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1 Introduction

In response to the Financial Crisis a large literature has emerged to model the impact

of financial frictions. Much of this literature has highlighted the importance of collateral

constraints in amplifying shocks and providing a theoretical justification for policy inter-

ventions. However, due to computational complexity this literature largely eschews formal

econometric analysis of these models and the shocks that historically have driven crisis

episodes. That is, a Smets and Wouters (2007) style evaluation of this class of models,

an evaluation that is needed for implementation of policy recommendations, has not been

done. In this paper, we bridge the econometric evaluation of DSGE models in the spirit of

Smets and Wouters (2007) with the collateral constraint models emphasized in the recent

normative literature on financial frictions.

This paper makes contributions to four areas of the literature. First, we propose a new

specification of the standard Kiyotaki and Moore (1997) type collateral constraint where

the movement from the unconstrained state of the world to constrained state is a stochastic

function of the endogenous leverage ratio in the model. Our model is such that, as leverage

rises, the probability of the constraint binding increases, but there is no specific leverage

ratio where the constraint must bind. This specification results in an endogenous regime

switching model. Our second contribution is to develop perturbation methods to solve

endogenous regime switching models rapidly and to higher orders. Third, using the second

order solution of the model, we design an algorithm to estimate the parameters of the

model with full-information Bayesian methods, which has previously only been done for

first order solutions of exogenous switching models. Our fourth contribution is to apply the

framework to Mexican quarterly data since 1980 and provide the first formal econometric

analysis of this class of models.

The model is estimated from 1981 to 2016 using data for Mexico. Our results reveal

three novel empirical findings. First, we find that the probability of a crisis is an increasing

function of leverage, but also that there is range of leverage ratios where a crisis is likely to

occur. Second, the model provides estimated crisis regime probabilities which correspond

closely with narrative dates for Sudden Stops in Mexico. Third, our results shows that

fluctuations in the non-crisis regime of the model are driven primarily by the usual real

shocks (TFP, world interest rate, and terms of trade). In the crisis regime, we find that

leverage shocks are the prime driver of economic fluctuations. Our results then, provide

the first structural estimates of financial shocks consistent with the reduced form literature

which finds that financial/credit shocks only matter in periods of high financial stress.

The core of the new methodology is an endogenous regime switching approach to mod-
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eling financial crises. In the model there are two regimes, one a crisis regime, the second a

regime for normal economic times. A crisis regime is a regime where an occasionally binding

borrowing constraint binds (e.g. Mendoza, 2010) determined by economic variables in the

economy. Likewise, the switch back to normal times is based on economic fundamentals.

In our model the probability of moving to the crisis regime where the borrowing constraint

binds is a logistic function of the debt to output ratio. This ratio in turn, is a function of

endogenous state variables, exogenous shocks and control variables. Agents in the economy

know of this probability and how debt, output and other choices map into the probability

of moving in or out of the crisis state. That is, it is a rational expectations solution of the

model. Our solution then ensures that decisions made in the normal state fully incorporate

how those decision affect the probability of moving into the crisis state as well how the

economy will operate in a crisis (i.e the decision rules in this crisis).

The approach we develop allows us to capture all of the salient features one would

want in an empirical model of financial crises. First, it captures the non-linear nature of a

crisis: the crisis state can have very different properties/parameters from the normal state.

Second, we solve the regime switching model using perturbation methods and a second

order solution. This means that we can capture the change in decision rules as risk changes

in a crisis. Third, since our solution method is perturbation-based we can handle multiple

state variables and many shocks. That is, we are less constrained than current non-linear

methods in terms of the size of the model. Fourth, the speed of the solution method means

that we can use non-linear filters to calculate the likelihood function of the model for a

full Bayesian estimation of the relevant shocks and frictions that characterize models of

financial crises.

In the literature on Markov-switching DSGE models this paper is most closely related

to Foerster et al. (2016), who develop perturbation methods to solve exogenous regime

switching models working directly with the non-linear model. This differs from the Markov-

Switching linear rational expectations (MSLRE) literature which starts with a system of

linear rational expectations equations and imposes Markov Switching after linearizing the

model (e.g. Leeper and Zha, 2003; Davig and Leeper, 2007; Farmer et al., 2011). Since

our structural model has a regime switching at its core, this is the natural approach. It

has the added benefit that the MSDGE model can be solved to higher orders, where the

MSLRE model of course is restricted to first order solutions. Indeed, we find that the

second order solution is critical for endogenous switching models to differ from exogenous

switching models in the decision rules.

There is an emerging literature that focuses on solving endogenous regime switching

models. Davig and Leeper (2008), Davig et al. (2010), and Alpanda and Ueberfeldt (2016)
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all consider endogenous regime switching, but employ computationally costly global solution

methods that eliminate the possibility for likelihood-based estimation. Lind (2014) develops

a regime-switching perturbation approach for approximating non-linear models, but the

approach requires repeatedly refining the points of approximation and hence is not suitable

for estimation purposes. Most closely related to our approach is the method developed by

Barthlemy and Marx (2017), but who consider a class of models with regime-dependent

steady states that our framework does not satisfy. In contrast, our extension of the Foerster

et al. (2016) perturbation approach is well suited for solving a model of crises where regime-

dependent steady states may not be relevant given the relatively short-lived nature of crises,

and is fast enough to allow for likelihood-based estimation.

The application of the methodology that we propose is most closely related to the

literature on emerging market business cycles, including among others Mendoza (1991 and

2010), Neumayer and Perri (2005), Aguiar and Gopinath (2007), Gacia-Chicco, Pancrazi

and Uribe (2010). Like these contributions, our framework encompasses multiple sources

of shocks. However, in this paper financial shocks are modeled explicitly as changes in the

collateral requirements of lenders and allowed to differ during financial crises.

Following the seminal contribution of Mendoza (2010), models with occasionally binding

collateral constraints have become the workhorse environment for normative analysis of

macro-prudential policies and capital controls. Examples include Bianchi (2011), Benigno

et al. (2013), Benigno et al. (2016), Bianchi (2011), Jeanne and Korinek (2010) and Bianchi

and Mendoza (2010). Korinek and Mendoza (2013) review this literature and conclude

by stating that an important future step is the “development of numerical methods that

combine the strengths of global solution methods in describing non-linear dynamics with

the power of perturbation methods in dealing with a large number of variables so as to

analyze sudden stops in even richer macroeconomic models”. Our paper develop such an

approach allowing us to empirically evaluate this class of models with the potential to return

to these normative questions in future work.

There are many possible applications of our approach to other classes of models. For

example, Bocola (2015) builds and estimates a model of sovereign default. His estimation

procedure is to first estimate the model outside of the crisis period, using a solution tech-

nique that assumes a crisis will not occur. Conditional on those parameter estimates a

crisis probability that is exogenous is appended to the model. Our approach allows one

to estimate model parameters fully incorporating the possibility of a crisis outside of the

crisis period, and allowing for that crisis to be a function of the economic decisions. The

methods here also apply to the literature on the zero-lower bound on interest rates. 1

1Guerrieri and Iacoviello (2015) develop a set of procedures called OccBin to solve models with occasion-
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The rest of the paper is organized as follows. Section 2 describes the model and intro-

duces the new formulation for the collateral constraint. Section 3 develops the perturbation

solution methodology for endogenous regime switching models. Section 4 describes our pro-

cedure for estimating the regime switching models using full information Bayesian Methods.

