson (2006) and Sugo and Ueda (2008) describe interest rate rules

that can preclude the deflation equilibrium. Armenter (2014) considers an extension of Ben-

habib, Schmitt-Grohé and Uribe (2001b) in which monetary policy is governed not by a Taylor-

type rule, but rather by the optimal time-consistent rule that minimizes the central bank’s loss

function. He shows that it may not be possible to achieve the targeted equilibrium if agents’

initial inflation expectations are below the central bank’s inflation target.

Numerous papers consider optimal monetary policy in response to a time-varying natural

rate of interest. The models typically impose the ZLB (or effective lower bound), but the

deflation equilibrium is ignored, i.e., the analysis is local to the targeted equilibrium. Examples

include Eggertsson andWoodford (2003), Adam and Billi (2007), Nakov (2008), Nakata (2013),

Hamilton, et al. (2016), Basu and Bundick (2015), Evans, et al. (2015), and Gust, Johannsen,

López-Salido (2017). One finding of this literature is that more uncertainty about the future

natural rate implies looser monetary policy today or more policy inertia.

The model developed here shares some similarities with the work of Sargent (1999) in which

the model economy can endogenously switch between regimes of high versus low inflation,
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depending on monetary policymakers’ perceptions about the slope of the long-run Phillips

curve in light of recent data. Here, the endogenous regime switching depends on private-

sector agents’perceptions about whether recent data are more likely to have been generated

by the targeted equilibrium or the deflation equilibrium.

2 Model

The framework for the analysis is a standard New Keynesian model, augmented by a zero

lower bound on the short-term nominal interest rate. The log-linear version of the standard

New Keynesian model is taken to represent a set of global equilibrium conditions, with the

only nonlinearity coming from the ZLB.5 Private-sector behavior is governed by the following

equilibrium conditions:

yt = Et yt+1 − α[it − Et πt+1 − rt] + νt, νt ∼ N
(
0, σ2ν

)
, (1)

πt = βEt πt+1 + κyt + ut, ut ∼ N
(
0, σ2u

)
(2)

where equation (1) is the representative household’s consumption Euler equation and equation

(2) is the Phillips curve that is derived from the representative firm’s optimal pricing decision.

The variable yt is the output gap (the log deviation of real output from potential output), πt

is the quarterly inflation rate (log difference of the price level), it is the short-term nominal

interest rate, rt is the exogenous real interest rate, and Et is the rational expectations operator.

Fluctuations in rt can be interpreted as arising from changes in the representative agent’s rate

of time preference or changes in the expected growth rate of potential output.6 The terms νt

and ut represent an aggregate demand shock and a cost-push shock, respectively. None of the

results in the paper are sensitive to the introduction of a discount factor applied to the term

Et yt+1 in equation (1), along the lines of McKay, Nakamura, and Steinsson (2016).

The time series process for the real rate of interest is given by

rt = ρr rt−1 + (1− ρr) r∗t + εt, εt ∼ N
(
0, σ2ε

)
, (3)

r∗t = r∗t−1 + ηt, ηt ∼ N
(
0, σ2η

)
. (4)

5Armenter (2016) adopts a similar approach in computing the optimal monetary policy in the presence of
two steady states. Eggertsson and Sing (2016) show that the log-linear New Keynesian model behaves very
similar to the true nonlinear model in the vicinity of the targeted equilibrium.

6Specifically, we have rt ≡ − log [β exp (ζt)] + γEt∆ȳt+1, where ζt is a shock to the agent’s time discount
factor β, ȳt is the logarithm of real potential output, and γ = α−1 is the coeffi cient of relative risk aversion.
For the derivation, see Hamilton, et al. (2016) or Gust, Johannsen, and Lopez-Salido (2017).
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Equations (3) and (4) summarize a “shifting endpoint”time series process since the long-run

endpoint r∗t can vary over time due to the permanent shock ηt. In any given period, rt can

deviate from r∗t due to the temporary shock εt. The persistence of the “real interest rate gap”

rt − r∗t is governed by the parameter ρr, where |ρr| < 1. Kozicki and Tinsely (2012) employ

this type of time series process to describe U.S. inflation. When ρr = 1, we recover the random

walk plus noise specification employed by Stock and Watson (2007) to describe U.S. inflation.7

Using equation (3) to substitute out rt from equation (1) yields the following alternative

version of the consumption Euler equation:

yt = Et yt+1 − α[it − Et πt+1 − r∗t ] + ut + αεt + αρr
(
rt−1 − r∗t−1 − ηt

)
, (5)

where the last three terms could be consolidated into a single aggregate demand shock. From

this version, we can interpret r∗t as the unobservable “natural rate of interest,” i.e., the real

interest rate that is consistent with full utilization of economic resources and steady inflation

at the central bank’s target rate. This interpretation is consistent with the empirical strategies

of Laubach and Williams (2016), Lubik and Matthes (2015), and Kiley (2015) which view the

natural rate of interest as a longer-term economic concept. In contrast, empirical strategies

that employ micro-founded New Keynesian models typically view the natural (or equilibrium)

rate of interest as a short-term concept, more along the lines of the variable rt in equation

(1).8 The real interest rate gap rt − r∗t captures a concept that has been emphasized by Fed
policymakers in recent speeches, namely, a distinction between estimates of the “short-term

natural of interest” and its longer-term counterpart (Yellen 2015, Dudley 2015, and Fischer

2016). Here I will refer to r∗t as the natural rate of interest.

In the model, the agent’s rational forecast for the real interest rate gap at any horizon

h ≥ 1 is given by

Et
(
rt+h − r∗t+h

)
= (ρr)

h (rt − Etr∗t ) , (6)

where Etr∗t represents the agent’s current estimate of the natural rate computed using the

Kalman filter so as to minimize the mean squared forecast error. When |ρr| < 1 as assumed

here, the real interest rate gap is expected to shrink to zero as the forecast horizon h increases.

7But unlike here, Stock and Watson (2007) allow for stochastic volatility in the permanent and temporary
shocks.

8See, for example, Barsky, Justiniano, and Melosi (2014), Cúrdia, et al. (2015), and Del Negro, et al. (2017).
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In Appendix A, I show that the Kalman filter expression for Etr∗t is

Etr
∗
t = λ

[
rt − ρr rt−1

1− ρr

]
+ (1− λ) Et−1r

∗
t−1 (7)

λ =
− (1− ρr)2 φ+ (1− ρr)

√
(1− ρr)2 φ2 + 4φ

2
, (8)

where λ is the Kalman gain parameter and φ ≡ σ2η/σ2ε. For the quantitative analysis, the values
of ρr, σ

2
η, and σ

2
ε are chosen so that the time path of Etr

∗
t from equation (7) approximates the

path of the U.S. natural rate series estimated by Laubach and Williams (2016, updated) for the

sample period 1988.Q1 to 2017.Q2. Their estimation strategy assumes that the natural rate

exhibits a unit root, consistent with equation (4). Hamilton, et al. (2016) present evidence

that the ex-ante real rate of interest it − Et πt+1 in U.S. data is nonstationary, but they find
that the gap between the ex-ante real rate and their estimate of the world long-run real rate

appears to be stationary. This evidence is also consistent with equations (3) and (4) which

imply that real rate gap rt − r∗t is stationary.
The central bank’s monetary policy rule is given by

i∗t = ρi∗t−1 + (1− ρ) [Etr
∗
t + π∗ + gπ (πt − π∗) + gy (yt − y∗)] , (9)

πt = ω πt + (1− ω) πt−1, (10)

it = max {0, i∗t } , (11)

where i∗t is the desired nominal interest rate that responds to deviations of recent inflation πt

from the central bank’s target rate π∗ and to deviations of the output gap from its targeted

long-run endpoint y∗. Recent inflation πt is an exponentially-weighted moving average of past

quarterly inflation rates so as to approximate the compound average inflation rate over the

past 4 quarters– a typical central bank target variable.9 The parameter ρ governs the degree

of interest rate smoothing as i∗t adjusts partially each period toward the value implied by the

terms in square brackets.

The quantity Etr∗t + π∗ represents the targeted long-run endpoint of i∗t . Including Etr
∗
t in

the policy rule implies that monetary policymakers continually update their estimate of the

unobservable r∗t . Support for this idea can be found in the Federal Open Market Committee’s

Summary of Economic Projections (SEP). Meeting participants provide their views on the

projected paths of macroeconomic variables over the next three calendar years and in the

9Specifically, the value of ω is set to achieve πt ' [Π3
j=0(1 + πt−j)]

0.25 − 1
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longer run. Since the natural rate of interest is a longer-run concept, we can infer the median

SEP projection for r∗t by subtracting the median longer-run projection for inflation from the

median longer-run projection for the nominal federal funds rate. The median SEP projection

for r∗t computed in this way has ratcheted down over time, as documented by Lansing (2016),

and currently stands at about 1%.10

Equation (11) is the ZLB that constrains the nominal policy interest rate it to be non-

negative. In the model simulations, I implement the occasionally binding ZLB by making

the substitution it = 0.5 i∗t + 0.5
√

(i∗t )
2 in the global equilibrium condition (1). Details are

contained in the appendix.

2.1 Long-run endpoints

The Fisher relationship it = rt+Et πt+1 is embedded in the non-stochastic version of equation

(1).11 Consequently, when gπ > 1, the model has two long-run endpoints (steady states)

as shown originally by Benhabib, Schmitt-Grohé, and Uribe (2001a,b). The novelty here is

that the long-run endpoints can shift due to shifts in r∗t . Straightforward computations using

the model equations yield the following long-run endpoints that characterize the “targeted

equilibrium”and the “deflation equilibrium,”respectively.

