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Abstract

In an environment where economic structures break, variances change, dis-
tributions shift, conventional policies weaken and past events tend to reoccur,
economic agents have to form expectations over different regimes. This makes
the regime-switching dynamic stochastic general equilibrium (RS-DSGE) model
the natural framework for analyzing the dynamics of macroeconomic variables.
We present efficient solution methods for solving this class of models, allowing
for the transition probabilities to be endogenous and for agents to react to
anticipated events. The solution algorithms derived use a perturbation strat-
egy which, unlike what has been proposed in the literature, does not rely on
the partitioning of the switching parameters. These algorithms are all imple-
mented in RISE, a flexible object-oriented toolbox that can easily integrate
alternative solution methods. We show that our algorithms replicate various
examples found in the literature. Among those is a switching RBC model for
which we present a third-order perturbation solution.
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1 Introduction

In an environment where economic structures break, variances change, distributions
shift, conventional policies weaken and past events (e.g. crises) tend to reoccur,
economic agents have to form expectations over different regimes.1 This makes the
regime-switching DSGE (RS-DSGE) model the natural framework for analyzing the
dynamics of macroeconomic variables.2 This class of models is especially important
because many policy questions of interest seem to be best answered/addressed in a
framework of changing parameters or, more generally, changing regimes. Some of
those questions are:

• what actions should we undertake today given the non-zero likelihood of a bad
state occurring in the future?

• what can we expect of the dynamics of the macro-variables we care about when
policy is constrained?

• how is the economy stabilized when policy is constrained?

Not surprisingly then, besides the ever-growing empirical literature using RS-
DSGE models, many efforts have been directed towards solving those models. In
that respect, the literature has considered three main angles of attack. One strand
of the literature considers approximating the solution of those models using “global”
methods. Examples include Davig et al. (2011), Bi and Traum (2013) and Richter
et al. (2014). Just as in constant-parameter DSGE models, global approximation
methods in RS-DSGE models face problems of curse of dimensionality, reliance on a
pre-specified set of grid points typically constructed around one steady state although
the model may have many, etc. The curse of dimensionality in particular, implies
that the number of state variables has to be as small as possible and even solving
small models involves substantial computational costs.

1Changes in shock variances have been documented by Stock and Watson (2003), Sims and Zha
(2006), Justiniano and Primiceri (2008), while breaks in structural parameters have been advocated
by Bernanke et al. (1999), Lubik and Schorfheide (2004), Davig and Leeper (2007). Other papers
have also documented changes in both variances and structural parameters. Examples include
Smets and Wouters (2007), Svensson and Williams (2007, 2009) and Cogley et al. (2012).

2To the extent that these features are present in the data, constant-parameter models could
be misleading in their predictions and their implications for policymaking. Another popular way
of modeling switches in parameters is the MSVAR model. This model is conditionally linear and
does not have forward-looking terms. We, therefore, view it as a special case of the more general
RS-DSGE framework.
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A second group of techniques applies Markov switching to the parameters of linear
or linearized DSGE models. Papers in this class include Farmer et al. (2011), Cho
(2014), Svensson and Williams (2007) to name a few. One advantage of this approach
is that one can handle substantially larger problems than the ones solved using global
methods. Insofar as the starting point is a linear model, all one has to worry about is
how to compute and characterize the solution of the model. If the original model is
nonlinear, however, a first-order approximation may not be sufficient to approximate
the nonlinear dynamics implied by the true policy functions of the model. Because
agents are aware of the switching process, the nonlinearity of the original model also
implies that one cannot assume away the switches in the parameters for the sake of
linearization and then reapply them to the model parameters once the linearized form
is obtained. This is especially important because switching parameters may imply
different steady states or attractors. Therefore, consistently linearizing the model
while taking into account the switching parameters calls for a different strategy.

Finally, the third group of techniques attempts to circumvent or find a work-
around to the problems posed by the first two groups. More specifically, this liter-
ature embeds switching in perturbation solutions whose accuracy can be improved
with higher and higher orders.3 This is the approach followed by Barthelemy and
Marx (2011), Foerster et al. (2013, 2014) and in this paper.