Section 5 contains the empirical results and Section 6 concludes.

2 The Model

The model is a small, open, production economy with an occasionally binding collateral

constraint subject to productivity, preference, income, interest rate, terms of trade, and

financial shocks. The restriction on access to international credit markets that we specify

depends on key endogenous variables of the model, including borrowing, capital, and its

price. Capital and debt choices respond to exogenous shocks in the model and affect

leverage. Leverage in turn affects the probability of a binding constraint. Because of

the occasionally binding collateral constraint, this framework can potentially account for

both normal business cycles as well as key aspects of financial crises in emerging market

economies (Mendoza, 2010).

2.1 The Borrowing Constraint

The collateral constraint limits total debt to a fraction of the market value of physical capital

(i.e. it is a limit on leverage). As in Mendoza (2010), Kiyotaki and Moore (1997), Aiyagari

and Gertler (1999), and Kocherlakota (2000), among others, the collateral constraint is not

derived from an optimal credit contract, but imposed directly on the economy. However, the

borrowing constraint may result from limited enforcement problems preventing lenders from

collecting more than a fraction of the value of the collateral. When the constraint binds,

the model produces endogenous risk premia over the world interest rate at which borrowers

would agree to contract while satisfying it. Like the specifications in the literature above,

when the constraint binds, debt is limited to a fraction of the market value of the capital

stock. Here we follow Mendoza (2010) and include also working capital in the borrowing

limit to pin down a well-behaved supply response of the economy during financial crises.

We model the occasionally binding nature of the constraint as an endogenous regime

switching process. Thus, there is one regime in which the constraint binds (a crisis regime),

ally binding constraints. OccBin is a certainty equivalent solution method which requires agents to know
precisely how long a regime (the one you are not currently in) will apply if there are no shocks, making
it functionally quite similar to perfect foresight methods. These methods rule out precautionary effects,
which are important for the model in this paper.
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and one in which it does not (a normal regime). The probabilities of switching from one

regime to the other are assumed to depend on key endogenous variables in the model. The

probability to switch from the normal regime to the crisis regime is assumed to be a logistic

function of the distance between actual borrowing and the borrowing limit. Therefore it

is affected by all endogenous variables that enter the credit constraint. The probability to

switch from a crisis regime to the normal one, instead, is assumed to be a function of the

borrowing multiplier.

While our constraint is the same as in the quantitative financial friction literature above,

we propose a new specification of its occasionally binding nature that is more tractable and

has appealing empirical properties. The main difference between our specification and the

formulation in the literature is that we transform a deterministic relationship between lever-

age and a binding borrowing constraint into a stochastic relationship. In the deterministic

specification there is one specific leverage ratio that leads to a binding constraint, in our

specification increased leverage raises the probability of a binding constraint but does not

necessarily force the constraint to bind.

Our model captures a key finding of the empirical literature on financial crises, which

documents that the likelihood of a financial crisis increases with leverage, but high leverage

does not require a crisis to occur. From an empirical perspective, not having a given leverage

ratio that triggers a crisis event (i.e., the collateral constraint binding), but rather leverage

affecting the likelihood of the constraint binding in a smooth manner adds an element of

realism to the model. Borrowing constraints don’t bind at any particular leverage ratio in

the real world, they are stochastic functions of leverage ratios.2

Most importantly, agents in our regime switching model, know that higher leverage and

borrowing levels (and hence lower collateral) increase the probability of switching to a con-

strained regime (and vice versa). This preserves the interaction in agents’ behavior between

the two regimes that gives rise to precautionary behaviors and distinguishes this class of

models from those in which financial frictions are always binding or are approximated with

solution methods that eliminate these interactions across regimes.

2The empirical literature finds that when a borrower hits the leverage limit, expenditure is adjusted
gradually because other source of financing such as cash, precautionary credit lines, asset sales, etc. can
be tapped into. See Capello, Graham, and Harvey (2010) for survey information on behavior of financially
constrained firms and Ivashina and Scharfstein (2010) for loan level data showing that credit origination
dropped during the crisis because firms drew down from pre-existing credit lines in order to satisfy their
liquidity needs.
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2.2 Representative Household-Firm

There is a representative household that maximizes the following utility function

U ≡ E0

∞∑
t=0

{
dtβ

t 1

1− ρ

(
Ct −

Hω
t

ω

)1−ρ
}
, (1)

with Ct denoting the individual consumption and Ht the individual supply of labor. The

elasticity of labor supply is ω, while ρ is the coefficient of relative risk aversion. The variable

dt represents an exogenous and stochastic preference shock. Households choose consump-

tion, labor, capital, intermediate inputs, and holdings of real, one-period international

bonds maximizing utility subject to the budget constraint

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t − PtVt − φrt (WtHt + PtVt) + Et −

1

(1 + rt)
Bt +Bt−1. (2)

The first term of the right hand side of equation is the production function. Goods are

produced with capital (Kt−1), labor (Ht) and imported intermediate goods (Vt). Pt is the

relative price of intermediate imports, which follows a stochastic process specified below.

The shock to this process interpreted as a terms of trade shock.

Bt is a one-period international bond with net interest rate rt discussed below. The

interest rate faced by borrowers, when the constraint is not binding, is given by

rt = r∗t + ψ
(
eB−Bt − 1

)
(3)

In normal times, therefore, the interest rate has an exogenous stochastic component equal

to the world interest rate and a debt elastic component, which pins down a well defined

steady state in the non-binding regime.

The term φrt is the working capital constraint and says that a fraction of both wages and

intermediate goods must be paid for in advance of production with borrowed funds. The

price of labor and capital are given by wt and qt, both of which are endogenous variables,

but taken as given by the household. We allow also for an exogenous spending shock

represented by the variable Et. Gross investment It is subject to adjustment costs as a

function of net investment:

It = δKt−1 + (Kt −Kt−1)

(
1 +

ι

2

(
Kt −Kt−1

Kt−1

))
. (4)

Households face a regime specific collateral constraint, where the regimes are denoted

by st ∈ {0, 1}. When st = 1, the constraint binds strictly, and total borrowing is equal to
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a fraction of the value of collateral

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κtqtKt (5)

On the left hand side of this equation we have total debt and working capital loans. The

presence of the binding constraint limits both international borrowing (hence consumption

smoothing) as well as borrowing to pay for intermediate inputs. The latter limit constraints

output, which may cause the constraint to bind even tighter. In this regime, as the quantity

and value of capital fluctuates, the amount of borrowing will also fluctuate. When st = 0,

the constraint is slack and the value of the collateral is enough for international lenders to

finance all the desired borrowing levels. Thus,

1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) (6)

is unconstrained by κtqtKt in the current period. The tightness of the borrowing constraint,

κt, is time-varying and subject to shocks according to a process specified below.

