Discussion of Jordi Galí and Luca Gambetti's "The Effects of Monetary Policy on Asset Price Bubbles: Some Evidence"

Andrea Ferrero

University of Oxford

Norges Bank Conference on "The Role of Monetary Policy Revisited"

Oslo-September 27, 2013

• Pre-crisis: Ignore asset bubbles and "mop after the fact"

- Pre-crisis: Ignore asset bubbles and "mop after the fact"
 - Asset bubbles difficult to detect in real time
 - Interest rates too blunt to prick bubbles

- Pre-crisis: Ignore asset bubbles and "mop after the fact"
 - Asset bubbles difficult to detect in real time
 - Interest rates too blunt to prick bubbles
 - Shared view:
 - * Policymakers: Greenspan doctrine
 - * Academics: Bernanke and Gertler (1999, 2000)

- Pre-crisis: Ignore asset bubbles and "mop after the fact"
 - Asset bubbles difficult to detect in real time
 - Interest rates too blunt to prick bubbles
 - Shared view:
 - * Policymakers: Greenspan doctrine
 - * Academics: Bernanke and Gertler (1999, 2000)
- Post-crisis: Low interest rates \Rightarrow Asset bubbles

- Pre-crisis: Ignore asset bubbles and "mop after the fact"
 - Asset bubbles difficult to detect in real time
 - Interest rates too blunt to prick bubbles
 - Shared view:
 - ★ Policymakers: Greenspan doctrine
 - * Academics: Bernanke and Gertler (1999, 2000)
- Post-crisis: Low interest rates \Rightarrow Asset bubbles
 - ► Taylor (2008): "Interest rates too low for too long" root of crisis

- Pre-crisis: Ignore asset bubbles and "mop after the fact"
 - Asset bubbles difficult to detect in real time
 - Interest rates too blunt to prick bubbles
 - Shared view:
 - ★ Policymakers: Greenspan doctrine
 - * Academics: Bernanke and Gertler (1999, 2000)
- Post-crisis: Low interest rates \Rightarrow Asset bubbles
 - ► Taylor (2008): "Interest rates too low for too long" root of crisis
 - ▶ Rajan (2010): "Bernanke must end era of ultra-low rates" (FT, July 28)

- Pre-crisis: Ignore asset bubbles and "mop after the fact"
 - Asset bubbles difficult to detect in real time
 - Interest rates too blunt to prick bubbles
 - Shared view:
 - ★ Policymakers: Greenspan doctrine
 - * Academics: Bernanke and Gertler (1999, 2000)
- Post-crisis: Low interest rates \Rightarrow Asset bubbles
 - ► Taylor (2008): "Interest rates too low for too long" root of crisis
 - ▶ Rajan (2010): "Bernanke must end era of ultra-low rates" (FT, July 28)
 - BIS view: Leaning against the wind

• Premise: "Leaning against the wind" works if increase in nominal interest rate pricks bubble

- Premise: "Leaning against the wind" works if increase in nominal interest rate pricks bubble
- Theory (Galí, 2013): Partial equilibrium model to discipline empirical analysis
 - Interest rate hike always reduces fundamentals
 - Higher interest rates may amplify bubbles

- Premise: "Leaning against the wind" works if increase in nominal interest rate pricks bubble
- Theory (Galí, 2013): Partial equilibrium model to discipline empirical analysis
 - Interest rate hike always reduces fundamentals
 - Higher interest rates may amplify bubbles
- Empirics: Response of stock prices to identified monetary policy shock in time-varying coefficients VAR

- Premise: "Leaning against the wind" works if increase in nominal interest rate pricks bubble
- Theory (Galí, 2013): Partial equilibrium model to discipline empirical analysis
 - Interest rate hike always reduces fundamentals
 - Higher interest rates may amplify bubbles
- Empirics: Response of stock prices to identified monetary policy shock in time-varying coefficients VAR
- Main results: Observed stock price
 - Falls less than fundamentals