Table 1. Long-run Endpoints

Targeted equilibrium Deflation equilibrium
πt = π∗ πt = −r∗t
yt = y∗ = π∗ (1− β) /κ yt = −r∗t (1− β) /κ
i∗t = r∗t + π∗ i∗t = (r∗t + π∗) [1− gπ − gy (1− β) /κ]
it = r∗t + π∗ it = 0

In the targeted equilibrium, long-run inflation is at the central bank’s target rate π∗ and

the long-run output gap y∗ is slightly positive for typical calibrations with 0.99 < β < 1. The

long-run desired nominal policy rate i∗t conforms to the Fisher relationship and the ZLB is not

binding such that it = i∗t > 0, provided that r∗t > −π∗. In the model simulations, I impose
bounds on fluctuations in r∗t that are based on the range of natural rate estimates obtained by

Laubach and Williams (2016) for the sample period since 1988. In the deflation equilibrium,

10Gust, Johannsen, and Lopez-Salido (2017) show that a Taylor-type rule that includes a time-varying inter-
cept that moves with perceived changes in the equilibrium real interest rate can achieve results that are similar
to optimal discretionary policy. Carlstrom and Fuerst (2016) compute the optimal response coeffi cient on the
natural rate of interest in a Taylor-type rule.
11Cochrane (2016) and Williamson (2017b) show that Fisherian effects can dominate the short-term comove-

ment between the nominal interest rate and inflation in standard New Keynesian models.
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the long-run inflation rate, the long-run output gap, and the long-run desired nominal interest

rate are all negative when r∗t > 0.12

2.2 Local linear forecast rules

Given the linearity of the model aside from the ZLB, it is straightforward to derive the agent’s

rational decision rules for yt and πt in the vicinity of the long-run endpoints associated with

each of the two equilibria. For the targeted equilibrium, the local decision rules are unique

linear functions of the state variables: rt, Etr∗t , πt−1, i
∗
t−1, νt, and ut. For the deflation equilib-

rium, I solve for the minimum state variable (MSV) solution which abstracts from extraneous

sunspot variables and extra lags of fundamental state variables.13

Given the local linear decision rules, we can construct the agent’s conditional forecasts for

yt+1 and πt+1 in each of the two local equilibria. In the stochastic simulations, I substitute

the local linear forecast rules into the global equilibrium conditions (1) and (2). I allow for an

occasionally binding ZLB by making the substitution it = 0.5 i∗t + 0.5
√

(i∗t )
2 in equation (1).

Together with the monetary policy rule (9), this procedure yields a system of three equations

that can be solved each period to obtain the three realizations yt, πt, and i∗t . Details are

contained in Appendices B and C.

The decision rule coeffi cients applied to the state variable rt − Etr∗t are much larger in
magnitude in the deflation equilibrium than in the targeted equilibrium (see Appendices B

and C). Consequently, the deflation equilibrium exhibits more volatility and undergoes a more

severe recession in response to an adverse shock sequence that causes rt−Etr∗t to be persistently
negative. The higher volatility in the deflation equilibrium is due to the binding ZLB which

prevents the central bank from taking action to mitigate the consequences of the adverse shock

sequence.

The local linear forecast rules for the targeted equilibrium are derived under the assumption

that i∗t > 0 and hence do not take into account the possibility that a shock sequence could

be large enough to cause the ZLB to become binding in the future. The error induced by

this assumption will depend on the frequency and duration of ZLB episodes in the targeted

equilibrium. Based on model simulations, the targeted equilibrium experiences a binding ZLB

in only 1.5% of the periods, with an average duration of 4.1 quarters. Consequently, the

12Evans, Honkopoja, and Mitra (2016) develop a New Keynesian models that imposes a lower bound on the
inflation rate that is more negative than −r∗ (which is assumed to be constant in their model). They show that
this additional constraint gives rise to a third steady state in which the ZLB binds but the Fisher relationship
does not hold.
13For background on MSV solutions, see McCallum (1999).
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agent’s use of forecast rules that assume i∗t > 0 seems quite reasonable.14 The local linear

forecast rules for the deflation equilibrium are derived under the assumption that i∗t ≤ 0 and

hence do not take into account the possibility that a shock sequence could be large enough

to cause the ZLB to become slack in the future. Based on model simulations, the deflation

equilibrium experiences a binding ZLB in 77% of the periods, with an average duration of 30

quarters. The higher volatility of the deflation equilibrium causes the assumption of i∗t ≤ 0 to

be violated in 23% of the periods. Hence, the error induced by the agent’s use of local linear

forecast rules would appear to be more significant in the deflation equilibrium. Nevertheless,

as shown in Section 4, the agent’s forecast errors in the deflation equilibrium are close to white

noise, giving no clear indication that the linear forecast rules are misspecified.15

2.3 Endogenous regime switching

I now consider a more sophisticated agent who contemplates the possibility of an occasionally

binding ZLB that is driven by switching between the two local equilibria, implying that one set

of linear forecast rules might perform better than the other. The agent constructs forecasts

using a form of model averaging– a technique that is often employed to improve forecast

performance in situations where the true data generating process is unknown (Timmerman

2006). The agent in the switching model can be viewed as someone thinking along the lines of

Bullard (2010), i.e., the agent is aware of the two local equilibria implied by the New Keynesian

framework and is concerned about the possibility of getting stuck in a deflation trap. The

forecast rules in the switching model are given by

Êt yt+1 = µtE
targ
t yt+1 + (1− µt)Edeflt yt+1, (12)

Êt πt+1 = µtE
targ
t πt+1 + (1− µt)Edeflt πt+1, (13)

where µt is the value that minimizes the root mean squared forecast error computed over a

moving window of recent data. Specifically, µt is the value that minimizes:

RMSFEt−1 =
Tw∑
j=1

{
1
Tw

[
yt−j − µtE

targ
t−j−1 yt−j − (1− µt)E defl

t−j−1 yt−j
]2

+ 1
Tw

[
πt−j − µtE

targ
t−j−1 πt−j − (1− µt)E defl

t−j−1 πt−j
]2}0.5

, (14)

14Richter and Throckmorton (2016) compare linear model solutions for the targeted equilibrium in which
agents ignore the possibility of future ZLB episodes to nonlinear model solutions that account for this possibility.
15Aruoba, Cuba-Borda, and Schorfheide (2017) solve for piece-wise linear decision rules in both the targeted

equilibrium and the deflation equilibrium to account for the occasionally binding nature of the ZLB constraint.
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which shows that µt is computed using data dated t−1 or earlier. In the simulations, I impose

the restriction 0 ≤ µt ≤ 1. Very similar results are obtained if µt is determined by a discrete

choice framework along the lines of Brock and Hommes (1998).16

Given the representative agent’s conditional forecasts from equations (12) and (13), the

realizations of the macroeconomic variables are determined by the following global equilibrium

conditions:

yt = Êtyt+1 − α
[
it − Êtπt+1 − rt

]
+ νt, (15)

πt = β Êtπt+1 + κyt + ut, (16)

i∗t = ρi∗t−1 + (1− ρ) [Etr
∗
t + π∗ + gπ (πt − π∗) + gy (yt − y∗)] , (17)

it = 0.5 i∗t + 0.5

√
(i∗t )

2, (18)

where πt = ω πt + (1− ω) πt−1.

As a check, I also compute the time-varying weight µt using a form of Bayesian model

averaging. In this case, µt is the average conditional probability that a given sequence of

quarterly inflation observations are drawn from one of two populations with known densities.17

In this model, the Bayes law computation takes the form

µt =
µt−1

1
Tw

∑Tw
j=1 f targ (πt−j)

µt−1
1
Tw

∑Tw
j=1 f targ (πt−j) +

(
1− µt−1

)
1
Tw

∑Tw
j=1 f defl(πt−j)

, (19)

where f targ (πt−j) and f defl(πt−j) are the probability density functions for the quarterly infla-

tion distributions under the targeted equilibrium and the deflation equilibrium, respectively.

These distributions are assumed known to the agent.18 For the quantitative analysis, I run

a pre-simulation to compute the moments of the quarterly inflation distributions in each of

the two local rational expectations equilibria. I impose bounds on the agent’s prior such that

0.01 ≤ µt−1 ≤ 0.99 during the simulation so that the agent never rules out the possibility of

switching from one equilibrium to the other.

16 In this case, µt = {1 + exp[ψ(RMSFEtarg
t−1 −RMSFEdefl

t−1)]}−1, where RMSFEtarg
t−1 and RMSFEdefl

t−1 are
the fitness measures associated with the two sets of local linear forecast rules and ψ is the “intensity of choice”
parameter. As ψ becomes larger, the resulting sequence for µt takes on values approaching either 1 or 0, with
intermediate values less likely.
17See Anderson (1958), Chapter 6.
18Huh and Lansing (2000) employ a similar setup in a policy credibility model where the agent uses observed

inflation rates to infer whether the central bank’s inflation target has truly shifted to a lower mean value.
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3 Parameter values

Table 2 shows the baseline parameter values used in the model simulations. The top group

of parameters appear in the private-sector equilibrium conditions (1) and (2). The middle

group of parameters appear in the monetary policy rule (9). The bottom group of parameters

pertain to the exogenous real interest rate process and the forecast evaluation window for the

switching model.

Table 2. Baseline Parameter Values

Parameter Value Description/Target
α 0.25 Interest rate coeffi cient in Euler equation.
β 0.995 Discount factor in Phillips curve.
κ 0.025 Output gap coeffi cient in Phillips curve.
σν 0.01 Std. dev. of aggregate demand shock.
σu 0.02 Std. dev. of cost push shock.
π∗ 0.02 Central bank inflation target.
ω 0.459 πt ' 4-quarter inflation rate.
gπ 1.5 Policy rule response to inflation.
gy 1.0 Policy rule response to output gap.
ρ 0.80 Interest rate smoothing parameter.
ρr 0.8564 Persistence parameter for rt.
σε 0.0099 Std. dev. of temporary shock to rt.
ση 0.0019 Std. dev. of permanent shock to rt.
λ 0.0257 Optimal Kalman gain for Etr∗t .
Tw 8 Window length in qtrs. for forecast evaluation.