In order to specify how the economy changes regimes it is useful to first define the notion

of ”borrowing cushion” as the distance of the borrowing from the debt limit in (6):

B∗t =
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) + κtqtKt. (7)

When the borrowing cushion is small then the constraint is close to binding. In this case,

the leverage ratio is high because borrowing relative to the value of the collateral is high.

In regime st = 0, when the constraint is not binding, the probability that it binds the next

period depends on the value of borrowing cushion in (7) in a logistic way. That is, the

transition probability from regime 0 to regime 1 is a function of all endogenous variables

in B∗t :

Pr (st+1 = 1|st = 0) =
exp (−γ0B∗t )

1 + exp (−γ0B∗t )
. (8)

The parameter γ0 controls how the likelihood of hitting the debt limit is linked to the

borrowing cushion. For small values of this parameter, the cushion has little impact on the

probability of a transition to the binding regime. For large values of this parameter, the

probability of a crisis moves rapidly from 0 to 1 as B∗t approaches 0.

In regime 1, when the constraint is binding, the Lagrange multiplier associated with the

constraint is non-zero. Denoting the multiplier as λt, the transition probability from the
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binding regime to the non-binding regime is given by:

Pr (st+1 = 0|st = 1) =
exp (−γ1λt)

1 + exp (−γ1λt)
. (9)

This expression implies that as the multiplier approaches 0, the probability of transitioning

back to the non-binding state rises.

This logistic function can be given a structural interpretation by adding a stochastic

monitoring (or enforcement) shock εMt to the standard borrowing constraint used in the

literature:
1

(1 + rt)
Bt − φ (1 + rt) (WtHt + PtVt) = −κqtKt + εMt

This shock has two interpretations, based on its sign. When the shocks is negative, the

LHS is greater than the value of collateral, but the lender monitors and decides to impose

the borrowing constraint. When the shock is positive, the LHS is then less than the value

of collateral, but the constraint does not bind because the lender does not monitor. We

assume that the distribution of εMt is such that when borrowing is much less than the value

of collateral the probability of drawing a monitoring shock that leads to a binding constraint

is 0. When borrowing exceeds the value of collateral by a large amount the probability of

drawing a monitoring shock is such that the probability the lender audits goes to 1. The

logistic function satisfies these assumptions, though other functions do it as well.3

Exogenous processes and shocks

The model is closed by specifying the process for the following 6 exogenous variables and

their shocks:

logAt = (1− ρA(st))A
∗(st) + ρA(st) logAt−1 + σA(st)εA,t (10)

logEt = (1− ρE(st))E
∗(st) + ρE(st) logEt−1 + σE(st)εE,t (11)

logPt = (1− ρP (st))P
∗(st) + ρP (st) logPt−1 + σP (st)εP,t (12)

κt = (1− ρA(st))κ
∗(st) + ρκ(st)κt−1 + σκ(st)εκ,t (13)

log dt = ρd(st) log dt−1 + σd(st)εd,t (14)

r∗t = (1− ρr∗)r̄∗ + ρr∗r
∗
t−1 + σr∗εr∗,t (15)

3The logistic function is also used by Kumhof et al. (2015) to model theoretically the transition to a
default regime in their model.

9



For the TFP, relative price, expenditure and leverage shocks we allow for intercepts,

autocorrelation and variances to all switch with the regime. The preference shock is mean

zero so only the serial correlation and variance switches with the regime. The interest rate

shock is interpreted as a world interest rate and hence it does not switch with the regime

as the regime switching is modeled only for Mexican variables.

Model Timing

In the model, agents enter period t with knowledge of the lagged state variables (capital,

debt, and past realization of exogenous shocks) and a probability distribution over the

regime, Pr[st|st−1, B∗t−1, λt−1]. They then learn the regime, st, which determines whether

the constraint binds or not in period t. Next, the shocks to all exogenous processes in the

model realize. Note here that these shocks are orthogonal to the realization of the regime.

Agents then undertake decisions that pin down B∗t , λt, which in turn imply a probability

distribution over whether the constraint binds in period t+1. Figure 1 provides a graphical

representation of the timing.
 

t t+1 

Agents enter knowing 
lagged states and a 

probability 
distribution over 

regimes Pr[ s(t) | t-1 
information] 

Realize the regime s(t) 
which determines 

whether the constraint 
binds or not 

Realize shocks to 
exogenous processes, 
which are orthogonal 
to regime realization  

 

Make decisions that pin 
down Bt* and λt, which 

in turn imply a 
probability distribution 

over whether the 
constraint binds in t+1 

Figure 1: Intra-period timing

An implication of these timing assumptions is that agents may face a non-binding con-

straint, realize bad shocks, and borrow to smooth them, which would imply an increased

probability of crisis tomorrow. In practice, since agents know how borrowing decisions

affect the probability of a constraint binding in the future, they may increase borrowing

to smooth some of the shock out, but will not increase borrowing by excessive amounts

since precautionary effects are present in the model and agents make choices to avoid crisis
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states. 4

2.3 First Order Conditions

Households maximize (1) subject to (2) and (5) and (6) by choosing Ct, Bt, Kt, Vt and Ht.

The first-order conditions of this problem are the following:

vt

(
Ct −

Hω
t

ω

)−ρ
= µt (16)

(1− α− η)AtK
η
t−1H

α
t V
−α−η
t = Pt

(
1 + φrt +

λt
µt
φ (1 + rt)

)
(17)

αAtK
η
t−1H

α−1
t V 1−α−η

t = φWt

(
rt +

λt
µt

(1 + rt)

)
+Hω−1

t (18)

µt = λt + β (1 + rt)Etµt+1 (19)

Etµt+1β

 1− δ +

(
ι
2

(
Kt+1

Kt

)2
− ι

2

)
+ηAt+1K

η−1
t Hα

t+1V
1−η−α
t+1

 = µt

(
1− ι+ ι

(
Kt

Kt−1

))
− λtκtqt (20)

The market prices for capital and labor are

qt = 1 + ι

(
Kt −Kt−1

Kt−1

)
(21)

Wt = Hω−1
t (22)

The budget constraint and the complementary slackness condition are

Ct + It = AtK
η
t−1H

α
t V

1−α−η
t + St − PtVt − φrt (WtHt + PtVt)−

1

(1 + rt)
Bt +Bt−1 (23)

B∗t λt = 0. (24)

The latter condition is key in our model. It combines information on the borrowing

constraint in both regimes (5) and (6), as well on the switching between regimes 0 and

1 in (8) and (9). In the normal regime, the multiplier is zero and the borrowing cushion

4A difference between our timing and that of Mendoza (2010) is the separation of regime and shock
realizations. In Mendoza’s model, shocks to TFP in period t determine whether the constraint binds or
not in that period, which makes shocks and realization of the regime correlated.
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is unconstrained. In the crisis regime, the borrowing cushion is zero and the multiplier is

constrained. The switch between regimes is then governed by an analogous of the traditional

complementary slackness condition, which here is controlled by (8) and (9) and hence

remains differentiable on its support.