- Premise: "Leaning against the wind" works if increase in nominal interest rate pricks bubble
- Theory (Galí, 2013): Partial equilibrium model to discipline empirical analysis
 - Interest rate hike always reduces fundamentals
 - Higher interest rates may amplify bubbles
- Empirics: Response of stock prices to identified monetary policy shock in time-varying coefficients VAR
- Main results: Observed stock price
 - Falls less than fundamentals
 - Becomes positive after 2 years (fundamentals still negative after 5)

- Premise: "Leaning against the wind" works if increase in nominal interest rate pricks bubble
- Theory (Galí, 2013): Partial equilibrium model to discipline empirical analysis
 - Interest rate hike always reduces fundamentals
 - Higher interest rates may amplify bubbles
- Empirics: Response of stock prices to identified monetary policy shock in time-varying coefficients VAR
- Main results: Observed stock price
 - ► Falls less than fundamentals
 - Becomes positive after 2 years (fundamentals still negative after 5)
 - ► True on average but particularly pronounced since early 1980s

Three Comments

Theory

Identification and specification

Systematic monetary policy vs innovations

• A general asset pricing framework:

$$\mathbb{E}_t \left(\mathcal{M}_{t,t+1} R_{t+1}^i \right) = 1 \tag{1}$$

- $\mathcal{M}_{t,t+1} \equiv$ Stochastic discount factor (SDF)
- $R_{t+1}^i \equiv$ Gross return on asset i at t+1

• A general asset pricing framework:

$$\mathbb{E}_t \left(\mathcal{M}_{t,t+1} R_{t+1}^i \right) = 1 \tag{1}$$

- $\mathcal{M}_{t,t+1} \equiv$ Stochastic discount factor (SDF)
- $R_{t+1}^i \equiv$ Gross return on asset i at t+1
- This paper:
 - CCAPM perspective: $\mathcal{M}_{t,t+1} = \beta U'(C_{t+1}) / U'(C_t)$
 - ▶ Specializes utility to linear: $U(C_t) = a + bC_t \Rightarrow M_{t,t+1} = \beta$

• A general asset pricing framework:

$$\mathbf{E}_t \left(\mathcal{M}_{t,t+1} R_{t+1}^i \right) = 1 \tag{1}$$

- $\mathcal{M}_{t,t+1} \equiv$ Stochastic discount factor (SDF)
- $R_{t+1}^i \equiv$ Gross return on asset i at t+1

• This paper:

- CCAPM perspective: $M_{t,t+1} = \beta U'(C_{t+1}) / U'(C_t)$
- ▶ Specializes utility to linear: $U(C_t) = a + bC_t \Rightarrow M_{t,t+1} = \beta$
- Focuses on stocks (i = s) and risk-free bonds (i = b)

$$R_{t+1}^s\equiv rac{D_{t+1}+Q_{t+1}}{Q_t} \qquad ext{ and } \qquad R_{t+1}^b\equiv R_t$$

• A general asset pricing framework:

$$\mathbf{E}_t \left(\mathcal{M}_{t,t+1} R_{t+1}^i \right) = 1 \tag{1}$$

- $\mathcal{M}_{t,t+1} \equiv$ Stochastic discount factor (SDF)
- $R_{t+1}^i \equiv$ Gross return on asset i at t+1

• This paper:

- CCAPM perspective: $M_{t,t+1} = \beta U'(C_{t+1}) / U'(C_t)$
- Specializes utility to linear: $U(C_t) = a + bC_t \Rightarrow \mathcal{M}_{t,t+1} = \beta$
- Focuses on stocks (i = s) and risk-free bonds (i = b)

$${\sf R}^s_{t+1}\equiv rac{D_{t+1}+Q_{t+1}}{Q_t} \qquad ext{ and } \qquad {\sf R}^b_{t+1}\equiv {\sf R}_t$$

• Would derive same implications using first order approximation of (1)

• Is risk neutrality (first order approximation) too restrictive?