The value α = 0.25 for the interest rate sensitivity coeffi cient in equation (1) implies a

coeffi cient of relative risk aversion of 1/α = 4. This value is consistent with the small empirical

sensitivity of consumption to changes in the interest rate, as show by Campbell and Mankiw

(1989). The values β = 0.995 and κ = 0.025 are identical to those employed by Evans et

al. (2015) and are typical of values employed in the literature. Given the other parameter

values, the standard deviations of the aggregate demand shock in equation (1) and the cost

push shock in equation (2) are chosen so that the standard deviations of the output gap and

the 4-quarter inflation rate in the switching model are reasonably close to those observed in

U.S. data for the period 1988.Q1 to 2017.Q2.

The inflation target of π∗ = 0.02 is based on the Federal Open Market Committee’s

(FOMC) stated goal of 2% inflation, as measured by the 4-quarter change in the personal

consumption expenditures (PCE) price index. I choose ω = 0.459 to minimize the squared

deviation between the 4-quarter PCE inflation rate and the exponentially-weighted moving

average of quarterly PCE inflation computed using equation (10) for the period 1961.Q1 to
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2017.Q2. When ω = 0.459, the cumulative weight on the first four terms πt through πt−3

in the moving average is 0.915. The monetary policy rule coeffi cients gπ, gy and ρ are based

on the Taylor (1999) rule, augmented to allow for a realistic amount of inertia in the desired

nominal policy rate.

The parameter values that govern the evolution of rt and r∗t in equations (3) and (4) are

calibrated so that the Kalman filter estimate Etr∗t computed from equation (7) approximates

the one-sided Laubach-Williams estimate of the natural rate for the period 1988.Q1 to 2017.Q2.

The time series for rt in the data is constructed as the nominal federal funds rate minus

expected quarterly inflation computed from a rolling 40-quarter, 4-lag vector autoregression

that includes the nominal funds rate, quarterly PCE inflation (annualized), and the CBO

output gap. Equation (3) implies Etrt+1 = ρr rt + (1− ρr)Etr∗t . I choose ρr = 0.8564 to

minimize the squared forecast error [rt+1 − ρr rt − (1− ρr) Etr∗t ]2 over the period 1988.Q1
to 2016.Q4, where Etr∗t is given by the Laubach-Williams estimate. Given the value of ρr,

I choose λ = 0.0257 to minimize the squared deviations between the model-implied estimate

Etr
∗
t from equation (7) and the Laubach-Williams estimate. Given these values for ρr and λ, I

solve for the value φ ≡ σ2η/σ2ε = 0.033 to satisfy the optimal Kalman gain formula (8). Given

φ, I solve for the value of σε that allows the model-predicted standard deviation of ∆rt to

match the corresponding value in the data for the period 1988.Q1 to 2017.Q2. Finally, given

φ and σε, we have ση = σε
√
φ.

The window length in quarters for computing the agent’s forecast fitness measure from

equation (14) is set to Tw = 8. Each period, the agent chooses the weight µt on the targeted

forecast rules so as to minimize the root mean squared forecast errors over the past 2 years. In

simulations, this choice produces a ZLB binding frequency in the vicinity of 20%– reasonably

close to the frequency observed in U.S. data since 1988. I also examine the sensitivity of the

results to higher values of Tw. Higher values of Tw serve to reduce the ZLB binding frequency

by reducing the likelihood of switches to the deflation equilibrium.

Figure 3 plots the one-sided Laubach-Williams estimate of the natural rate through 2017.Q2.

The series (dashed red line) shows a downward-sloping trend. This pattern is consistent with

the declines in global real interest rates observed over the same period (International Monetary

Fund 2014, Rachel and Smith 2015). The time series process for the natural rate in the model

(dotted green line) provides a good approximation of the Laubach-Williams series from 1988

onwards. Table 3 compares the properties of the U.S. real interest rate to those implied by

the model.
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Table 3. Properties of Real Interest Rate: Data versus Model

Statistic
U.S. Data

1988.Q1 to 2017.Q2 Model
Std. Dev.∆rt 0.0103 0.0103
Std. Dev. ∆2rt 0.0151 0.0179
Std. Dev. rt − Etr∗t 0.0173 0.0160
Corr. Lag 1 ∆rt −0.063 −0.070
Corr. Lag 2 ∆rt −0.211 −0.060

Notes: ∆rt ≡ rt − rt−1. ∆2rt ≡ ∆rt −∆rt−1. The real interest rate rt in U.S. data is
defined as the nominal federal funds rate minus expected quarterly inflation computed from a

rolling 40-quarter, 4-lag vector autoregression that includes the nominal funds rate, quarterly PCE

inflation, and the CBO output gap. The Kalman filter estimate Etr
∗
t in U.S. data corresponds

to the Laubach-Williams one-sided estimate. Model statistics are computed analytically from

the laws of motion (3), (4), and (7).

For the baseline simulation, I impose the bounds −0.0042 ≤ r∗t ≤ 0.037, which corresponds

to the range of values for the Laubach-Williams one-sided estimate since 1988. I also consider

an alternative simulation that imposes the wider bounds −0.015 ≤ r∗t ≤ 0.037, where the lower

bound of −1.5% is the long-run value of the natural rate of interest computed by Eggertsson,

Mehrotra, and Robbins (2017) using a life cycle model calibrated to the U.S. economy in 2015.

In a representative agent model, the long-run natural rate influences the mean real risk free

rate of return. The mean risk free rate can be negative if the product of the coeffi cient of

relative risk aversion and the variance of consumption growth are suffi ciently high, implying

a very strong precautionary saving motive.19

4 Quantitative analysis

4.1 U.S. data around the ZLB episode

The top left panel of Figure 4 shows that the real federal funds rate has remained mostly

below the Laubach-Williams estimate of the natural rate of interest since early 2009, implying

persistently negative values for the state variable rt−Etr∗t . The bottom left panel shows that

the nominal federal funds rate was approximately zero from 2008.Q4 through 2015.Q4. In

the same panel, I plot the nominal federal funds predicted by a Taylor-type rule of the form

(9) using the parameter values in Table 2 with Etr∗t given by Laubach-Williams one-sided

19 In a representative agent model, log(Rft+1) = − log(EtMt+1), where R
f
t+1 is the gross real risk free rate

and Mt+1 is the agent’s stochastic discount factor. Assuming iid consumption growth and power utility, the
mean risk free rate is given by E[log(Rft+1)] = − log (β) + γx − γ2σ2x/2, where β is the agent’s time discount
factor, γ is the coeffi cient of relative risk aversion, x is the mean growth rate of real per capita consumption
and σ2x is the corresponding variance. Assuming β ' 1 such that log (β) ' 0, the condition γσ2x > 2x implies
E[log(Rft+1)] < 0. For details of the derivation, see Lansing and LeRoy (2014).
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estimate, πt given by the 4-quarter PCE inflation rate, and yt given by the CBO output

gap. The desired nominal funds rate predicted by the Taylor-type rule is negative starting in

2009.Q1 and remains negative through 2016.Q4.20

The top right panel of Figure 4 shows that the 4-quarter PCE inflation rate was briefly

negative in 2009 and has remained below the Fed’s 2% inflation target since 2012.Q2. The

bottom right panel shows that the Great Recession was very severe, pushing the CBO output

gap down to −6.3% at the business cycle trough in 2009.Q2. The output gap remains negative

at −0.2% in 2017.Q2, eight years after the Great Recession ended.

The various endpoints plotted in Figure 4 are computed using the expressions in Table

1, with r∗t given by the Laubach-Williams one-sided estimate. Although not shown, the wide

confidence intervals surrounding empirical estimates of r∗t would not rule out values for the

true natural rate that lie deeper into negative territory.21 As r∗t approaches zero or becomes

negative, the “deflation” equilibrium is characterized by zero or low inflation, allowing this

equilibrium to provide a better fit of recent U.S. inflation data.

Figure 5 plots various measures of expected inflation in U.S. data. The top right panel

shows 5-year and 10-year breakeven inflation rates derived from yields on Treasury Inflation

Protected Securities (TIPS). Breakeven inflation dropped sharply in 2008.Q4, coinciding with

the start of the ZLB episode. In the top right panel, we see a similar pattern for 1-year and

5-year expected inflation rates derived from zero coupon inflation swap contracts that are

traded in the over-the-counter market (Haubrich, Pennacchi, and Ritchken 2012). All of the

market-based measures of expected inflation remain below the Fed’s 2% inflation target at the

end of the data sample in 2017.Q2.

The lower left panel in Figure 5 shows the median 1-year and 10-year expected inflation

rates from the Survey of Professional Forecasters (SPF). The 1-year survey measure dropped

sharply in 2008.Q4 and has recovered slowly to a level that remains below its pre-recession

range. The 10-year survey measure does not exhibit a sharp drop in 2008.Q4, but has since

trended downward to a level that is below its pre-recession range. The bottom right panel

plots the Federal Reserve Bank of St. Louis’Price Pressures Measure (PPM). A set of common

factors extracted from 104 separate data series are used to estimate the probability that the 4-

quarter PCE inflation rate over the next year will exceed 2.5% (Jackson, Kliesen, and Owyang

20Augmenting the Taylor-type rule to allow for a response to other variables (such as 4-quarter real GDP
growth and an index of macroeconomic uncertainty) can produce a path for the desired nominal funds rate
that turns positive somewhat earlier. See Lansing (2017).
21According to Kiley (2015), “the co-movement of output, inflation, unemployment, and real interest rates is

too weak to yield precise estimates of r*”(p. 2).
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2015). The PPM dropped sharply in 2008.Q4 and is currently hovering around a probability

of 10%.22

Although not plotted in Figure 5, the Federal Reserve Bank of Atlanta’s Business Infla-

tion Expectation (BIE) survey shows that while most respondents understand that the Fed’s

inflation target is 2%, about two-fifths of respondents currently believe that the Fed is more

likely to accept an inflation rate below target than to accept an inflation rate above target

(Altig, Parker, and Meyer, 2017).