Note finally from (19) that, when the collateral constraint binds, this small open econ-

omy faces an endogenous risk premium on debt measured by

µt
βEtµt+1

=
λt

βEtµt+1

+ (1 + rt) .

Therefore, when the constraint binds, the interest rate is given by:

rt = r∗t + ψ
(
eB−Bt − 1

)
+

λt
βEtµt+1

(25)

2.4 Competitive Equilibrium

A competitive equilibrium in our framework is a sequence of quantities {Kt, Bt, Ct, Ht, Vt, It,

At, κt, Yt, λt, µt, B
∗
t } and prices {Pt, rt, qt, wt} that satisfy the household’s first order con-

ditions (13)-(17), the market prices for capital and labor (18)-(19), the market clearing

condition (20), the definition of the borrowing cushion (6), the slackness condition (21),

and the exogenous processes (9)-(12).

3 Solving the Endogenous Switching Model

The key insight for mapping the model presented above into an endogenous regime-switching

framework is to modify the slackness condition (24) so that the relevant variables are zero

only in the relevant state. In particular, in the normal regime (st = 0), the borrowing con-

straint does not bind and λt = 0. In the crisis regime (st = 1), on the other hand, the

borrowing constraint binds and B∗t = 0.

To capture this feature in a regime switching framework, we introduce two state-

dependent variables ϕ (st) and ν (st), and re-write (24) as

ϕ (st)B
∗
ss + ν (st) (B∗t −B∗ss) + (1− ϕ (st))λss + (1− ν (st)) (λt − λss) = 0. (26)

In this modified slackness condition, ϕ (0) = ν (0) = 0 when st = 0, and so the equation

simplifies to λt = 0. While ϕ (1) = ν (1) = 1 when st = 1, so that the equation simplifies

to B∗t = 0. This representation helps to preserve information in our perturbation approxi-
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mation, since at first order, the above implies dλt = 0 for st = 0, and dB∗t = 0 for st = 1,

meaning that both variables are constant in the respective regimes.

3.1 Deterministic Steady State

Given the modified slackness condition (26), our perturbation method builds second-order

Taylor expansions of the decision rules of the model equilibrium around a non-stochastic

steady state. Defining a non-stochastic steady state in an endogenous regime-switching

framework, however, is not trivial.

Definition: A steady state in our framework can be defined as a state in which ensues

when all shocks are zero (εA,t = εP,t = εκ,t = εw,t = εr,t = 0) for all t, and the regime

switching variables ϕ (st), a
∗ (st), p

∗ (st), and κ∗ (st) are at their ergodic means across

regimes associated with the steady state transition matrix:

Pss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

 1− exp(−γ0,1B∗ss)
1+exp(−γ0,1B∗ss)

exp(−γ0,1B∗ss)
1+exp(−γ0,1B∗ss)

exp(−γ1,1λss)
1+exp(−γ1,1λss)

1− exp(−γ1,1λss)
1+exp(−γ1,1λss)

 .
Note here that, since this matrix also depends on the steady state level of debt and multi-

plier, which in turn depend upon the ergodic means of the regime-switching variables, such

state is the solution of a fixed point problem, which we describe in the Appendix.

The model has regime specific parameters that can affect the steady state of the economy

in that regime. Namely, the switching parameters ϕ (st), β (st), a (st), and p (st) affect the

level of the economy and matter for steady state calculations. Let ξ = [ξ0, ξ1] denote the

ergodic vector of Pss. Then define the ergodic means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1)

β̄ = ξ0β (0) + ξ1β (1)

ā = ξ0a (0) + ξ1a (1)

p̄ = ξ0p (0) + ξ1p (1) .

The steady state of the economy depends on these ergodic means and satisfies the following

equations in appendix.

In order to avoid circularity in finding the steady state, which in turn depends on the

steady state of the transition probabilities, we first calibrate the steady state probabilities
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and then back out the associated parameters of the transition function. That is we assume

γ0,0 = log

(
1

p00,ss
− 1

)
+ γ0,1B

∗
ss

γ1,0 = log

(
1

p11,ss
− 1

)
− γ1,1λss

and we calibrate p00,ss and p11,ss. We then estimate the γ.

The following table shows the steady state values for the variables in steady state. Note

that these are the deterministic steady states associated with each model.

3.2 Second order approximation

Armed with the steady state of the endogenous regime-switching economy, we then con-

struct a second-order approximations to the decision rules by taking derivatives of the

equilibrium conditions. We relegate details of these derivations to the Appendix, but here

we summarize.

For perturbation, we take the stacked equilibrium conditions F (xt−1, εt, χ), and differ-

entiate with respect to (xt−1, εt, χ). In general, regime-switching models, the first-order

derivative with respect to xt−1 produces a complicated polynomial system denoted

Fx (xss,0, 0) = 0.

Often this system needs to be solved via Gröbner bases, which finds all possible solutions in

order to check them for stability. In our case, all the regime switching parameters show up

in the steady state, and we write θt = θ̄ + χθ̂ (st) so the steady state can be solved. This

is the Partition Principle of Foerster et al. (2016). Given these parameters, the regime

switching in Fx (xss,0, 0) disappears and simplifies to the standard no-switching case that

can be solved via a generalized eigenvalue procedure.

After solving the eigenvalue problem, the other systems to solve are

Fε (xss,0, 0) = 0

Fχ (xss,0, 0) = 0

and second order systems of the form (can apply equality of cross-partials)

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} .
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Recalling that the decision rules take the the form

xt = hst (xt−1, εt, χ)

yt = gst (xt−1, εt, χ)

the second-order approximation takes the form

xt ≈ xt +H(1)
st St +

1

2
H(2)
st (St ⊗ St)

yt ≈ yt +G(1)
st St +

1

2
G(2)
st (St ⊗ St)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

4 Estimating the Endogenous Switching Model

Our estimation procedure is full information Bayesian procedure. As usual, the posterior

has no analytical solution so we use Markov-Chain Monte Carlo methods to sample from

the posterior. A key obstacle in using these methods to sample from the posterior is

the calculation of the value of the likelihood function which is needed at each step. We

face two difficulties here. The first is the regime-switching model, and the second is the

second-order solution that governs the decision rules in each regime. Our approach is to

use the Unscented Kalman Filter (UKF) to compute approximations to the evaluation of

the likelihood function. Since the Metroplis-Hastings algorithm we use for sampling is

now standard in the literature, we omit a discussion of this procedure. The details of the

construction of state space representation and the filtering steps for likelihood evaluation

are reported in the appendix. Here we focus on the calibration of the parameters that are

not estimated and the prior distribution of the estimated ones.