- Is risk neutrality (first order approximation) too restrictive?
- Can go through same math as in G&G paper with general SDF to

Define

$$Q_t^F \equiv \mathbb{E}_t \left(\sum_{i=1}^{\infty} \mathcal{M}_{t,t+i} D_{t+i} \right)$$

- Is risk neutrality (first order approximation) too restrictive?
- Can go through same math as in G&G paper with general SDF to
 - Define

$$Q_t^F \equiv \mathbb{E}_t \left(\sum_{i=1}^{\infty} \mathcal{M}_{t,t+i} D_{t+i} \right)$$

2 Prove that Q_t^F satisfies

$$Q_{t}^{F} = \mathbb{E}_{t} \left[\mathcal{M}_{t,t+1} \left(D_{t+1} + Q_{t+1}^{F} \right) \right]$$

- Is risk neutrality (first order approximation) too restrictive?
- $\bullet\,$ Can go through same math as in G&G paper with general SDF to
 - Define

$$Q_t^F \equiv \mathbb{E}_t \left(\sum_{i=1}^{\infty} \mathcal{M}_{t,t+i} D_{t+i} \right)$$

2 Prove that Q_t^F satisfies

$$Q_{t}^{F} = \mathbb{E}_{t} \left[\mathcal{M}_{t,t+1} \left(D_{t+1} + Q_{t+1}^{F} \right) \right]$$

- Is risk neutrality (first order approximation) too restrictive?
- $\bullet\,$ Can go through same math as in G&G paper with general SDF to
 - Define

$$Q_t^F \equiv \mathbb{E}_t \left(\sum_{i=1}^{\infty} \mathcal{M}_{t,t+i} D_{t+i} \right)$$

2 Prove that Q_t^F satisfies

$$Q_{t}^{F} = \mathbb{E}_{t} \left[\mathcal{M}_{t,t+1} \left(D_{t+1} + Q_{t+1}^{F} \right) \right]$$

Use no arbitrage restriction

$$\mathbb{E}_t \left[\mathcal{M}_{t,t+1} \left(\frac{D_{t+1} + Q_{t+1}}{Q_t} - R_t \right) \right]$$

to show that bubble component must satisfy

$$Q_t^B = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} Q_{t+1}^B \right)$$

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

• Generalized bubble pricing formula

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

• Effect of interest rate increase on $\mathbb{E}_t(Q_{t+1}^B/Q_t^B)$ a priori ambiguous

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

- Effect of interest rate increase on $\mathbb{E}_t(Q_{t+1}^B/Q_t^B)$ a priori ambiguous
- ► Covariance term plays key role for standard assets. What about bubbles?

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

- Effect of interest rate increase on $\mathbb{E}_t(Q^B_{t+1}/Q^B_t)$ a priori ambiguous
- Covariance term plays key role for standard assets. What about bubbles?
- When does it make sense to abstract from the covariance term?

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

- Effect of interest rate increase on $\mathbb{E}_t(Q^B_{t+1}/Q^B_t)$ a priori ambiguous
- Covariance term plays key role for standard assets. What about bubbles?
- When does it make sense to abstract from the covariance term?
 - Fully irrational bubble probably uncorrelated with stochastic discount factor

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

- Effect of interest rate increase on $\mathbb{E}_t(Q_{t+1}^B/Q_t^B)$ a priori ambiguous
- Covariance term plays key role for standard assets. What about bubbles?
- When does it make sense to abstract from the covariance term?
 - Fully irrational bubble probably uncorrelated with stochastic discount factor
 - What about bubbles that build on fundamentals?
 - * E.g. Financial deregulation (fundamental) leads to housing frenzy (bubble)
 - Could use same framework for house price bubble
 - \star Presence of borrowing constraints complicates theory

$$1 = \mathbb{E}_t \left(\mathcal{M}_{t,t+1} \frac{Q_{t+1}^B}{Q_t^B} \right) = \mathbb{E}_t \left(\frac{Q_{t+1}^B}{Q_t^B} \right) R_t^{-1} + \operatorname{cov}_t \left(\mathcal{M}_{t,t+1}, \frac{Q_{t+1}^B}{Q_t^B} \right)$$