4.2 Switching model simulations

Figure 6 plots some key variables from simulations of the switching model. When the ex-

ogenous real interest rate gap rt − Etr∗t is negative for a sustained interval (top panel), the
resulting downward pressure on yt and πt serves to reduce the recent RMSFE of the deflation

forecast rules and increase the recent RMSFE of the targeted forecast rules (middle panel).

Around period 1725, the shift in relative forecast performance induces the agent to place a

substantially lower weight on the targeted equilibrium forecast rules, causing the deflation

equilibrium to become temporarily self-fulfilling (bottom panel). Then around period 1800,

the real rate gap once again becomes positive, causing the RMSFE of the deflation forecast

rules to exceed the RMSFE of the targeted forecast rules. The agent increases the weight on

the targeted forecast rules, causing the targeted equilibrium to be restored.

Qualitatively similar results are obtained if the agent employs Bayes law (19) to compute

the likelihood that a string of recent πt observations is drawn from one equilibrium inflation

distribution or the other. Interestingly, it is the agent’s subjective belief that the deflation

equilibrium is possible that allows it to become a reality. If the agent could somehow commit

to employing the forecast rule weight µt = 1 for all t, then the economy would always remain

in the targeted equilibrium.

Figure 7 plots the distributions of macro variables in each of the three model versions. The

macro variables in the deflation equilibrium have distributions with lower means but higher

variances than those in the targeted equilibrium. But the significant overlap in the various

distributions creates a dilemma for an agent who seeks to determine the likelihood that a

string of recent data observations are generated by one equilibrium or the other. Variables in

the switching model have means that are somewhat lower and variances that are somewhat

22The TIPS breakeven inflation rates and the PPM are from the the Federal Reserve Bank of St. Louis’
FRED data base. Expected inflation rates from swap contracts are from the Federal Reserve Bank of Cleveland.
Expected inflation rates from the SPF are from the Federal Reserve Bank of Philadelphia.
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higher than those in the targeted equilibrium. Consequently, the central bank in the switching

model undershoots its inflation target and the volatilities of the output gap and inflation are

both higher relative to the targeted equilibrium.

Hills, Nakata, and Schmidt (2016) show that the risk of encountering the ZLB in the future

can shift agents’expectations such that the central bank undershoots its inflation target in

the present. Something similar is at work here. When the agent increases the weight on the

deflation forecast rules, this can cause realized inflation to undershoot the central bank’s target

for a sustained interval, even when the ZLB is not binding. The switching model allows for

low-frequency swings in the level of inflation that are driven solely by expectational feedback,

not by changes in the monetary policy rule.23

As mentioned above, the U.S. output gap reached −6.3% at the trough of the Great

Recession. This was the most severe economic contraction since 1947 as measured by the peak-

to-trough decline in real GDP. The bottom right panel of Figure 7 shows that the likelihood of

such an event in the targeted equilibrium is essentially zero. In contrast, a Great Recession-

type episode is plausible, albeit rare, in the switching model.

Table 4 provides a quantitative comparison between the U.S. data and the results of model

simulations. Overall, the statistics generated by the switching model compare favorably to

those in U.S. data since 1988. For example, the switching model predicts a ZLB binding

frequency of 18.4% versus 24.6% in the data. However, the mean 4-quarter inflation rate in

the switching model is only 0.88% versus 2.16% in the data. This particular model prediction

is more in line with data from Japan than the United States. But going forward, a continued

undershooting of the Fed’s 2% inflation target (as has been the case since mid-2012) would

push down the mean 4-quarter inflation rate in the data, bringing it closer to the switching

model prediction.

23Lansing (2009) achieves a similar result in a model where the representative agent’s forecast rule for quar-
terly inflation is based on a perceived law of motion that follows a Stock and Watson (2007) type time series
process.
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Table 4. Unconditional Moments: Data versus Model

U.S. Data Model Simulations
Statistic 1988.Q1-2017.Q2 Targeted Deflation Switching

Mean yt −1.44% 0.40% −0.43% 0.48%
Std. Dev. 1.75% 1.53% 3.58% 2.20%
Corr. Lag 1 0.95 0.47 0.78 0.67

Mean π4, t 2.16% 1.98% −1.69% 0.88%
Std. Dev. 1.09% 0.98% 1.66% 1.58%
Corr. Lag 1 0.89 0.74 0.91 0.91

Mean i∗t 2.83% 3.67% −2.68% 2.09%
Std. Dev. 3.42% 1.73% 3.41% 2.86%
Corr. Lag 1 0.99 0.98 0.98 0.99

% periods it = 0 24.6% 1.53% 77.3% 18.4%
Mean ZLB duration 29 qtrs. 4.1 qtrs. 30.0 qtrs. 11.4 qtrs.
Max. ZLB duration 29 qtrs. 33 qtrs. 295 qtrs. 139 qtrs.
Notes: The ZLB episode in U.S. data is from 2008.Q4 through 2015.Q4. Model results are computed from

a 300,000 period simulation. π4, t ≡ [Π3j=0(1 + πt−j)]0.25 − 1.

Using data from all advanced economies since 1950, Dordal-i-Carrera et al. (2016) estimate

an average ZLB binding frequency of 7.5% and an average duration for ZLB episodes of 14

quarters. Excluding the high inflation period from 1968 to 1984 serves to raise the average

ZLB binding frequency and the average ZLB duration to 10% and 18 quarters, respectively.

For the period of consistent U.S. monetary policy since 1988, the single ZLB episode lasted

29 quarters.

Figure 8 plots the distribution of ZLB durations in each model version. Unlike the tar-

geted equilibrium, the switching model can produce infrequent and long-lived ZLB episodes

in response to small, normally distributed shocks. The average ZLB duration in the switching

model is 11.4 quarters, with a maximum duration of 139 quarters (Table 4). From Figure 8, we

see that a 29 quarter ZLB episode is an extremely rare event in the targeted equilibrium but

can occur with about a 5% frequency in the switching model. To account for infrequent and

long-lived ZLB episodes in the targeted equilibrium, Dordal-i-Carreras, et al. (2016) develop

a model with large, infrequent, and long-lived shocks.24

When ω = 0.459, the exponentially-weighted moving average of quarterly inflation πt com-

puted from equation (11) provides a very good approximation of the 4-quarter inflation rate.

Although not shown in Table 4, the mean, standard deviation, and first-order autocorrelation

of πt in the switching model are 0.89%, 1.63%, and 0.81, respectively. These values are close

to the corresponding statistics for π4, t of 0.88%, 1.58%, and 0.91.

24 In a New Keynesian model with physical capital, Dennis (2016) shows that the introduction of capital
adjustment costs can help to generate infrequent and long-lived ZLB episodes in the targeted equilibrium.
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The mean weight on the targeted forecast rules in the switching model is 0.68 with a

standard deviation of 0.30. Larger values for the window length Tw that is used to compute

the forecast fitness measure from equation (14) serve to reduce the frequency of regime switches

and thereby raise the mean 4-quarter inflation rate. For example, when Tw is increased to 16

quarters, the mean value of µt is higher at 0.78 and the standard deviation is lower at 0.23.

With Tw = 16, the ZLB binding frequency in the switching model drops to 10.1% and the

average ZLB duration is lower at 8.2 quarters. The mean value of π4, t increases to 1.24% from

0.88%.

Figure 9 plots simulations from each of the three model versions: targeted, deflation,

and switching. All three versions employ the same sequence of stochastic shocks. When

the weight on the targeted forecast rules starts dropping towards zero around period 1725,

the switching model generates a negative desired nominal policy rate, a binding ZLB, brief

deflation followed by below-target inflation, and a highly negative output gap, reminiscent

of the U.S. Great Recession and its aftermath (Figure 4). The severity of the recession in

the switching model is due to the larger response coeffi cient on the state variable rt − Etr∗t
in the deflation equilibrium decision rule for yt. Specifically, the response coeffi cient in the

deflation equilibrium is 2.33 versus 0.82 in the targeted equilibrium (Appendices B and C).

The deflation equilibrium response coeffi cient receives more weight as µt → 0, causing the

effects of an adverse real rate shock to be transmitted more forcefully to the output gap.

Evans, Honkapohja, and Mitra (2016) argue that the deflation equilibrium does not provide

a convincing explanation of the sluggish output recovery following the Great Recession because

the steady state level of real activity in the deflation equilibrium is not much below the steady

state level of real activity in the targeted equilibrium. However, their analysis does not take

into account that the real rate gap rt − Etr∗t in U.S. data has remained significantly negative
since the recession ended, as can be seen in the top left panel of Figure 4. A negative real

rate gap puts stronger downward pressure on yt in the deflation equilibrium, thus helping to

explain the sluggish output recovery in U.S. data.

Table 5 summarizes the properties of the agent’s forecast errors in each of the three model

versions. The forecast error is given by errxt+1 = xt+1−Ft xt+1 for xt+1 ∈ {yt+1, πt+1} , where
Ft xt+1 is the value predicted by the local linear forecast rule or, in the case of the switching

model, the weighted-average forecast rule, (12) or (13). As noted earlier in Section 2.3, the

agent’s use of linear forecast rules in a nonlinear environment that is subject to an occasionally

binding ZLB would be expected to introduce errors, particularly in the more-volatile deflation
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equilibrium. Nevertheless, Table 5 shows that the agent’s forecast errors in all three model

versions are close to white noise, giving no clear indication to the agent that the forecast rules

are misspecified.

Table 5. Properties of Forecast Errors

Model Simulations
Statistic Targeted Deflation Switching

Corr(erryt+1, err
y
t ) 0.001 −0.008 0.021

Corr(errπt+1, err
π
t ) 0.003 0.002 0.059

E
(
erryt+1

)
−0.001% −0.099% 0.001%

E
(
errπt+1

)
−0.004% −0.006% 0.004%√

E[(erryt+1)
2] 1.211% 2.126% 1.496%√

E[
(
errπt+1

)2
] 1.972% 2.012% 1.995%

Notes: Model results are computed from a 300,000 period simulation.