For many years we have been developing, in the RISE toolbox, algorithms for
solving and estimating models of switching parameters including DSGEs, VARs,
SVARs, optimal policy models of commitment, discretion and loose commitment.4

In the present paper, however, we focus on describing the theory behind the routines
implementing the RS-DSGE model in RISE.5

The approach in RISE is more general than the ones discussed earlier or found in
the literature. In contrast to Foerster et al. (2013, 2014) and the papers cited above,
in our derivation of higher-order perturbations we allow for endogenous transition
probabilities.6 We also allow for anticipated events or shocks following Maih (2010)
and Juillard and Maih (2010). This feature is useful as it offers an alternative to the
news shocks strategy that has often been used to analyze e.g. the effects of forward
guidance (e.g. Campbell et al. (2012), Del Negro et al. (2013), Gavin et al. (2014)).

3Model accuracy is often measured by the Euler approximation errors. It is important to note
that a high accuracy is not synonymous with the computed policy functions being close to the true
ones

4RISE is a matlab-based object-oriented toolbox. It is available, free of charge, at
https://github.com/jmaih/RISE toolbox.

5We plan to describe algorithms for other modules of RISE in subsequent papers.
6Barthelemy and Marx (2011) also consider endogenous probabilities but only in forward-looking

models for which they establish the existence of a unique stable equilibrium.
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The introduction of an arbitrary number of anticipated shocks does come at a cost
though: the number of cross terms to keep track of increases rapidly with the order of
approximation and computing the coefficients on those terms beyond the first order
becomes cumbersome. This problem is circumvented by exploiting a simple trick
by Levintal (2014), who shows a way of computing higher-order approximations by
keeping all state variables in a single block.7

But before computing higher-order perturbations, two problems relative to the
choice of the approximation point and the solving of a quadratic matrix equation,
have to be addressed. With respect to the choice of the approximation point, Foer-
ster et al. (2014) propose a “partition perturbation” strategy in which the switching
parameters are separated into two groups: one group comprises the switching param-
eters that affect the (unique) steady state and another group collects the switching
parameters that do not affect the steady state. Here also, our approach as imple-
mented in RISE is more general, more flexible yet simpler: it does not require any
partitioning of the switching parameters and is therefore more efficient. Moreover,
it allows for the possibility of multiple steady states and delivers the results of the
“partition perturbation” of Foerster et al. (2014) as a special case.

When it comes to solving the system of quadratic matrix equations implied by the
first-order perturbation, Foerster et al. (2013, 2014)’s proposal is to use the theory of
Gröbner bases (see Buchberger (1965, 2006)) to find all the solutions of the system
and then apply the engineering concept of mean square stability (MSS) to each of
the solutions as a way to check whether the Markov-Switching DSGE (MS-DSGE)8

system admits a single stable solution. While the benefits of a procedure that can
generate all possible solutions of a system of polynomial equations are undeniable,
we argue that such an approach may not be practical or suitable for systems of
the size that we have been accustomed to in policy institutions: both the compu-
tation of Gröbner bases and the checking of determinacy by MSS are prohibitively
expensive operations in medium-to-large scale models.9 The Foerster et al. (2013,

7Before the new implementation, the higher-order perturbation routines of RISE separated the
state variables into three blocks: endogenous variables, perturbation parameter, exogenous shocks.
Cross products of those had to be taken explicitly, calculated and stored separately.

8We use MS-DSGE to denote RS-DSGE models in which transition probabilities are constant.
9In the branch of mathematics called Algebraic Geometry, solving systems of polynomial equa-

tions is a very active topic and Gröbner bases are just one of the plethora of techniques available.
There various other techniques based on “resultants” (see e.g. Canny and Emiris (1993), Emiris
(1996), Emiris and Mourrain (1999), Dreesen et al. (2012)), on “homotopy” (e.g. Garcia and Zang-
will (1979), Morgan and Sommese (1987)) as well as the “Ritt-Wu” methods (e.g. Ritt (2008),
Wu (1978)). All those techniques have their own advantages and drawbacks but are all known
to be very computationally intensive and typically work well on small systems. Gröbner bases in
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2014) approach has two further limitations: (1) stability of first-order approximation
does not imply stability of higher-order approximations, even in constant-parameter
DSGE models; (2) there is no stability concept for switching models with endogenous
transition probabilities.

Because we are ultimately interested in estimating those models in order to make
them really useful for policymaking, we take a more modest route: we derive efficient
functional iterations and Newton algorithms that are suitable for solving relatively
large systems. As an example, we have successfully solved a second-order pertur-
bation of a model of 272 equations using our algorithms. We further demonstrate
the efficiency and usefulness of our solution methods by applying them to various
examples found in the literature. Our algorithms easily replicate the results found
by other authors. Among the examples we consider is a switching model by Foerster
et al. (2014) for which we present a third-order perturbation solution.