- Effect of interest rate increase on $\mathbb{E}_t(Q^B_{t+1}/Q^B_t)$ a priori ambiguous
- Covariance term plays key role for standard assets. What about bubbles?
- When does it make sense to abstract from the covariance term?
 - Fully irrational bubble probably uncorrelated with stochastic discount factor
 - What about bubbles that build on fundamentals?
 - \star E.g. Financial deregulation (fundamental) leads to housing frenzy (bubble)
 - Could use same framework for house price bubble
 - $\star\,$ Presence of borrowing constraints complicates theory
- Could augment VAR with empirical model of stochastic discount factor
 - Predictions from theory less sharp but results more robust

Identification

• Reduced-form specification

$$x_{t} = A_{0t} + A_{1t}x_{t-1} + \dots + A_{pt}x_{t-p} + u_{t}$$

where

$$x_t = \begin{bmatrix} \Delta y_t & \Delta d_t & \Delta p_t & i_t & \Delta q_t \end{bmatrix}'$$

- $y_t \equiv \log \text{ real GDP}$
- $d_t \equiv \log$ real dividends
- $p_t \equiv \log \text{ price level}$
- $i_t \equiv$ short-term nominal interest rate
- $q_t \equiv$ real stock price index

Identification

• Reduced-form specification

$$x_{t} = A_{0t} + A_{1t}x_{t-1} + \dots + A_{pt}x_{t-p} + u_{t}$$

where

$$x_t = \begin{bmatrix} \Delta y_t & \Delta d_t & \Delta p_t & i_t & \Delta q_t \end{bmatrix}'$$

- $y_t \equiv \log \text{ real GDP}$
- $d_t \equiv \log$ real dividends
- $p_t \equiv \log \text{ price level}$
- $i_t \equiv$ short-term nominal interest rate
- $q_t \equiv$ real stock price index
- Identification
 - Christiano, Eichenbaum and Evans (2005): Innovations to i_t do not contemporaneously affect Δy_t , Δd_t , Δp_t

Identification

• Reduced-form specification

$$x_{t} = A_{0t} + A_{1t}x_{t-1} + \dots + A_{pt}x_{t-p} + u_{t}$$

where

$$x_t = \begin{bmatrix} \Delta y_t & \Delta d_t & \Delta p_t & i_t & \Delta q_t \end{bmatrix}'$$

- $y_t \equiv \log \text{ real GDP}$
- $d_t \equiv \log$ real dividends
- $p_t \equiv \log \text{ price level}$
- $i_t \equiv$ short-term nominal interest rate
- $q_t \equiv$ real stock price index
- Identification
 - Christiano, Eichenbaum and Evans (2005): Innovations to i_t do not contemporaneously affect Δy_t , Δd_t , Δp_t

(a) In addition, **this paper:** CB does not respond contemporaneously to innovations in Δq_t

Comment II: Identification and Specification

• Why does CB not respond contemporaneously to innovations in Δq_t ?

Comment II: Identification and Specification

- Why does CB not respond contemporaneously to innovations in Δq_t ?
 - Not an implementability issue
 - * No restrictions on contemporaneous response to Δy_t and Δp_t ("implementable" Taylor rule as in Schmitt-Grohe and Uribe, 2006)

- Why does CB not respond contemporaneously to innovations in Δq_t ?
 - Not an implementability issue
 - * No restrictions on contemporaneous response to Δy_t and Δp_t ("implementable" Taylor rule as in Schmitt-Grohe and Uribe, 2006)
 - For some reason, CB does not want to respond to Δq_t contemporaneously?
 - ★ If so, perhaps should clarify rationale

- Why does CB not respond contemporaneously to innovations in Δq_t ?
 - Not an implementability issue
 - * No restrictions on contemporaneous response to Δy_t and Δp_t ("implementable" Taylor rule as in Schmitt-Grohe and Uribe, 2006)
 - For some reason, CB does not want to respond to Δq_t contemporaneously?
 - \star If so, perhaps should clarify rationale
- TVC specification relies on model predictions:

"If that view [based on the theory] is correct, a VAR with constant coefficients will be mis-specified and may provide a distorted view of the effects of monetary policy on stock prices,..."