Recall that the long-run endpoint of πt in the deflation equilibrium is −r∗t . Allowing more
negative values of r∗t in the simulation will therefore serve to increase the mean inflation rate

in both the deflation equilibrium and the switching model. In Figure 6, for example, the real

rate gap rt − Etr∗t becomes positive around period 1800 because Etr∗t becomes negative. At
the same time, Figure 9 shows that the 4-quarter inflation rate in the deflation equilibrium

becomes positive. The wide confidence intervals around empirical estimates of the U.S. natural

rate would not rule out true values that are more negative. To explore this idea further,

the simulations are repeated while imposing the wider bounds −0.015 ≤ r∗t ≤ 0.037, where

the lower bound of −1.5% is the long-run value of the natural rate of interest computed by

Eggertsson, Mehrotra, and Robbins (2017) using a life cycle model calibrated to the U.S.

economy in 2015.

Table 6 compares the results of the original switching model simulation to the alternative

simulation with −0.015 ≤ r∗t ≤ 0.037. The mean 4-quarter inflation rate in the alternative

simulation increases to 1.04% from 0.88% in the original simulation. Moreover, the ZLB

binding frequency increases to 21.6%, which is closer to the U.S. data value of 24.6% shown

in Table 4.
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Table 6. Effect of Natural Rate Range in Switching Model

Statistic −0.0042 ≤ r∗t ≤ 0.037 −0.015 ≤ r∗t ≤ 0.037

Mean yt 0.48% 0.43%
Std. Dev. 2.20% 2.24%
Corr. Lag 1 0.67 0.67

Mean π4, t 0.88% 1.04%
Std. Dev. 1.58% 1.52%
Corr. Lag 1 0.91 0.90

Mean i∗t 2.09% 1.75%
Std. Dev. 2.86% 2.84%
Corr. Lag 1 0.99 0.98

% periods it = 0 18.4% 21.6%
Mean ZLB duration 11.4 qtrs. 11.2 qtrs.
Max. ZLB duration 139 qtrs. 140 qtrs.
Notes: Model results are computed from a 300,000 period simulation π4, t ≡ [Π3j=0(1 + πt−j)]0.25 − 1.

4.3 Replicating U.S. data with the switching model

Given the U.S. data counterparts for the model variables it, i∗t , rt, Etr
∗
t , yt, πt, and πt ' π4,t

(Figure 4), we can use the calibrated switching model to solve for the implied time series of

the two stochastic shocks νt and ut using equations (15) and (16). For this computation, the

subjective forecasts Êtyt+1 and Êtπt+1 are constructed according to equations (12) and (13)

with U.S. data inserted for the state variables that appear in the two sets of linear forecast

rules associated with the two local equilibria. The variable it is the nominal federal funds

rate, i∗t is the desired nominal funds rate computed using the policy rule (9), rt − Etr
∗
t is

the difference between the real federal funds rate and the Laubach-Williams estimate of the

natural rate of interest, yt is the CBO output gap, and πt is quarterly PCE inflation. The

value of the forecast weight µt is computed each period so as to minimize the RMSFE from

equation (14), where Tw = 8 quarters. The results of the data replication exercise are plotted

in Figure 10 for the period 1988.Q1 to 2017.Q2. This figure can be compared to the model

simulation results presented earlier in Figure 6.

The top left panel shows the model-implied time series for the shocks νt and ut. Both

shocks become strongly negative at the start of the ZLB episode in 2008.Q4. These adverse

shock sequences allow the model to exactly replicate the sharp drops in the CBO output gap

and quarterly PCE inflation shown earlier in Figure 4. The standard deviations of νt and ut

implied by the data replication exercise are 0.023 and 0.016, respectively.

The top right panel of Figure 10 compares the RMSFE of the deflation forecast rules

to the RMSFE of the targeted forecast rules. The performance gap between the two sets
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of forecast rules starts to narrow considerably after 2008.Q4. Indeed, the deflation forecast

rules start outperforming the targeted forecast rules in 2010.Q3. As a result, the weight on

the targeted equilibrium forecast rules starts to decline, eventually reaching a minimum value

of 0.16 in 2011.Q3 (bottom right panel). Recall that the average value of µt in the switching

model simulations was 0.68 with a standard deviation of 0.30. After 2011.Q3, the weight on

the targeted equilibrium forecast rules starts to increase as U.S. economy recovers from the

Great Recession. But even towards the end of the data sample, the value of µt remains well

below 1.0, helping the switching model to account for the persistent undershooting of the Fed’s

2% inflation target since mid-2012. In contrast, the targeted equilibrium would require a long

sequence of negative cost push shocks to account for this feature of the data.

The bottom left panel of Figure 10 compares the 1-year expected inflation rate from U.S.

inflation swaps (shown earlier in Figure 5) to the path of Êt πt+1 from the switching model.

The correlation coeffi cient between the two series is 0.6. While the model-implied drop in

expected inflation is somewhat more pronounced and more persistent than in the data, both

series remain below the Fed’s 2% inflation target at the end of the data sample in 2017.Q2.

4.4 Effect of raising the inflation target

In a press conference held on June 14, 2017, Fed Chair Janet Yellen stated that determin-

ing the appropriate level of the inflation target “is one of the most important questions facing

monetary policy around the world in the future.”Numerous authors make the case for a higher

inflation target using frameworks that ignore the deflation equilibrium.25 This methodology

may understate the benefits of a higher inflation target because the analysis does not take

into account the possibility that a higher target could help prevent switching to the volatile

deflation equilibrium where recessions are more severe. Aruoba and Schorfheide (2016) con-

sider the welfare implications of a 4% inflation target in a framework that does consider the

possibility of switching to the deflation equilibrium via an exogenous sunspot shock. They

conclude (p. 395) that “the case for a higher inflation target is not particularly strong.” It’s

worth noting, however, that the probability of switching to the deflation equilibrium in the

Aruoba-Schorfheide model is invariant to changes in the inflation target. In contrast, the

framework developed here has the potential to reduce the probability of switching to the de-

flation equilibrium. This potential benefit should be considered as part of any cost-benefit

analysis of a higher inflation target.

25See, for example, Blanchard, Dell’Ariccia, and Mauro (2010), Ball and Mazumder (2011), and Ball (2013).
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Table 7 shows the effects of raising the central bank’s inflation target. As π∗ increases, the

ZLB binding frequency declines as does the mean duration of ZLB episodes. Higher values of

π∗ serve to reduce the volatility of yt because the volatile deflation equilibrium is now avoided

more often. But at the same time, higher values of π∗ serve to increase the volatility of π4, t.

This is because higher values of π∗ widen the spread between the two inflation distributions

implied by the the two local equilibria. This causes the mean inflation rate to shift by a larger

amount when a regime switch inevitably does occur.

From Table 7 we see that an increase in π∗ can reduce, but not eliminate, the endogenous

switches to the deflation equilibrium. Even with an inflation target of 4%, the ZLB binding

frequency remains relatively high at 9.9%, the average duration of a ZLB episode is 11.2

quarters, and the maximum duration of a ZLB episode is 132 quarters, or 33 years. Once the

possibility of switching to the deflation equilibrium is taken into account, raising the inflation

target is a less effective solution for avoiding ZLB episodes.

Table 7. Effect of Raising the Inflation Target in Switching Model

Statistic π∗ = 0.02 π∗ = 0.03 π∗ = 0.035 π∗ = 0.04 π∗ = 0.05

% periods it = 0 18.4% 13.9% 11.8% 9.9% 6.6%
Mean ZLB duration 11.4 qtrs. 11.5 qtrs. 11.4 qtrs. 11.2 qtrs. 10.9 qtrs.
Max. ZLB duration 139 qtrs. 139 qtrs. 132 qtrs. 132 qtrs. 134 qtrs.
Std. Dev. yt 2.20% 2.13% 2.10% 2.06% 1.99%
Std. Dev. π4, t 1.58% 1.70% 1.75% 1.80% 1.86%
Std. Dev. i∗t 2.86% 2.98% 3.01% 3.04% 3.02%

Loss value, θ = 1 2.93% 2.78% 2.79% 2.87% 3.21%
Loss value, θ = 0.25 2.23% 2.04% 2.06% 2.16% 2.57%

Note: Model results computed from a 300,000 period simulation. π4, t ≡ [Π3j=0(1 + πt−j)]0.25 − 1.

Coibion, Gorodnichenko, and Wieland (2012) calibrate their model to deliver a ZLB bind-

ing frequency equal to that observed in U.S. data going back to the year 1950. From the start

of 1950 to 2017.Q2, the ZLB was binding in 29 out of 270 quarters, or 10.7% of the time.

The average CPI inflation rate in U.S. data since 1950 is around 4%. Table 7 shows that

the switching model with π∗ = 0.04 delivers a ZLB binding frequency of 9.9%– close to the

U.S. value of 10.7% going back to 1950. Taking into account the micro-founded welfare costs

of positive and variable inflation, Coibion, Gorodnichenko, and Wieland (2012) compute an

optimal inflation rate for their model which is relatively low, less than 2% per year. Their

analysis is extended by Dordal-i-Carrera et al. (2016), who modify the shock process in the

model to match the now-higher ZLB binding frequency implied by additional years of data
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for the U.S. and other advanced economies. The optimal inflation rate for the modified model

lies in the range of 2.5% to 4%.

Kiley and Roberts (2017) perform stochastic simulations using the DSGE model of Lindé,

Smets, and Wouters (2016) which is estimated over the period 1965.Q1 to 2014.Q2. They

consider constant values of the natural rate of interest as low as 1% and draws shocks from

the estimated distributions of the model. When monetary policy follows a simple Taylor

(1999) rule with no inertia, they find that the ZLB binding frequency can be as high as 32.6%

with an mean ZLB duration of 12 quarters (p. 22). The very high ZLB binding frequency

obtains even though the model solution considers only the targeted equilibrium. In contrast,

the simulations here deliver a baseline ZLB binding frequency in the switching model of 18.4%,

despite allowing for a natural rate of interest as low as −0.42% and further allowing for the

possibility of switches to the deflation equilibrium. The much higher ZLB binding frequency

obtained by Kiley and Roberts (2017) appears to be partly due to the shock distributions

which are based on the more-volatile U.S. data sample going back to 1965. Here, in contrast,

the shock distributions are based the more-recent sample period of consistent monetary policy

going back to 1988.