The rest of the paper proceeds as follows. Section 2 introduces the notation we
use alongside the generic regime-switching model that we aim to solve. Then Section
3 derives the higher-order approximations to the solution of the model. At the zero-
th order, we present various flexible strategies for choosing the approximation point.
Section 4 provides some details about how we can solve a generalized system of cou-
pled Sylvester equations. These equations arise both in higher-order approximations
and in one of our Newton algorithms for solving the first-order approximation. Build-
ing on the previous section, Section 5 takes on the solving of the quadratic matrix
polynomial arising in the first-order approximation. Three iterative solution tech-
niques are proposed: one functional iteration and two Newton algorithms. Section 6
evaluates the performance of the proposed algorithms and Section 7 concludes.

2 The regime-switching DSGE model

2.1 The economic environment

We are interested in characterizing an environment in which parameters (and poten-
tially equations) switch in a model that is potentially already nonlinear even in the
absence of switching parameters. In that environment we would like to allow for the
transitions controlling parameter switches to be endogenous and not just exogenous
as customarily found in the literature. Finally, recognizing that at the time of mak-
ing decisions agents may have information about future events, it is desirable that

particular are known to be an expspace-complete (or expspace-hard) problem i.e. a large amount
of space is required for storing intermediate results.

5



future events – forward guidance on the behavior of policy is an example of such a
possibility – which may or many not materialize in the end, influence the current
behavior of private agents.

2.2 Dating and notation conventions

The dating convention used in this paper is different from the widely used convention
of Schmitt-Grohe and Uribe (2004) in which the dating of the variables refers to the
beginning of the period. Instead we rely on the also widely used dating convention
in which the dating of the variables refers to the end of the period. In that way, the
dating determines the period in which the variable of interest is known as opposed
to the period in which it is used.10 This is the type of notation used for instance in
Adjemian et al. (2011).

Some solution methods for constant-parameter DSGE models (e.g. Klein (2000),
Sims (2002), Schmitt-Grohe and Uribe (2004)) stack variables of different periods.
This type of notation has also been used in the context of MS-DSGE models by
Farmer et al. (2011). This notation is not appropriate for the type of problems this
paper aims to solve. In addition to forcing the creation of auxiliary variables and
thereby increasing the size of the system, it also makes it cumbersome to compute
expectations of variables in our context since future variables could belong to a state
that is different from the current one. Clearly, doing so may restrict the class of
problems one can solve or give the wrong answer in some types of problems.11 The
stacking of different time periods therefore is not appealing for our purposes.

2.3 The generic model

Many solution approaches, like Farmer et al. (2011), Svensson and Williams (2007) or
Cho (2014), start out with a linear model and then apply a Markov switching to the
parameters. This strategy is reasonable as long as one takes a linear specification as
the structural model. When the underlying structural model is nonlinear, however,
the agents are aware of the nonlinear nature of the system and of the switching
process. This has implications for the solutions based on approximation and for the
decision rules. For instance, an important result by Foerster et al. (2013) is that the

10For instance, in the notation used in this paper we would write a capital accumulation equation
as Kt = (1− δ)Kt−1 + It rather than Kt+1 = (1− δ)Kt + It.

11In the Farmer et al. (2011) procedure for instance, the Newton algorithm is constructed on the
assumption that the coefficient matrix on forward-looking variables depends only on the current
regime.
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first-order perturbation may be non-certainty equivalent. Furthermore, switching
parameters may imply different steady states or attractors.12 Hence starting out
with a linear specification may miss these important points.

The problem to solve is

Et

h∑
rt+1=1

πrt,rt+1 (It) d̃rt (v) = 0

where Et is the expectation operator, d̃rt : Rnv −→ Rnd is a nd× 1 vector of possibly
nonlinear functions of their argument v (defined below), rt = 1, 2, .., h is the regime
a time t, πrt,rt+1 (It) is the transition probability for going from regime rt in the
current period to regime rt+1 in the next period. This probability is potentially
endogenous in the sense that it is a function of It, the information set at time t.
The only restriction imposed on the endogenous switching probabilities is that the
parameters affecting them do not switch over time and that the variables entering
those probabilities have a unique steady state.13

We refer to this model as the RS-DSGE model. Its special case in which the
transition probabilities are constant will be referred to as Markov-Switching DSGE
(MS-DSGE) model.