4.1 Calibrated Parameters

The calibration of the parameters that are not estimated follows Mendoza (2010). Consider

first the steady state of the model in the non-binding regime. We normalize a (0) = p (0) =

1. Mendoza targets an annualized real rate of interest of 8.57%. In the non-binding regime,

the steady state interest rate is rss = r∗ = 1
β
− 1, and the debt level is Bss = B̄. Setting

β = 0.97959 yields r∗ = 0.0208352, which matches the target annualized rate. Mendoza
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also targets a debt-to-output ratio of −0.86 (based on quarterly output), which requires

B̄ = −1.7517.

B̄ =

(
B

Y

)
ss

Ω
1

1−ω
w

(
Ωη
kΩ

1−α−η
v

) ω
α(1−ω)

Now consider the steady state of the model in the case when only the binding regime

occurs. In line with Mendoza’s estimates on the Mexican sudden stop, we set a (1) = −0.005

and p (1) = 0.005, which, combined with ρa and ρp, lead to a roughly 5% decrease in TFP

and a 5% increase in import prices. We set the interest rate elasticity ψr = 0.001, which

implies that the real rate is increasing in debt. Table 1 summarizes this parameterization:

4.2 Priors for Estimated Parameters

The priors for the model parameters are specified to be fairly loose. A Beta distribution is

used for the serial correlation coefficients to reflect a view that shocks are persistent.5 The

means of the TFP and relative price shock are normalized to 0, so that only the crisis regime

constant term is estimated. We use a prior with negative mean for TFP, and positive mean

for relative price in the crisis regime, though the prior standard deviation allows for a wide

range of values. The mean for the κ process is centered at 0.2, which corresponds to the

baseline case of Mendoza (2010). His tighter case (0.15) is a half standard deviation away

from the mean, and his looser case of 0.3 is one standard deviation from the mean. The

working capital and investment adjust cost parameters are also centered on the Mendoza

(2010) calibration. We use a uniform prior for the logistic function parameter over a wide

range of plausible variables that range from a very sharp function to a flat function.

5 Preliminary Estimation Results

Results reported here are for fewer shocks than described in the model section. Results for

the 6 observable and 6 shock model will be added next.

Table 2 reports the posteriors of the estimated parameters. Overall the posteriors are

tightly concentrated. The parameters of the logistic in particular are highly informative.

The mean vales of these parameters implies that probability of a crisis increases with lever-

age, but there is a range of leverage ratios with elevated probability of crisis. Figure 2 plots

5Estimates with a uniform prior over (-1,1) yielded no posterior mass below zero.
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the posterior of the logistic function to illustrate this range. The structural parameters κ, ι

and φ are consistent with Mendoza (2010). We also find that the mean of the TFP process

becomes negative in the crisis state.

The model provides an estimate of regime that the data is in. Figures 3 plots the

smoothed estimate of the crisis probability. Figure 3 also includes shaded areas that repre-

sent the Reinhart-Rogoff currency crisis dates for Mexico. The model does well at picking

up both the debt crisis of the 1980s, as well as the shorter-lived Tequila crisis in 1994-

1995. The model can capture crisis events of different persistence because the transition

probabilities depend on the state variables of the economy. The 1998 and 2008 Reinhart-

Rogoff currency crisis episodes are not picked up, possibly because they did not originate

in Mexico, but rather in the United States and other emerging markets.

The variance decompositions (Table 4) show that outside of the crisis state the fluctu-

ations in real variables are largely driven by TFP and relative price shocks. During the

crisis episodes leverage shocks are the most important. These shocks seem to have much

less relevance during normal business cycle times.

6 Conclusions

TBC.
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Table 1: Calibrated Parameters

Parameter Value
Discount Factor β = 0.97959
Risk Aversion ρ = 2
Labor Share α = 0.592
Capital Share η = 0.306
Wage Elasticity of Labor Supply ω = 1.846
Capital Depreciation (8.8% Annually) δ = 0.022766
Interest Rate Intercept r∗ = 0.0208352
Interest Rate Elasticity ψr = 0.05
Neutral Debt Level B̄ = −1.7517
Mean of TFP Process, Normal Regime a(0) = 0
Mean of Import Price Process, Normal Regime p(0) = 0
Mean of Leverage Process, Normal Regime κ(0) = 0.15
Persistence of TFP Process, Crisis Regime ρA(1) = 0
Persistence of Import Price Process, Crisis Regime ρP (1) = 0

Table 2: Prior Distribution

Parameter Prior Parameter Prior (Mean, SD)

ρx(0) Beta(0.7,0.2) σx(0) Inv.Gamma(0.01,0.05)
ρx(1) Beta(0.7,0.2) σx(1) Inv.Gamma(0.01,0.05)
ρr Beta(0.7,0.2) σr Inv.Gamma(0.001,0.02)

A∗(1) Normal(-0.001,0.01) σm Inv.Gamma(0.005,0.001)
E∗(0) Normal(0,0.01) E∗(1) Normal(0,0.01))
P ∗(1) Normal(0.001,0.01) r̄∗ Normal(0.003,0.01)
κ∗(0) Normal(0.2,0.1) κ∗(1) Normal(0.2,0.1)
γ0 Uniform(0,1000) γ1 Uniform(0,1000)
ι Normal(2.75,0.1) φ Normal(0.25,0.1)

where x=(A,E, P, κ, d) and σm is the standard deviation of all the measurement errors.
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Table 3: Estimation Results

Parameter Posterior mean q5 q95

σw(0) 0.0007 0.0001 0.0015
σw(1) 0.0438 0.0332 0.0496
σa(0) 0.0056 0.0043 0.0068
σa(1) 0.0091 0.0062 0.0123
σp(0) 0.0401 0.0338 0.0478
σp(1) 0.0487 0.0218 0.0766
σκ(0) 0.0012 0.0001 0.0030
σκ(1) 0.0248 0.0072 0.0419

σm1 0.0061 0.0048 0.0075
σm2 0.0127 0.0114 0.0142
σm3 0.0366 0.0271 0.0493
σm4 0.0035 0.0029 0.0041

γ0,1 89.0076 73.2143 108.1845

γ1,1 1.9676 0.0892 5.8921

ρa(0) 0.8134 0.7208 0.8843
ρp(0) 0.9637 0.9340 0.9876

ρκ(0) 0.6656 0.4152 0.8946
ρa(1) 0.7746 0.5543 0.8968
ρp(1) 0.9260 0.8258 0.9941

ρκ(1) 0.7804 0.6728 0.8872

a(1) -0.0059 -0.0072 -0.0047
p(1) 0.0005 0.0000 0.0013
κ(1) 0.2305 0.2203 0.2440

ι 2.8233 2.8144 2.8360
φ 0.3036 0.2697 0.3217

Table 4: Variance Decomposition

C I r Y
World Interest Rate Shock εw,t Non-Binding 0.0001 0.0128 0.0066 0.0000
Technology Shock εa,t Non-Binding 0.3087 0.2670 0.6390 0.3158
Import Price Shock εp,t Non-Binding 0.6817 0.3777 0.1971 0.6814
Leverage Shock εκ,t Non-Binding 0.0095 0.3424 0.1572 0.0027
World Interest Rate Shock εw,t Binding 0.0074 0.0044 0.3701 0.0145
Technology Shock εa,t Binding 0.0106 0.0003 0.0004 0.0705
Import Price Shock εp,t Binding 0.0124 0.0002 0.0003 0.0630
Leverage Shock εκ,t Binding 0.9696 0.9951 0.6291 0.8520
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Figure 2: Transition probability of non-binding regime conditional on nonbind-
ing
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A Details of the Solution Method

This Appendix gives detail about two aspects of the solution method. First, the definition

and solution for the steady state of the endogenous regime-switching economy. Second,

the perturbation method that generates Taylor expansions to the solution of the economy

around the steady state.