In addition to their use of a more-volatile shock distribution, Kiley and Roberts (2017)

employ a Taylor-type rule with no interest rate smoothing. This feature of their model would

also appear to contribute to a higher ZLB binding frequency. Table 8 shows the effect of the

interest rate smoothing parameter ρ in the switching model. The baseline case with ρ = 0.8 is

compared to the no smoothing case with ρ = 0. For all values of π∗, setting ρ = 0 results in a

higher ZLB binding frequency, but the episodes exhibit a shorter duration on average. From

a ZLB perspective, there appears to be no clear advantage to reducing the degree of interest

rate smoothing in the monetary policy rule.

Table 8. Effect of Interest Rate Smoothing in Switching Model

Statistic π∗ = 0.02 π∗ = 0.03 π∗ = 0.04 π∗ = 0.05

ρ = 0.8
% periods it = 0 18.4% 13.9% 9.9% 6.6%
Mean ZLB duration 11.4 qtrs. 11.5 qtrs. 11.2 qtrs. 10.9 qtrs.
Max. ZLB duration 139 qtrs. 139 qtrs. 132 qtrs. 134 qtrs.
ρ = 0
% periods it = 0 25.7% 21.6% 17.6% 13.7%
Mean ZLB duration 3.9 qtrs. 4.0 qtrs. 4.0 qtrs. 4.0 qtrs.
Max. ZLB duration 102 qtrs. 108 qtrs. 113 qtrs. 114 qtrs.
Note: Model results computed from a 300,000 period simulation.

Following Kiley and Roberts (2017), I use a simple loss function approach to quantify the
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various trade-offs that are involved in raising the inflation target. The trade-offs here include:

(1) reducing the likelihood of endogenous switches to the volatile deflation equilibrium and

thereby lowering the ZLB binding frequency, (2) inducing shifts in the volatilities of inflation

and the output gap, and (3) introducing economic distortions that come from a higher average

inflation. The loss function takes the form

Loss = E
{

[π4, t − 0.02]2 + θ [yt − 0.02 (1− β) /κ]2
}
, (20)

where 0.02 and 0.02 (1− β) /κ are the long-run endpoints in the targeted equilibrium when

π∗ = 0.02, as shown in Table 1. The presumption is that the central bank in the baseline

calibration with π∗ = 0.02 has chosen to target the “optimal”levels of π4, t and yt. Hence, any

shift away from the original target values when adopting π∗ > 0.02 would introduce economic

distortions that are taken into account by the loss function. Also following Kiley and Roberts

(2017), I consider two values for the weight θ on the second term that captures the loss

from output gap deviations. The bottom rows of Table 7 show that the simple loss function

approach would favor a modest increase in the central bank’s inflation target. Specifically, the

loss function is minimized at π∗ = 0.03 when θ = 1 or θ = 0.25.

4.5 Adaptive learning in a simplified model

Up to this point, I have assumed that the representative agent has full knowledge of the

forecast rules associated with each of the two local rational expectations equilibria. While the

full-knowledge assumption is standard in models with a unique equilibrium, the computational

burden on the agent is considerably higher in the present context. To relax the full-knowledge

assumption, I introduce an adaptive learning algorithm in a simplified version of the model.

Starting from the original model, the simplified model imposes ρ = 0, ω = 1, and ση = 0. These

settings eliminate i∗t−1 and πt−1 as state variables and cause the natural rate of interest r
∗ to

be constant. I set r∗ = 0.0184, corresponding to the average value of the Laubach-Williams

one-sided estimate since 1988. Other parameter values are identical to those in the original

model. The theoretical decision rules for each of the two local rational expectations equilibria

are shown in Appendix D.

The learning agent employs decision rules that are estimated in real-time using model-

generated data. The resulting dynamics are self-referential because the agent’s current decision

rules influence the data generated by the model and thereby influence the estimated decision

rules in subsequent periods. An equilibrium is said to be “learnable”if the estimated decision
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rules converge to the theoretical decision rules implied by the rational expectations solution.26

I consider two versions of the learning algorithm. In the first version, the agent estimates

a set of correctly specified decision rules that take the form:

yt = c 0,t + c 1,t (rt − r∗) + c 2,t νt + c 3,t ut, (21)

πt = d0,t + d1,t (rt − r∗) + d2,t νt + d3,t ut, (22)

where the coeffi cients ci,t and di,t for i = 0, 1, 2, 3 are estimated each period using an ordinary

least squares regression applied to a rolling window of the most recent 32 quarters (8 years) of

model-generated data. For the first 32 quarters of the simulation, the coeffi cient values are set

halfway between the two values implied by each of the two local rational expectations equilibria.

I assume that the agent can observe rt, νt, and ut and knows the laws of motion for all state

variables. In the second version, I assume that the agent estimates a set of misspecified decision

rules that omit the terms involving the two white noise shocks νt and ut. In both versions, the

agent uses the previous period’s estimated decision rules to construct the subjective forecasts

Êt yt+1 = c 0,t−1 + c 1,t−1ρr (rt − r∗) and Êt πt+1 = d0,t−1 + d1,t−1ρr (rt − r∗) , where the values
of ρr and r

∗ are assumed known. Use of the previous period’s decision rules to construct the

subjective forecasts avoids simultaneity in the realized and forecasted values of the output gap

and inflation.

The learning agent’s subjective forecasts are substituted into the global equilibrium con-

ditions (1) and (2). I allow for an occasionally binding ZLB by making the substitution

it = 0.5 i∗t + 0.5
√

(i∗t )
2 in the equilibrium condition (1). When combined with a simplified

policy rule that imposes ρ = 0 and ω = 1, this procedure yields a system of three equations

that can be solved each period to obtain the three realizations yt, πt, and i∗t . Given these

realizations, the decision rule coeffi cients are then updated.27

Figure 11 plots the estimated coeffi cients c 0,t, c 1,t, d0,t, and d1,t from simulations of the

learning algorithm. When the agent estimates correctly specified decision rules (black lines),

the coeffi cients quickly converge to the vicinity of the targeted equilibrium values and remain

there. This result shows that the targeted equilibrium is learnable. In contrast, when the

26Christiano, Eichenbaum, and Johanssen (2016) consider a more specialized learning experiment in which
the ZLB is already binding due to a fundamental shock. Given this condition, they investigate whether various
learning algorithms converge to either a high inflation or a low inflation equilibrium.
27To ensure stability of the learning algorithm, I impose the following projection facility: If the estimated

values of c0,t or d0,t fall outside the range of two times the targeted equilibrium value on the upside or two
times the deflation equilibrium value on the downside, then the agent does not update the affected decision
rule for that period only. Intuitively, the agent is assumed to apply a common sense economic restriction on
the magnitude of the intercept coeffi cients in the estimated decision rules.
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agent estimates misspecified decision rules (blue lines), the coeffi cients exhibit low frequency

oscillations that occasionally approach, reach, or go beyond the deflation equilibrium values.

The agent’s failure to control for the shocks νt and ut in the regressions causes the estimated

values of the other coeffi cients to fluctuate, preventing the algorithm from converging to either

of the two equilibria. The low frequency oscillations in the decision rule coeffi cients shown

in Figure 11 induce movements in the macroeconomic variables that are qualitatively similar

to those observed in the switching model with full-knowledge. Hence, the basic nature of the

switching model dynamics can be preserved in a setting that departs from the full-knowledge

assumption.28

It does not seem unreasonable to think that real world economic agents might fail to control

for some relevant but diffi cult-to-observe state variables when constructing their conditional

forecasts. Along these lines, a recent paper by Busetti, et al. (2017) shows that learning agents’

use of simple autogressive forecast rules (that omit some relevant state variables) can lead to

persistent undershooting of inflation from the central bank’s inflation target. Similarly, Bullard

and Cho (2005) show that “certain types of seemingly minor misspecifications along with agent

learning might combine to change the global dynamics of the economy in unexpected ways.”

(p. 1842).

5 Conclusion

Standard New Keynesian models subject to a ZLB exhibit two long-run endpoints (steady

states) associated with two local rational expectations equilibria. Most studies employing New

Keynesian models focus on the targeted equilibrium and ignore the possibility of switching

to the deflation equilibrium. But there appears to be no clear theoretical or empirical reason

why the deflation equilibrium should be ruled out. Indeed, Bullard (2010) concludes that by

“promising to remain at zero for a long time,” central banks may inadvertently coordinate

private-sector expectations to select the deflation equilibrium.

I examine a version of the New Keynesian model with a time-varying natural rate of

interest and endogenous forecast rule switching based on past performance. The model can

produce severe recessions when the real interest rate gap is persistently negative, causing the

representative agent to place a significant weight on the forecast rules associated with the

deflation equilibrium. Escape from the deflation equilibrium occurs endogenously when the

28Arifovic, Schmitt-Grohé, and Uribe (2017) demonstrate that the deflation equilibrium can be stable under
a form of social learning that is governed by a genetic algorithm. A key feature for their result is the initial
history of the economy which determines the relative performance among a set of heterogenous forecast rules.
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real interest rate gap eventually starts rising. But even in normal times, a non-trivial weight

on the deflation forecast rules may cause the central bank to undershoot its inflation target

and raise the volatilities of macro variables relative to the targeted equilibrium.

A simple loss function approach favors a modest increase in the central bank’s inflation

target to around 3%. But even with an inflation target of 4%, the ZLB binding frequency

remains relatively high at 9.9% and the average duration of a ZLB episode is 11.2 quarters.

