The Effects of Monetary Policy on Asset Price Bubbles: Some Evidence

Jordi Galí Luca Gambetti

September 2013

Jordi Galí, Luca Gambetti ()

Monetary Policy and Bubbles

September 2013 1 / 17

Monetary Policy and Asset Price Bubbles

- Should monetary policy respond to asset price bubbles?
- Pre-crisis consensus:
 - focus on inflation and output gap
 - ignore asset price developments, unless threat to objectives
 - the case against a monetary response to bubbles:
 - (i) difficult detection
 - (ii) interest rate: "too blunt" an instrument
- Challenges to the pre-crisis consensus:
 - macro stability \Rightarrow financial stability
 - bubble-driven asset price booms $\Rightarrow\uparrow$ risk of financial crisis

 \Rightarrow calls for a "leaning against the wind" policy: raise interest rates in response to developing asset price bubbles

Monetary Policy and Asset Price Bubbles

• Key maintained assumption:

```
\uparrow interest rate \Rightarrow \downarrow bubble
```

...but no theoretical or empirical support

• Galí (2013): What does economic theory have to say regarding... ...the effects of monetary policy on (rational) asset price bubbles? ...the desirability of leaning against the wind policies?

• Present paper: What is the evidence on the effects of monetary policy on asset price bubbles?

Interest Rates and Rational Bubbles: Theoretical Issues

• Key assumption in the case for leaning against the wind policies:

```
\uparrow interest rate \Rightarrow \downarrow bubble
```

• Based on "fundamentals" intuition:

```
\uparrow interest rate \Rightarrow \downarrow asset price
```

- It ignores two key features of a bubble:
 - (i) no payoffs to be discounted
 - (ii) return on the bubble = growth in bubble size
- Equilibrium requirement:

 \uparrow interest rate $\Rightarrow\uparrow$ expected bubble growth

 \Rightarrow risk of amplified fluctuations in the size of the bubble resulting from "leaning against the wind" policies (Galí (2013))

Jordi Galí, Luca Gambetti ()

Monetary Policy and Bubbles

Interest Rates and Bubbles: Theoretical Issues

- Asset yielding a stream of dividends $\{D_t\}$
- Exogenous time-varying (gross) real rate $\{R_t\}$
- Risk neutral investors
- Fundamental price:

$$Q_t^F \equiv E_t \left\{ \sum_{k=1}^{\infty} \left(\prod_{j=0}^{k-1} (1/R_{t+j}) \right) D_{t+k} \right\}$$

or, in log-linear version:

$$q_t^{\mathsf{F}} = \mathit{const} + \sum_{k=0}^\infty \Lambda^k \left[(1-\Lambda) \mathsf{E}_t \{ \mathsf{d}_{t+k+1} \} - \mathsf{E}_t \{ \mathsf{r}_{t+k} \}
ight]$$

where $\Lambda \equiv \Gamma/R < 1$

Interest Rates and Bubbles: Theoretical Issues

Observed stock price

$$Q_t = Q_t^F + Q_t^B$$

• Dynamic response of stock price to an interest rate shock:

$$\frac{\partial q_{t+k}}{\partial \varepsilon_t^m} = (1 - \gamma_{t-1}) \frac{\partial q_{t+k}^F}{\partial \varepsilon_t^m} + \gamma_{t-1} \frac{\partial q_{t+k}^B}{\partial \varepsilon_t^m}$$

where $\gamma_t \equiv Q_t^B / Q_t$

• Theory (and evidence) suggest:

$$\frac{\partial q_{t+k}^{F}}{\partial \varepsilon_{t}^{m}} < 0$$

• Conventional view:

$$\frac{\partial q^B_{t+k}}{\partial \varepsilon^m_t} \leq 0 \quad \Rightarrow \quad \frac{\partial q_{t+k}}{\partial \varepsilon^m_t} < 0$$

Monetary Policy and Bubbles

The Rational Bubble Theory Perspective

• Asset pricing equation

$$Q_t R_t = E_t \{ D_{t+1} + Q_{t+1} \}$$

• Fundamental component:

$$Q_t^F R_t = E_t \{ D_{t+1} + Q_{t+1}^F \}$$

Bubble component:

$$Q_t^B R_t = E_t \{Q_{t+1}^B\}$$

or, equivalently

$$\Delta q_t^B = r_{t-1} + \xi_t$$

where $\xi_t \equiv q_t^B - E_{t-1}\{q_t^B\}$ and $E_{t-1}\{\xi_t\} = 0$. Without loss of generality $\xi_t = \psi_t(r_t - E_{t-1}\{r_t\}) + \xi_t^*$ where $E_{t-1}\{\xi_t^*\} = 0$ and. $E\{\xi_t^*r_{t-k}\} = 0$, for $k = 0, \pm 1, \pm 2, ...$