A.1 Steady State

The model has two features that make defining the steady state non-standard. First, as is

common in regime-switching models, the switching parameters ϕ (st), a
∗ (st), p

∗ (st), and

κ∗ (st) all affect the level of the economy directly, and will thus matter for steady state

calculations. Solution methods such as Foerster et al. (2016) define the steady state by

using the ergodic means of these parameters across regimes. However, in our case the

transition matrix P is endogenous, making the ergodic distribution problematic, since it

depend on economic variables that in turn depend on the ergodic means. Our solution

method for the steady state proceeds in two steps.

A.1.1 Step 1: Find Variables given Pss

To find the steady state, we first assume that Pss is known. Let ξ = [ξ0, ξ1] denote the

ergodic vector of Pss. Then define the ergodic means of the switching parameters as

ϕ̄ = ξ0ϕ (0) + ξ1ϕ (1) (A.1)

ā∗ = ξ0a
∗ (0) + ξ1a

∗ (1) (A.2)

p̄∗ = ξ0p
∗ (0) + ξ1p

∗ (1) (A.3)

ζ̄0 = ξ0ζ0 (0) + ξ1ζ0 (1) (A.4)

ζ̄1 = ξ0ζ1 (0) + ξ1ζ1 (1) (A.5)

The steady state of the economy depends on these ergodic means, and satisfies the

following equations (
Css −

Hω
ss

ω

)−ρ
= µss (A.6)

(1− α− η)AssK
η
ssH

α
ssV

−α−η
ss = Pss

(
1 + φrss +

λss
µss

φ (1 + rss)

)
(A.7)
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αAssK
η
ssH

α−1
ss V 1−α−η

ss = φWss

(
rss +

λss
µss

(1 + rss)

)
+Hω−1

ss (A.8)

µss = λss + β
(1 + rss)

(1 + τBss)
µss (A.9)

µssβ

 1− δ +

(
ι
2

(
kss
Kss

)2
− ι

2

)
+ηAssK

η−1
ss Hα

ssV
1−η−α
ss

 = µss

(
1− ι+ ι

(
Kss

Kss

))
− λssκqss (A.10)

qss = 1 + ι

(
Kss −Kss

Kss

)
(A.11)

Wss = Hω−1
ss (A.12)

Css + Iss = AssK
η
ssH

α
ssV

1−α−η
ss −PssVss− φrss (WssHss + PssVss)−

(
1 + τBss

)
(1 + rss)

Bss +Bss− Tss
(A.13)

Iss = δKss + (Kss −Kss)

(
1 +

ι

2

(
Kss −Kss

Kss

))
(A.14)

B∗ss =

(
1 + τBss

)
(1 + rss)

Bss − φ (1 + rss) (WssHss + PssVss) + κqssKss (A.15)

ϕ̄B∗ss + (1− ϕ̄)λss = 0 (A.16)

Tss = τBssBss (A.17)

τBss = ζ̄0 + ζ̄1

(
Bss

Yss

)
(A.18)

rss = r∗ + ψr

(
eB−Bss − 1

)
(A.19)

logAss = (1− ρA (st)) ā
∗ + ρA (st) logAss (A.20)

logPss = (1− ρP (st)) p̄
∗ + ρP (st) logPss (A.21)

kss = Kss (A.22)

Yss = AssK
η
ssH

α
ssV

1−α−η
ss (A.23)

Φby
ss =

Bss

Yss
(A.24)

We can partially solve for some of these directly

Ass = exp ā∗ (A.25)

Pss = exp p̄∗ (A.26)
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qss = 1 (A.27)

Suppose know rss and τBss

Ωv =
Pss

(
1 + φrss + φ (1 + rss)

(
1− β (1+rss)

(1+τBss)

))
(1− α− η)

(A.28)

Ωh =
1 + φ

(
rss + (1 + rss)

(
1− β (1+rss)

(1+τBss)

))
α

(A.29)

Ωk =
1

η

1−
(

1− β (1+rss)
(1+τBss)

)
κ

β
− 1 + δ

 (A.30)

Hss =

(
Ass

Ωη
kΩ

α
hΩ1−α−η

v

) 1
α(ω−1)

(A.31)

Yss = ΩhH
ω
ss (A.32)

Vss =
Ωh

Ωv

Hω
ss (A.33)

Kss =
Ωh

Ωk

Hω
ss (A.34)

Wss = Hω−1
ss (A.35)

Iss = δKss (A.36)

kss = Kss (A.37)

Bss = B̄ − log

(
1 +

rss − r∗

ψr

)
(A.38)

Css = Yss − Iss − PssVss − φrss (WssHss + PssVss)−
(
1 + τBss

)
(1 + rss)

Bss +Bss − Tss (A.39)

Css = Yss − (1 + φrss)PssVss − δKss − φrssWssHss +

(
1−

(
1 + τBss

)
(1 + rss)

− τBss

)
Bss (A.40)

µss =

(
Css −

Hω
ss

ω

)−ρ
(A.41)

λss = µss

(
1− β (1 + rss)

(1 + τBss)

)
(A.42)

Tss = τBssBss (A.43)
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B∗ss =

(
1 + τBss

)
(1 + rss)

Bss − φ (1 + rss) (WssHss + PssVss) + κKss (A.44)

Φby
ss =

Bss

Yss
(A.45)

and then rss and τB solve

τBss = ζ̄0 + ζ̄1

(
Bss

Yss

)
(A.46)

ϕ̄B∗ss + (1− ϕ̄)λss = 0 (A.47)

A.1.2 Steady State Solution, Step 2: Check Pss

Given the variables B∗ss and λss, have a new value

Pss =

[
p00,ss p01,ss

p10,ss p11,ss

]
=

[
1− exp(γ00−γ01B∗ss)

1+exp(γ00−γ01B∗ss)
exp(γ00−γ01B∗ss)

1+exp(γ00−γ01B∗ss)
exp(γ10−γ11λss)

1+exp(γ10−γ11λss)
1− exp(γ10−γ11λss)

1+exp(γ10−γ11λss)

]
, (A.48)

which can be checked against the guess in step 1. The steady state solves
∥∥∥P (i+1)

ss − P (i)
ss

∥∥∥ <
tolerance for successive iterations i.