These results suggest that concerns about getting stuck in a deflation trap for an extended

period are legitimate if one believes that the standard New Keynesian model provides a good

description of advanced economies with inflation targeting central banks.
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A Appendix: Kalman filter estimate of r-star

Straightforward computations using the laws of motion (3) and (4) yield the following uncon-

ditional moments for the first difference of the exogenous real interest rate:

V ar (∆rt) = σ2ε

[
(1− ρr)φ+ 2

1 + ρr

]
, (A.1)

V ar
(
∆2rt

)
= σ2ε

[
2 (1− ρr)2 φ+ 6

1 + ρr

]
, (A.2)

Corr (∆rt, ∆rt−1−k) =
(ρr)

k (ρr φ− 1)

φ+ 2/ (1− ρr)
, (A.3)

where ∆rt ≡ rt − rt−1, ∆2rt ≡ ∆rt − ∆rt−1, and φ ≡ σ2η/σ
2
ε. Equation (A.3) shows that

the the values of ρr and φ can be inferred from the autocorrelation structure of ∆rt, which is

observable. Given ρr and φ, the value of σε can be inferred from (A.1) using the observable

value of V ar (∆rt) . Given φ and σε, we have ση = σε
√
φ.

Solving equation (3) for r∗t yields:

r∗t =
rt − ρrrt−1

1− ρr︸ ︷︷ ︸
Signal

− εt︸︷︷︸
Noise

, (A.4)

where the first term represents the signal and the second term represents the noise. Equation

(4) shows that the Kalman filter estimate of r∗t , denoted by Etr
∗
t , is a weighted average of the

signal and the previous period’s estimate Et−1 r∗t−1, where the weight assigned to the signal is

the Kalman gain parameter λ.

The one step ahead forecast error for rt+1 is given by

errt+1 = rt+1 − Etrt+1,

= rt+1 − [ρrrt + (1− ρr)Etr∗t ] ,

= εt+1 + (1− ρr) ηt+1 + (1− ρr) (r∗t − Etr∗t ) , (A.5)

where the last term in (A.5) represents the estimation error for r∗t . The optimal value of λ

minimizes the mean squared forecast error, as given by

E
(
err2t+1

)
= σ2ε

[
1 + (1− ρr)2 φ

]
+ (1− ρr)2 V ar (r∗t − Etr∗t ) . (A.6)

where V ar (r∗t − Etr∗t ) is the unconditional variance of the estimation error.
The law of motion for the estimation error follows directly from equation (7) and can be

written as

r∗t − Etr∗t = λ

[
zt − ρr zt−1

1− ρr

]
+ (1− λ)

(
r∗t−1 − Et−1 r∗t−1

)
−
[

1− λ− ρr
1− ρr

]
ηt, (A.7)
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where zt ≡ rt − r∗t is the actual real rate gap. The law of motion for zt follows directly from
equations (3) and (4) and can be written as

zt = ρr zt−1 − ρr ηt + εt. (A.8)

Starting from equations (A.7) and (A.8), we can compute the following expression for the

unconditional variance of the estimation error

V ar (r∗t − Etr∗t ) = σ2ε

{
λ
(
ρ2rφ+ 1

)
+ (1− λ− ρr) [(1− λ) (1− ρr) /λ+ ρr]φ

(2− λ) (1− ρr)2

}
, (A.9)

which can be substituted into equation (A.6) to obtain a complicated expression for E
(
err2t+1

)
in terms of λ. From this expression, we can compute the gradient

∂E
(
err2t+1

)
∂λ

=
2
[
λ2 − (1− λ) (1− ρr)2 φ

]
(2− λ)2 λ2

. (A.10)

Setting the gradient equal to zero yields a quadratic equation in λ. The root that minimizes

E
(
err2t+1

)
is given by equation (8).

B Appendix: Targeted equilibrium

To solve for the local linear forecast rules associated with the targeted equilibrium, I assume

that i∗t = it > 0 for all t, i.e., the ZLB is never binding. Starting from equation (9) we have:

i∗t = ρi∗t−1+ (1− ρ) [Etr
∗
t + π∗ + gπ ω (πt − π∗) + gπ (1− ω) (πt−1 − π∗) + gy (yt − y∗)] (B.1)

where I have used equation (10) to eliminate πt.

Equation (B.1) together with the Euler equation (1) and the Phillips curve (2) form a

linear system of three equations in the three unknown decision rules for yt, πt, and i∗t . The

state variables are: rt, Etr∗t , πt−1, i
∗
t−1 , νt, and ut. Standard techniques yield a set of linear

decision rules of the form

 yt − π∗ (1− β) /κ
πt − π∗
i∗t − (Etr

∗
t + π∗)

 = A


rt − Etr∗t
πt−1 − π∗
i∗t−1 − Etr∗t − π∗
νt
ut

 , (B.2)

where A is a 3 × 5 matrix of decision rule coeffi cients. For the parameter values shown in

Table 2, the matrix A is

A =

 0.819 −0.209 −0.551 0.858 −0.178
0.084 −0.021 −0.042 0.014 0.982
0.175 0.117 0.684 0.174 0.100

 . (B.3)
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Iterating the linear decision rules in (B.2) ahead one period and then taking the conditional

expectation of both sides yields the following set of linear forecast rules associated with the

targeted equilibrium:

Etyt+1 = y∗ +A11ρr (rt − Etr∗t ) +A12 (πt − π∗) +A13 (i∗t − Etr∗t − π∗) , (B.4)

Etπt+1 = π∗ +A21ρr (rt − Etr∗t ) +A22 (πt − π∗) +A23 (i∗t − Etr∗t − π∗) , (B.5)

where Ai j represents the corresponding element of the matrix A and I have substituted in

Et
(
rt+1 − Et+1r∗t+1

)
= ρr (rt − Etr∗t ). Notice that the forecast rules depend on the realization

of πt because πt depends on πt via equation (10). Also, the forecast rules depend on the

realization of i∗t due to the interest rate smoothing term in (B.1). Hence, the model allows for

simultaneity between the forecasted and realized values of πt and i∗t . Neither the agent or the

central bank are required to forecast i∗t+1.

The linear forecast rules (B.4) and (B.5) are derived under the assumption that the ZLB

is never binding. However, in the stochastic simulation of the targeted equilibrium, I allow

for an occasionally binding ZLB. When simulating the model, I substitute the local linear

forecast rules given by (B.4) and (B.5) into the global equilibrium conditions (1) and (2). I

allow for an occasionally binding ZLB by making the substitution it = 0.5 i∗t + 0.5
√

(i∗t )
2 in

the equilibrium condition (1). Together with the monetary policy rule (B.1), this procedure

yields a system of three equations that are solved each period to obtain the three realizations

yt, πt, and i∗t .

C Appendix: Deflation equilibrium

To solve for the local linear forecast rules associated with the deflation equilibrium, I assume

i∗t ≤ 0 such that it = 0 for all t, i.e., the ZLB is always binding. Equation (B.1) applies

unchanged to the deflation equilibrium, as does the Phillips curve (2). However, due to the

binding ZLB, the Euler equation (1) now becomes

yt = Et yt+1 + α[Et πt+1 + rt] + νt. (C.1)

Equation (C.1) together with equations (B.1) and (2) form a linear system of three equa-

tions in the three unknown decision rules for yt, πt, and i∗t . The state variables are: rt, Etr
∗
t ,

πt−1, i∗t−1 , νt, and ut. The minimum state variable (MSV) solution yields a set of linear deci-
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sion rules of the form

 yt − (−Etr∗t ) (1− β) /κ
πt − (−Etr∗t )
i∗t − (Etr

∗
t + π∗) [1− gπ − gy (1− β) /κ]

 = B


rt − Etr∗t
πt−1 − (−Etr∗t )
i∗t−1 − (Etr

∗
t + π∗)

[
1− gπ − gy(1−β)

κ

]
νt
ut

 ,
(C.2)

where B is a 3× 5 matrix of constant coeffi cients. The MSV solution implies B12 = B22 = 0

and B13 = B23 = 0. For the parameter values shown in Table 2, the matrix B is

B =

 2.330 0 0 1 0
0.394 0 0 0.025 1
0.520 0.162 0.8 0.203 0.138

 . (C.3)

Comparing the first column of matrix B in (C.3) to the first column of matrix A in (B.3)

shows that a shock to rt − Etr∗t will be transmitted more forcefully to macro variables in the
deflation equilibrium than in targeted equilibrium. Specifically, we have

B11
A11

= 2.8,
B21
A21

= 4.7,
B31
A31

= 3.0. (C.4)

For the special case when ρ = 0 and ω = 1, it is straightforward to derive the following

analytical relationship between the decision rule coeffi cients for the two local equilibria:

B11
A11

=
B21
A21

=
B31
A31

= 1 +
α [κgπ + (1− βρr) gy]

(1− βρr) (1− ρr)− ακρr
> 1. (C.5)

Iterating the linear decision rules in (C.2) ahead one period and then taking the conditional

expectation of both sides yields the following set of local linear forecast rules for the deflation

equilibrium:

Et yt+1 = −Etr∗t (1− β) /κ+B11ρr (rt − Etr∗t ) , (C.6)

Etπt+1 = −Etr∗t +B21ρr (rt − Etr∗t ) , (C.7)

where the MSV solution implies B12 = B22 = 0 and B13 = B23 = 0 and I have substituted in

Et
(
rt+1 − Et+1r∗t+1

)
= ρr (rt − Etr∗t ). Neither the agent or the central bank are required to

forecast i∗t+1.

The linear forecast rules (C.6) and (C.7) are derived under the assumption that the ZLB

is always binding. However, in the stochastic simulation of the deflation equilibrium, I allow

for an occasionally binding ZLB. When simulating the model, I substitute the local linear
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forecast rules given by (C.6) and (C.7) into the global equilibrium conditions (1) and (2). I

allow for an occasionally binding ZLB by making the substitution it = 0.5 i∗t + 0.5
√

(i∗t )
2 in

the equilibrium condition (1). Together with the monetary policy rule (B.1), this procedure

yields a system of three equations that are solved each period to obtain the three realizations

yt, πt, and i∗t .