 \Rightarrow both the sign and the size of ψ_t are *indeterminate*

The Rational Bubble Theory Perspective

• Predicted dynamic response of the bubble to an interest rate shock

$$\frac{\partial q_{t+k}^{B}}{\partial \varepsilon_{t}^{m}} = \begin{cases} \psi_{t} \frac{\partial r_{t}}{\partial \varepsilon_{t}^{m}} & \text{for } k = 0\\ \psi_{t} \frac{\partial r_{t}}{\partial \varepsilon_{t}^{m}} + \sum_{j=0}^{k-1} \frac{\partial r_{t+j}}{\partial \varepsilon_{t}^{m}} & \text{for } k = 1, 2, \dots \end{cases}$$

• Predicted dynamic response of the stock price:

$$\frac{\partial q_{t+k}}{\partial \varepsilon_t^m} \lessapprox 0$$

Jordi Galí, Luca Gambetti ()

The Rational Bubble Theory Perspective: An Example

• Assumptions:

$$\frac{\partial r_{t+k}}{\partial \varepsilon_t^m} = \rho_r^k \qquad ; \qquad \frac{\partial d_{t+k}}{\partial \varepsilon_t^m} = 0$$

for k = 0, 1, 2, ...

• Dynamic response of the asset price

$$\frac{\partial q_{t+k}}{\partial \varepsilon_t^m} = -(1-\gamma_{t-1})\frac{\rho_r^k}{1-\Lambda\rho_r} + \gamma_{t-1}\left(\psi_t + \frac{1-\rho_r^k}{1-\rho_r}\right)$$

(日) (同) (三) (三)

The Rational Bubble Theory Perspective: An Example

• Assumptions:

$$\frac{\partial r_{t+k}}{\partial \varepsilon_t^m} = \rho_r^k \qquad ; \qquad \frac{\partial d_{t+k}}{\partial \varepsilon_t^m} = 0$$

for k = 0, 1, 2, ...

• Dynamic response of the asset price

$$\frac{\partial q_{t+k}}{\partial \varepsilon_t^m} = -(1-\gamma_{t-1})\frac{\rho_r^k}{1-\Lambda\rho_r} + \gamma_{t-1}\left(\psi_t + \frac{1-\rho_r^k}{1-\rho_r}\right)$$

• Implications for the response of asset prices to an interest rate shock:

$$\begin{array}{rcl} \gamma_t &\simeq& 0 &\Rightarrow \frac{\partial q_{t+k}}{\partial \varepsilon_t^m} < 0 \\ \gamma_t &\gg& 0, \ \psi_t \gtrsim 0 &\Rightarrow \frac{\partial q_{t+k}}{\partial \varepsilon_t^m} > 0 \ \text{for large } k \end{array}$$

• Simulated responses under alternative calibrations

Figure 1 : Asset Price Response to an Exogenous Interest Rate Increase:

Evidence based on Vector Autoregressions

• VAR with constant coefficients

$$x_t = A_0 + A_1 x_{t-1} + A_2 x_{t-2} + \dots + A_p x_{t-p} + u_t$$

where

$$x_t \equiv [\Delta y_t, \Delta d_t, \Delta p_t, i_t, \Delta q_t]'$$
$$E_t \{ u_t u'_{t-k} \} = \Sigma$$
$$u_t = S\varepsilon_t$$

with $E\{\varepsilon_t \varepsilon'_t\} = I$ and $E\{\varepsilon_t \varepsilon'_{t-k}\} = 0$ for k = 1, 2, 3, ...

- Identification of monetary policy shocks:
 - i_t instrument of monetary policy
 - $(\Delta y_t, \Delta d_t, \Delta p_t)$ predetermined with respect to i_t
 - S block lower-triangular (CEE (2005))

Evidence based on Vector Autoregressions

• VAR with time-varying coefficients

$$x_t = A_{0,t} + A_{1,t} x_{t-1} + A_{2,t} x_{t-2} + \dots + A_{p,t} x_{t-p} + u_t$$

where

$$E_t \{ u_t u'_{t-k} \} = \Sigma_t$$
$$u_t = S_t \varepsilon_t$$

with $E\{\varepsilon_t \varepsilon'_t\} = I$ and $E\{\varepsilon_t \varepsilon'_{t-k}\} = 0$ for k = 1, 2, 3, ...