The nv × 1 vector v is defined as

v ≡
[
bt+1 (rt+1)′ ft+1 (rt+1)′ st (rt)

′ pt (rt)
′ bt (rt)

′ ft (rt)
′ p′t−1 b′t−1 ε′t θ′rt+1

]′
(1)

where :

• st is a ns × 1 vector of static variables. Those are the variables appearing in
the model only at time t.

• ft is a nf×1 vector of forward-looking variables. Those are variables appearing
in the model both at time t and at time t+ 1.

• pt is a np × 1 vector of predetermined variables. Those variables appear in the
model at time t and at time t− 1.

• bt is a nb × 1 vector of “both” variables. Those are variables that are both
predetermined and forward-looking

12Aruoba et al. (2014) give an example of a system that can exhibit both a targeted-inflation
steady state and a deflationary steady state.

13RISE automatically checks for these requirements.

7



• εt is a nε × 1 vector of shocks with εt ∼ N (0, Inε)

• θrt+1 is a nθ × 1 vector of switching parameters appearing with a lead in the
model.

This classification of the variables is done automatically by the parser in RISE
and so, all the user has to do is to provide a model file containing the equations of the
model written in the most natural way. Note that we do not declare the parameters
of the current regime rt. They are implicitly attached to d̃rt , which also reflects
that the model equations can switch and not just the parameters. Also note that
we could get rid of the parameters of future regimes (θrt+1) by declaring auxiliary
variables, as we will formally show in section (3.2). The resulting auxiliary variables
are forward-looking.

If we define the nd × 1 vector drt,rt+1 as drt,rt+1 ≡ πrt,rt+1 (It) d̃rt , the objective
becomes

Et

h∑
rt+1=1

drt,rt+1 (v) = 0 (2)

2.3.1 State variables

Following Maih (2010) and Juillard and Maih (2010), we assume that the agents
have information for all or some of the shocks k ≥ 0 periods ahead into the future.
And so, including a perturbation parameter σ, we define an nz × 1 vector of state
variables as

zt ≡
[
p′t−1 b′t−1 σ ε′t ε′t+1 · · · ε′t+k

]′
where nz = np + nb + (k + 1)nε + 1.

This strategy of modeling “anticipated events” or “anticipated shocks” differs
from the alternative approach commonly referred to as “news shocks” in many ways.
First, solving the model with anticipated shocks does not require a modification of
the equations of the original system, in contrast to “news shocks” that are typically
implemented by augmenting the law of motion of a shock process with additional
shocks. Secondly, in the anticipated shocks approach, future events are discounted
while in the news shocks approach the impact of a news shock does not depend on
the horizon at which the news occurs.14 Thirdly, an anticipated shock is genuinely

14Discounting makes it possible to analyze the effects of “hard conditions” as well as “soft con-
ditions” on the future information: the discounting of future events depends on the uncertainty
around those events.
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a particular structural shock in the original system, while in the news shocks, it is
a different iid shock with no other interpretation than a “news” and unrelated to
any structural shock in the system. Because it is unrelated, it will have its own
distribution independently of other parts of the system. Fourthly, the estimation
of models of news shocks requires additional variables to be declared as observables
and enter the measurement equation. The estimation procedure then tries to fit
the future information is the same way it fits the other observable variables. This
feature makes Bayesian model comparison infeasible since the comparison of two
models requires that they have the same observable variables. In contrast, in the
estimation of models with anticipated shocks, the anticipated information, which may
not materialize is separated from the actual data. Model comparison remains possible
since the anticipated information never enters the measurement equations. Finally,
in the anticipated shocks approach the policy functions are explicitly expressed in
terms of leads of future shocks as opposed to lags in the news shocks approach.

2.3.2 General solution

Denoting by yt (rt), the ny × 1 vector of all the endogenous variables, where ny =
ns + np + nb + nf , we are interested in solutions of the form

yt (rt) ≡


st (rt)
pt (rt)
bt (rt)
ft (rt)

 = T rt (zt) ≡


Srt (zt)
Prt (zt)
Brt (zt)
F rt (zt)

 (3)

In general, there is no analytical solution to (2) even in cases where d̃rt or drt,rt+1

is linear. In this paper we rely on a perturbation that will allow us to approximate
the decision rules in (3). We can then solve these approximated decision rules by
inserting their functional forms into (2) and its derivatives. This paper develops
methods for doing that.