D Appendix: Simplified model

This appendix provides the theoretical equilibrium decision rules for the simplified model that

is used in the adaptive learning algorithm described in Section 4.5. Starting from the original

model, the simplified model imposes ρ = 0, ω = 1, and ση = 0. These settings eliminate i∗t−1

and πt−1 as state variables and cause the natural rate of interest r∗ to be constant.

The targeted equilibrium decision rules are yt − π∗ (1− β) /κ
πt − π∗
i∗t − (r∗ + π∗)

 = A

 rt − r∗
νt
ut

 , (D.1)

where the elements of the matrix A are given by

A =



α (1− βρr)
(1− ρr + αgy) (1− βρr) + ακ (gπ − ρr)

1

1 + ακgπ + αgy

−αgπ
1 + ακgπ + αgy

ακ

(1− ρr + αgy) (1− βρr) + ακ (gπ − ρr)
κ

1 + ακgπ + αgy

1 + αgy
1 + ακgπ + αgy

ακgπ + αgy (1− βρr)
(1− ρr + αgy) (1− βρr) + ακ (gπ − ρr)

ακgπ + gy
1 + ακgπ + αgy

gπ
1 + ακgπ + αgy


.

(D.2)

The deflation equilibrium decision rules are yt − (−r∗) (1− β) /κ
πt − (−r∗)
i∗t − (r∗ + π∗) [1− gπ − gy (1− β) /κ]

 = B

 rt − r∗
νt
ut

 , (D.3)

where the elements of the matrix B for the MSV solution are given by

B =



α (1− βρr)
(1− ρr) (1− βρr)− ακρr

1 0

ακ

(1− ρr) (1− βρr)− ακρr
κ 1

α (1− βρr)
(1− ρr) (1− βρr)− ακρr

κgπ + gy gπ


. (D.4)
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Figure 1: Nominal Interest Rates and Inflation in Four Countries

Nominal interest rates in the United States encountered the zero lower bound during the 1930s and from 2008.Q4
though 2015.Q4. Nominal interest rates in Japan have remained near zero since 1998.Q3, except for the relatively
brief period from 2006.Q4 to 2008.Q3. Nominal interest rates in Switzerland have been zero or slightly negative
since 2008.Q4. Nominal interest rates in the United Kingdom have been approximately zero since 2009.Q1.
Outside of these episodes, all four countries exhibit a strong positive correlation between nominal interest rates
and inflation, consistent with the Fisher relationship.

38



Figure 2: U.S. Nominal Interest Rates and Inflation

The two intersections of the ZLB-augmented monetary policy rule (solid red line) with the Fisher relationship
(dashed black line) define two long-run endpoints, labeled the “targeted equilibrium” and “deflation equilib-
rium,” respectively. The monetary policy rule is it = r∗ + π∗ + gπ (πt − π∗) with r∗ = 0.01, π∗ = 0.02 and
gπ = 1.5. The Fisher relationship is it = r∗+ πt. Data since 2008.Q4 lie closer to the deflation equilibrium than
the targeted equilibrium.
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Figure 3: U.S. Real Interest Rates

The real federal funds rate (blue line) is defined as the nominal federal funds rate minus expected quarterly
inflation computed from a rolling 40-quarter, 4-lag vector autoregression that includes the nominal funds rate,
quarterly PCE inflation (annualized), and the CBO output gap. The time series process for the Kalman filter
estimate of the natural rate of interest in the model (dotted green line) is calibrated to approximate the one-
sided estimate of the U.S. natural rate series (dashed red line) from Laubach and Williams (2016, updated) for
the period of consistent monetary policy from 1988.Q1 to 2017.Q2.
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Figure 4: U.S. Data

The U.S. real federal funds rate has remained mostly below the Laubach-Williams estimate of r∗t since early
2009. The nominal federal funds rate was approximately zero from 2008.Q4 through 2015.Q4. A Taylor-type
rule of the form (9) using the parameter values in Table 2, with Etr∗t given by Laubach-Williams estimate,
πt given by the 4-quarter PCE inflation rate, and yt given by the CBO output gap predicts that the desired
nominal funds rate was negative starting in 2009.Q1 and remains negative through 2016.Q4. The 4-quarter
PCE inflation rate was briefly negative in 2009 and has remained below the Fed’s 2% inflation target since
2012.Q2. The Great Recession was very severe, pushing the CBO output gap down to −6.3% at the business
cycle trough in 2009.Q2. The output gap remains negative at −0.2% in 2017.Q2, eight years after the Great
Recession ended. The various endpoints plotted in the figure are computed using the expressions in Table 1,
with r∗t given by the Laubach-Williams estimate. As r

∗
t approaches zero or becomes negative, the “deflation”

equilibrium is characterized by zero or low inflation, allowing this equilibrium to provide a better fit of recent
U.S. inflation data.
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Figure 5: Measures of Expected U.S. Inflation

Market-based measures of expected inflation from Treasury Inflation Protected Securities (TIPS) and zero
coupon inflation swap contracts dropped sharply in 2008.Q4, coinciding with the start of the ZLB episode. The
market-based measures remain below the Fed’s 2% inflation target at the end of the data sample. The median
1-year expected inflation rate from the Survey of Professional Forecasters (SPF) dropped sharply in 2008.Q4
and has recovered slowly to a level that is below its pre-recession range. The 10-year survey measure does not
exhibit a sharp drop in 2008.Q4, but has since trended downward to a level that is below its pre-recession range.
The Federal Reserve Bank of St. Louis’Price Pressures Measure (PPM) represents the probability that the
4-quarter PCE inflation rate over the next year will exceed 2.5%. The PPM dropped sharply in 2008.Q4 and is
currently hovering around a probability of 10%.
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Figure 6: Model Simulation: Endogenous Regime Switching

When the exogenous real interest gap rt − Etr∗t is negative for a sustained period (top panel), the resulting
downward pressure on yt and πt serves to reduce the recent RMSFE of the deflation forecast rules and increase
the recent RMSFE of the targeted forecast rules (middle panel). Around period 1725, the shift in relative
forecast performance induces the agent to place a substantially lower weight on the targeted equilibrium forecast
rules, causing the deflation equilibrium to become temporarily self-fulfilling (bottom panel). Around period 1800,
the real rate gap once again becomes positive, causing the RMSFE of the deflation forecast rules to exceed
the RMSFE of the targeted forecast rules. The agent now increases the weight on the targeted forecast rules,
causing the targeted equilibrium to be restored. Qualitatively similar results are obtained if the agent employs
Bayes law to compute the likelihood that a string of recent quarterly inflation observations are drawn from one
equilibrium or the other.
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Figure 7: Model Simulations: Distributions of Endogenous Variables

Model variables in the deflation equilibrium have distributions with lower means but higher variances than
those in the targeted equilibrium. But the significant overlap in the various distributions creates a dilemma
for an agent who seeks to determine the likelihood that a string of recent data observations are drawn from
one equilibrium or the other. Variables in the switching model have means that are somewhat lower and
variances that are somewhat higher than those in the targeted equilibrium. Consequently, the central bank in
the switching model undershoots its inflation target and the volatilities of the output gap and inflation are both
higher relative to the targeted equilibrium.
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Figure 8: Model Simulations: Distribution of ZLB Durations

Unlike the targeted equilibrium, the switching model can produce infrequent, but long-lived ZLB episodes in
response to small, normally distributed shocks. To account for infrequent but long-lived ZLB episodes, the
targeted equilibrium would require large shocks that are themselves infrequent and long-lived, as in Dordal-i-
Carreras, et al. (2016).
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Figure 9: Model Simulations: Comparing Three Model Versions

All three model versions employ the same sequence of stochastic shocks. Around period 1725, the weight on
the targeted forecast rules in the switching model starts dropping toward zero, causing the deflation equilibrium
to become temporarily self-fulfilling. The episode results in a negative desired nominal policy rate, a binding
ZLB, a highly negative output gap, and brief deflation followed by below-target inflation, reminiscent of the
U.S. Great Recession and its aftermath.
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Figure 10: Replicating U.S. Data with the Switching Model

Given the U.S. data counterparts for the model variables, we can solve for the implied time series of stochastic
shocks and forecast rule weights that allow the switching model to exactly replicate the observed U.S. time paths
of the CBO output gap and PCE inflation since 1988. The model-implied shocks νt and ut become strongly
negative at the start of the ZLB episode in 2008.Q4. The top right panel shows that the performance gap
between the two sets of forecast rules starts to narrow considerably after 2008.Q4. The deflation forecast rules
start outperforming the targeted forecast rules in 2010.Q3. As a result, the weight on the targeted equilibrium
forecast rules starts to decline, eventually reaching a minimum value of 0.16 in 2011.Q3. The weight subsequently
increases as U.S. economy recovers from the Great Recession. But even towards the end of the data sample,
the weight remains well below 1.0, helping the switching model to account for the persistent undershooting of
the Fed’s 2% inflation target since mid-2012. The bottom left panel compares the 1-year expected inflation rate
from U.S. inflation swaps to the path of Êt πt+1 from the switching model. The correlation coeffi cient between
the two series is 0.6. Both series remain below 2% at the end of the data sample in 2017.Q2.
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Figure 11: Adaptive Learning in a Simplified Model

Starting from the original model, the simplified model imposes ρ = 0, ω = 1, and ση = 0. These settings
eliminate i∗t−1 and πt−1 as state variables and cause the natural rate of interest r

∗ to be constant. When the
agent estimates correctly specified decision rules (black lines), the coeffi cients quickly converge to the vicinity of
the targeted equilibrium values and remain there. In contrast, when the agent estimates misspecified decision
rules that fail to control for the white noise shocks νt and ut (blue lines), the coeffi cients exhibit low frequency
oscillations that can occasionally approach, reach, or go beyond the deflation equilibrium values. The low
frequency oscillations in the decision rule coeffi cients induce movements in the macroeconomic variables that
are qualitatively similar to those observed in Figure 9 for the switching model with full-knowledge.
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