A.2 Perturbation

A.2.1 Equilibrium Conditions

The 19 equilibrium conditions are written as

Etf (yt+1,yt,xt,xt−1, χεt+1, εt,θt+1,θt) = 0 (A.49)

where the variables are separated into the predetermined variables xt−1 and the non-

predetermined variables yt. There are 4 predetermined variables

xt−1 = [Kt−1, Bt−1, At−1, Pt−1] (A.50)

and 15 non-predetermined variables

yt =
[
Ct, Ht, Vt, It, kt, rt, qt,Wt, µt, λt, B

∗
t , τ

B
t , Tt, Yt,Φ

by
t

]
(A.51)

with 4 shocks

εt = [εr,t, εw,t, εA,t, εP,t] (A.52)
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and 6 switching variables

θt = [ϕ (st) , a
∗ (st) , p

∗ (st) , ζ0 (st) , ζ1 (st) , γ (st) , ρA (st) , ρP (st)] . (A.53)

These variables are partitioned into some that affect the steady state, θ1,t, and some that

do not, θ2,t. The partition in this case is

θ1,t = [ϕ (st) , a
∗ (st) , p

∗ (st) , ζ0 (st) , ζ1 (st)] (A.54)

θ2,t = [γ (st) , ρA (st) , ρP (st)] (A.55)

For solving the model, the functional forms are

θ1,t+1 = θ̄1 + χθ̂1 (st+1) (A.56)

θ1,t = θ̄1 + χθ̂1 (st) (A.57)

θ2,t+1 = θ2 (st+1) (A.58)

θ2,t = θ2 (st) (A.59)

xt = hst (xt−1, εt, χ) (A.60)

yt = gst (xt−1, εt, χ) (A.61)

yt+1 = gst+1 (xt, χεt+1, χ) (A.62)

pst,st+1,t = πst,st+1 (yt) (A.63)

Using these in the equilibrium conditions and being more explicit about the expectation

operator, given (xt−1, εt, χ) and st, the

Fst (xt−1, εt, χ) =

∫ 1∑
s′=0

πst,s′ (gst (xt−1, εt, χ)) f


gst+1 (hst (xt−1, εt, χ) , χε′, χ) ,

gst (xt−1, εt, χ) ,

hst (xt−1, εt, χ) ,

xt−1, χε
′, εt,

θ̄ + χθ̂ (s′) , θ̄ + χθ̂ (st)

 dµε′ = 0

(A.64)

Stacking these conditions for each regime produces

F (xt−1, εt, χ) =

[
Fst=1 (xt−1, εt, χ)

Fst=2 (xt−1, εt, χ)

]
(A.65)
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A.2.2 Generating Approximations

For perturbation, we take the stacked equilibrium conditions F (xt−1, εt, χ), and differentiate

with respect to (xt−1, εt, χ). In general regime-switching models, the first-order derivative

with respect to xt−1 produces a complicated polynomial system denoted

Fx (xss,0, 0) = 0. (A.66)

Often this system needs to be solved via Gröbner bases, which finds all possible solutions in

order to check them for stability. In our case with endogenous probabilities, the standard

stability checks fail, so we will focus on finding a single solution and ignore the possibility

of indeterminacy from multiple solutions, a common simplification in the regime-switching

literature with and without endogenous switching (e.g. Farmer et al., 2011; Foerster, 2015;

Maih, 2015; Lind, 2014). In the literature which computes global solutions to non-regime

switching occasionally binding constraint models (e.g. Benigno et al. (2013), Mendoza

(2010)) there are no proofs of uniqueness and the focus is also on computing a single

solution without concern for the possibility of other solutions. To find a single solution

to our model we guess at a set of policy functions for regime st = 1, which collapses

the equilibrium conditions Fx (xss,0, 0; st = 0) into a fixed-regime eigenvalue problem, and

solve for the policy functions for st = 0. Then, using this solution as guesses, we solve for

regime st = 0 under the fixed-regime eigenvalue problem, and iterate on this procedure to

convergence.

After solving the iterative eigenvalue problems, the other systems to solve are

Fε (xss,0, 0) = 0 (A.67)

Fχ (xss,0, 0) = 0 (A.68)

and second order systems of the form (can apply equality of cross-partials)

Fi,j (xss,0, 0) = 0, i, j ∈{x, ε,χ} . (A.69)

Recall the decision rules have the form

xt = hst (xt−1, εt, χ) (A.70)

yt = gst (xt−1, εt, χ) (A.71)
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and so the second-order approximation takes the form

xt ≈ xss +H(1)
st St +

1

2
H(2)
st (St ⊗ St) (A.72)

yt ≈ yss +G(1)
st St +

1

2
G(2)
st (St ⊗ St) (A.73)

where St =
[

(xt−1 − xss)
′ ε′t 1

]′
.

B Estimation Procedure

B.1 State Space Representation

For likelihood estimation, the state space representation is

Xt = Hst (Xt−1, εt)

Yt = Gst (Xt,Ut) ,

where Yt is the vector of observables variables:

Yt =
[

∆yt ∆ct ∆it rt

]′
.

Given st and εt, we can construct a first order approximation to ∆yt by

∆yt = yt − yt−1

= G(1)
st

[
x̂′t−1 εt 1

]′
− yt−1

and the first order approximation to xt is

xt = xss +H(1)
st

[
x̂′t−1 εt 1

]′
Therefore, the state equation is

Xt =

 xt

yt

∆yt

 =


xss +H

(1)
st

[
x̂′t−1 εt 1

]′
yss +G

(1)
st

[
x̂′t−1 εt 1

]′
G

(1)
st

[
x̂′t−1 εt 1

]′
− yt−1
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and the observation equation is

Yt =


∆yt

∆ct

∆it

rt

 = D

 x̂t

yt

∆yt

+ Ut

where D denotes a selection matrix. Therefore, in matrix form, we have: xt

yt

∆yt

 =

 xss +H
(1)
χ,st

yss +G
(1)
χ,st

G
(1)
χ,st

+

 H
(1)
x,st 0 0

G
(1)
x,st 0 0

G
(1)
x,st −I 0


 x̂t−1

yt−1

∆yt−1

+

 H
(1)
ε,st

G
(1)
ε,st

G
(1)
ε,st

 εt
and 

∆yt

∆ct

∆it

rt

 = S∆yt + Ut

which can be denoted as

Xt = Ast +BstXt−1 + Cstεt

Yt = DXt + EUt

B.2 Filtering

The second-order approximation of the Regime Switching DSGE model with pruning takes

the following form

Yt =


∆yt

∆ct

∆it

rt
TB

Output

 = D


x̂ft

x̂st

yt

yt−1

+ Ut (B.1)

where D denotes a selection matrix and Ut denotes measurement errors.
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Xt =


x̂ft

x̂st

yt

yt−1

 = Hst (Xt−1, εt)

=



H
(1)
st

[
x̂f ′t−1 ε′t 1

]′
H

(1)
st

[
x̂s′t−1 0 0

]′
+ 1

2
H

(2)
st

( [
x̂f ′t−1 ε′t 1

]′
⊗
[

x̂f ′t−1 ε′t 1
]′ )

yss +G
(1)
st

[
x̂f ′t−1 ε′t 1

]′
+G

(1)
st

[
x̂s′t−1 0 0

]′
+1

2
G

(2)
st

( [
x̂f ′t−1 ε′t 1

]′
⊗
[

x̂f ′t−1 ε′t 1
]′ )

yt−1



(B.2)

where εt is the set of exogenous shocks.