- Why does CB not respond contemporaneously to innovations in Δq_t ?
 - Not an implementability issue
 - * No restrictions on contemporaneous response to Δy_t and Δp_t ("implementable" Taylor rule as in Schmitt-Grohe and Uribe, 2006)
 - For some reason, CB does not want to respond to Δq_t contemporaneously?
 - \star If so, perhaps should clarify rationale
- TVC specification relies on model predictions:

"If that view [based on the theory] is correct, a VAR with constant coefficients will be mis-specified and may provide a distorted view of the effects of monetary policy on stock prices,..."

Do other theories of bubble imply different restrictions?

- Why does CB not respond contemporaneously to innovations in Δq_t ?
 - Not an implementability issue
 - * No restrictions on contemporaneous response to Δy_t and Δp_t ("implementable" Taylor rule as in Schmitt-Grohe and Uribe, 2006)
 - For some reason, CB does not want to respond to Δq_t contemporaneously?
 - \star If so, perhaps should clarify rationale
- TVC specification relies on model predictions:

"If that view [based on the theory] is correct, a VAR with constant coefficients will be mis-specified and may provide a distorted view of the effects of monetary policy on stock prices,..."

- Do other theories of bubble imply different restrictions?
- ► Important? Ultimate objective: Test tenet of "leaning against the wind"

- For business cycle, systematic part of monetary policy rules matters
 - Different for asset pricing?

- For business cycle, systematic part of monetary policy rules matters
 - Different for asset pricing?
- Example: Assume house price boom driven by lower LTVs

- For business cycle, systematic part of monetary policy rules matters
 - Different for asset pricing?
- Example: Assume house price boom driven by lower LTVs
 - Does expansionary monetary policy induce risk-taking (banks lower LTVs)?

- For business cycle, systematic part of monetary policy rules matters
 - Different for asset pricing?
- Example: Assume house price boom driven by lower LTVs
 - Does expansionary monetary policy induce risk-taking (banks lower LTVs)?
 - Simple (naïve?) regression

$$LTV_t = \alpha + \beta x_t + u_t$$

where x_t is monetary policy variable

- For business cycle, systematic part of monetary policy rules matters
 - Different for asset pricing?
- Example: Assume house price boom driven by lower LTVs
 - Does expansionary monetary policy induce risk-taking (banks lower LTVs)?
 - Simple (naïve?) regression

$$LTV_t = \alpha + \beta x_t + u_t$$

where x_t is monetary policy variable

	α	β	R^2
$x_t = \varepsilon_{FFR,t}$	-0.0104	-0.0031***	0.1452

- For business cycle, systematic part of monetary policy rules matters
 - Different for asset pricing?
- Example: Assume house price boom driven by lower LTVs
 - Does expansionary monetary policy induce risk-taking (banks lower LTVs)?
 - Simple (naïve?) regression

$$LTV_t = \alpha + \beta x_t + u_t$$

where x_t is monetary policy variable

	α	β	R^2
$x_t = \varepsilon_{FFR,t}$	-0.0104	-0.0031***	0.1452
$x_t = FFR_t$	-0.0012	-3.0454***	0.1462

Summary

• Great paper! Contrary to (new) conventional wisdom, higher interest rates may actually fuel, not prick, bubbles

Summary

- Great paper! Contrary to (new) conventional wisdom, higher interest rates may actually fuel, not prick, bubbles
- Three comments:
 - Some predictions of simple theory fail under generalized specification of stochastic discount factor
 - Where does key identification assumption come from?
 - Systematic part of monetary policy vs monetary innovations