- Identification of monetary policy shocks:
 - i_t instrument of monetary policy
 - $(\Delta y_t, \Delta d_t, \Delta p_t)$ predetermined with respect to i_t
 - S_t block lower-triangular, for all t

• Assumptions

Letting $\theta_t = vec([A_{0,t}, A_{1,t}..., A_{p,t}]),$ $\theta_t = \theta_{t-1} + \omega_t$

where $\omega_t \sim N(0, \Omega)$ is white noise.

Letting $\Sigma_t \equiv F_t D_t F'_t$ where F_t is lower triangular with ones on the diagonal and D_t diagonal. Define $\phi_t = vec(F_t^{-1})$ and $\sigma_t = vec(D_t)$.

$$\phi_t = \phi_{t-1} + \zeta_t$$

$$\log \sigma_t = \log \sigma_{t-1} + \xi_t$$

where $\zeta_t \sim N(0, \Psi)$ and $\xi_t \sim N(0, \Xi)$ are (uncorrelated) white noise.

• Estimation: Bayesian approach (Primiceri (2005))

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

Evidence

• Impulse responses: VAR with constant coefficients

イロト イポト イヨト イヨト

Figure 2.a : Estimated Responses to Monetary Policy Shock

Observed (red, dotted) vs. Fundamental (blue, solid) Stock Price

Evidence

- Impulse responses: VAR with constant coefficients
- Impulse responses: VAR with time-varying coefficients

3

(日) (周) (三) (三)

Figure 3.a : Estimated Responses to Monetary Policy Shock: TVC-VAR Nominal Interest Rate

Figure 3.b : Estimated Responses to Monetary Policy Shock: TVC-VAR Real Interest Rate

Figure 3.c : Estimated Responses to Monetary Policy Shock: TVC-VAR Dividends

Figure 3.d : Estimated Responses to Monetary Policy Shock: TVC-VAR Stock Prices

Evidence

- Impulse responses: VAR with constant coefficients
- Impulse responses: VAR with time-varying coefficients

$$\frac{\partial(q_{t+k} - q_{t+k}^{F})}{\partial \varepsilon_{t}^{m}} = \gamma_{t-1} \left(\frac{\partial q_{t+k}^{B}}{\partial \varepsilon_{t}^{m}} - \frac{\partial q_{t+k}^{F}}{\partial \varepsilon_{t}^{m}} \right)$$

In the simple example above:

$$egin{aligned} rac{\partial(q_{t+k}-q^{F}_{t+k})}{\partialarepsilon_{t}^{m}} &=& \gamma_{t-1}\left(rac{
ho_{r}^{k}}{1-\Lambda
ho_{r}}+\psi_{t}+rac{1-
ho_{r}^{k}}{1-
ho_{r}}
ight)\ &\simeq& \gamma_{t-1}\left(rac{1}{1-
ho_{r}}+\psi_{t}
ight) \end{aligned}$$

which is positive, as long as $\gamma_{t-1} > 0$ and $\psi_t \gtrsim 0$.

Figure 3.e : Estimated Responses to Monetary Policy Shock: TVC-VAR Fundamental Stock Price

Figure 3.f : Estimated Responses to Monetary Policy Shock: TVC-VAR Observed minus Fundamental Stock Price

Figure 4.b : Probability of a positive response of $q - q^{F}$ at different horizons

Figure 5.a : Estimated Responses to Monetary Policy Shock: TVC-VAR Observed vs. Fundamental Stock Price: 1965Q1-1967Q4

Fundamental: blue, solid Observed: red, dotted

Figure 5.b : Estimated Responses to Monetary Policy Shock: TVC-VAR Observed vs. Fundamental Stock Price: 1976Q1-1978Q4

Fundamental: blue, solid

Observed: red, dotted

Figure 5.c : Estimated Responses to Monetary Policy Shock: TVC-VAR Observed vs. Fundamental Stock Price: 1984Q4-1987Q3

Fundamental: blue, solid Observed: red, dotted

Figure 5.d : Estimated Responses to Monetary Policy Shock: TVC-VAR Observed vs. Fundamental Stock Price: 1997Q1-1999Q4

Concluding Remarks

- Maintained assumption in the case for "leaning against the wind" policies: higher interest rates reduce the size of asset price bubbles
- Theoretical foundations: at best, fragile.
- Empirical evidence:
 - no clear support for the conventional view
 - consistent with the possibility of *destabilizing* "leaning against the wind" policies emphasized in Galí (2013)
- Need to understand better how monetary policy affects asset prices before such policies are adopted

イロト 人間ト イヨト イヨト

Monetary Policy and the 1928-29 Stock Market Bubble

Monetary Policy and the Dotcom Bubble

Monetary Policy and the Housing Bubble