The UKF uses the unscented transformation to calculate the state mean and covariance

matrix. It propagates the deterministically chosen sigma-points through the nonlinear

function. The transformed points are used to calculate the mean and covariance matrix.

As Julier and Uhlmann (1997) note, the key approximation taken to develop the UKF is

that the prediction density and the filtering density are both Gaussian.

The filter starts by combining the state vector and exogenous disturbances into a single

vector Xa
t−1 = [Xt−1, εt]

′ with the following mean and covariance matrix conditional on y1:t−1

and regime st−1:

Xa
t−1(st−1) =

[
Xt−1|t−1(st−1)

0ε

]
(B.3)

P a
t−1(st−1) =

[
P x
t−1|t−1(st−1) 0

0 I

]
(B.4)

where L is the number of state variables and exogenous shocks.

The sigma-points Xa
i,t−1(st−1) that consist of the sigma-points for state variables Xx

i,t−1(st−1)

and the sigma-points for exogenous shocks Xε
i,t−1(st−1) are chosen as follows:

Xa
0,t−1(st−1) = Xa

t−1(st−1)

Xa
i,t−1(st−1) = Xa

t−1(st−1) + (h
√
P a
t−1(st−1))i for i = 1 . . . L

Xa
i,t−1(st−1) = Xa

t−1(st−1)− (h
√
P a
t−1(st−1))i−L for i = L+ 1 . . . 2L

(B.5)
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where h =
√

3. The weights for the sigma-points are given by:

w0 =
h− L

2h

wi =
1

2h
for i = 1 . . . 2L

(B.6)

The sigma-points and the assigned weights are used to calculate the expected mean and

covariance by propagating sigma-points through transition equations and taking weighted

average:

Xi,t|t−1(st−1, st) = Hst(X
x
i,t−1(st−1),X

ε
i,t−1(st−1)) (B.7)

Xt|t−1(st−1, st) =
2L∑
i=0

wiXi,t|t−1(st−1, st) (B.8)

P x
t|t−1(st−1, st)

=
2L∑
i=0

wi[Xi,t|t−1(st−1, st)− Xt|t−1(st−1, st)][Xi,t|t−1(st−1, st)− Xt|t−1(st−1, st)]
T

(B.9)

Yt|t−1(st−1, st) = DXt|t−1(st−1, st) (B.10)

By the above conditions, we get the Gaussian approximation predictive density p(Xt|Y1:t−1,

st−1, st) = N(Xt|t−1(st−1, st), P
x
t|t−1(st−1, st)). The predictions are then updated using the

standard Kalman filter updating rule:

P y
t|t−1(st−1, st) = DP x

t|t−1(st−1, st)D
T +R

P xy
t|t−1(st−1, st) = P x

t|t−1(st−1, st)D
T

Kt(st−1, st) = P xy
t|t−1(st−1, st)(P

y
t|t−1(st−1, st))

−1

Xt|t(st−1, st) = Xt|t−1(st−1, st) +Kt(st−1, st)(Yt − Yt|t−1(st−1, st))

P x
t|t(st−1, st) = P x

t|t−1(st−1, st)−Kt(st−1, st)P
y
t|t−1(st−1, st)K

T
t (st−1, st)

(B.11)

The updating step gives p(Xt|Y1:t, st−1, st) = N(Xt|t(st−1, st), P
x
t|t(st−1, st)). As a by-product

of the filter, we can get the density of Yt conditional on Y1:t−1, st, and st−1

p(Yt|Y1:t−1, st−1, st; θ) = N(Yt|t−1(st−1, st), P
y
t|t−1(st−1, st)) (B.12)

Since the Unscented Kalman filter with regime switches creates a large number of nodes

over each iteration where the filtered mean and covariance matrix need to be evaluated, we
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implement the following collapsing procedure suggested by Kim and Nelson (1999)

Xt|t(st = j) =
1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)Xt|t(st−1 = i, st = j)
}

(B.13)

P x
t|t(st = j) =

1

Pr(st = j|Y1:t)

{ M∑
i=1

Pr(st−1 = i, st = j|Y1:t)[P
x
t|t(st−1 = i, st = j)

+ (Xt|t(st = j)− Xt|t(st−1 = i, st = j))(Xt|t(st = j)− Xt|t(st−1 = i, st = j))T ]
} (B.14)

where Pr(st, st−1|Y1:t) and Pr(st|Y1:t) are obtained from the following standard Hamilton

filter

Pr(st, st−1|Y1:t−1) = Pr(st|st−1)Pr(st−1|Y1:t−1) (B.15)

Pr(st, st−1|Y1:t) =
p(Yt|st, st−1,Y1:t−1)Pr(st, st−1|Y1:t−1)∑

st

∑
st−1

p(Yt|st, st−1,Y1:t−1)Pr(st, st−1|Y1:t−1)
(B.16)

Pr(st|Y1:t) =
∑
st−1

Pr(st, st−1|Y1:t) (B.17)

Finally, we can get the conditional marginal likelihood,

p(Yt|Y1:t−1; θ) =
∑
st

∑
st−1

p(Yt|st, st−1,Y1:t−1)Pr(st, st−1|Y1:t−1) (B.18)

B.3 Smoothing

Once we run through the UKF for t = 1, . . . , T , we can also get the smoothed joint proba-

bility Pr(st, st+1|Y1:T ), Pr(st|Y1:T ), xt|T (st, sT ), and P x
t|T (st, sT ):

Pr(st, st+1|Y1:T ) =
Pr(st+1|Y1:T )Pr(st|Y1:t)Pr(st+1|st)

Pr(st+1|Y1:t)

Pr(st|Y1:T ) =
∑
st+1

Pr(st, st+1|Y1:T )

Xt|T (st, st+1) = Xt|t(st) + K̃t(st, st+1)(Xt+1|T (st+1)− Xt+1|t(st, st+1))

P x
t|T (st, st+1) = P x

t|t(st)− K̃t(st, st+1)(P
x
t+1|T (st+1)− P x

t+1|T (st, st+1))K̃t(st, st+1)
T

(B.19)

Given the above smoothing algorithm, we implement the collapsing procedures similar

to those in the filtering steps:

Xt|T (st = j) =
1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )Xt|T (st = i, st+1 = j)
}

(B.20)
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P x
t|T (st = j) =

1

Pr(st = j|Y1:T )

{ M∑
j=1

Pr(st = i, st+1 = j|Y1:T )[P x
t|T (st = i, st+1 = j)

+ (Xt|T (st = j)− Xt|T (st = i, st+1 = j))(Xt|T (st = j)− Xt|T (st = i, st+1 = j))T ]
} (B.21)
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