3 Approximations

For the subsequent derivations, it is useful to define for all g ∈ {s, p, b, f}, an ng×ny
matrix λg that select the solution of g-type variables in T or y. We also define

λx ≡
[
λp
λb

]
and λbf ≡

[
λb
λf

]
as the selector for p-b and b-f variables respectively.

In the same way, we define for all g ∈ {pt−1, bt−1, σ, εt, εt+1, ..., εt+k}, a matrix mg of
size ng × nz that selects the g-type variables in the state vector zt.
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Since the solution is in terms of the vector of state variables zt, we proceed to
expressing all the variables in the system as a function of zt. Since both bt+1 (rt+1)
and ft+1 (rt+1) appear in the system (1) and given the solution (3) we need to express
zt+1 as a function of zt as well. This is given by zt+1 = hrt (zt) + uzt , where

hrt (zt) ≡
[

(λxT rt (zt))
′ (mσzt)

′ (mε,1zt)
′ · · · (mε,kzt)

′ (0nε×1)′
]′

and u is a nz × nz random matrix defined by

u ≡
[

0(np+nb+1+knε)×nz
εt+k+1mσ

]
(4)

The most natural way to handle the presence of future switching parameters in
the system of the current regime is to define auxiliary variables. Doing so makes it
easy to handle cases where the parameters of future regimes appear in the form of
θrt+τ with τ > 1. For the case where only next-period parameters appear, i.e. τ = 1,
one can take a shortcut like Foerster et al. (2013, 2014), and postulate a perturbation
solution for θrt+1 as.15

θrt+1 = θ̄rt + σθ̂rt+1 (5)

In this respect, this paper differs from Foerster et al. (2013, 2014) in two im-
portant ways. First, θ̄rt need not be the ergodic mean of the parameters as will be
discussed below. Secondly, conditional on being in regime rt, perturbation is never
done with respect to the θrt parameters. Perturbation is done only with respect to
the parameters of the future regimes (θrt+1) that appear in the system for the current
regime (rt).

Given the solution, we can now express vector v in terms of the state variables

v =



λbfT rt+1 (hrt (zt) + uzt)
T rt (zt)
mpzt
mbzt
mε,0zt

θ̄rt + θ̂rt+1mσzt

 (6)

and the objective function (2) becomes

Et

h∑
rt+1=1

drt,rt+1 (v (zt, u)) = 0 (7)

15We formally show in Section (3.2) that this expression can be derived as a first-order approxi-
mation of an endogenous auxiliary variable.

10



Having expressed the problem to solve in terms of state variables consolidated
in a single vector zt, as in Levintal (2014), we stand ready to take successive Taylor
approximations of (7) to find the perturbation solutions. This strategy of consolidat-
ing all state variables in one block is particularly useful when it comes to computing
higher-order cross derivatives. By not separating state variables, we always have one
block of cross products no matter the order of approximation instead of an exponen-
tially increasing number of cross blocks.

3.1 Zero-th order perturbation

The first step of the perturbation technique requires the choice of the approximation
point. In a constant-parameter world, we typically approximate the system around
the steady state, the resting point to which the system will converge in the absence
of future shocks. In a switching environment the choice is not so obvious any more.

Approximation around the ergodic mean16 Foerster et al. (2013, 2014) pro-
pose to take a perturbation of the system around its ergodic mean. This ergodic
mean can be found by solving d̃r̄

(
bt, ft, st, pt, bt, ft, pt, bt, 0, θ̄

)
= 0. We use the nota-

tion d̃r̄ to indicate that the parameters of the current regime rt have been replaced
by those of the ergodic mean and θ̄ is the ergodic mean of the future switching pa-
rameters. The ergodic mean, however, need not be an attractor or a resting point, a
point towards which the system will converge in the absence of further shocks. We
propose two further possibilities.

Regime-specific steady states17 The first one is to approximate the system
around regime-specific means. The system may not be stable at the mean in a
certain regime, but at least we assume that if the system happens to be exactly
at one of its regime-specific means, it will stay there in the absence of any further
shocks. We compute those means by solving

d̃rt (bt (rt) , ft (rt) , st (rt) , pt (rt) , bt (rt) , ft (rt) , pt (rt) , bt (rt) , 0, θrt) = 0

The intuition behind this strategy is two-fold. On the one hand, it is not too
difficult to imagine that the relevant issue for rational agents living in a particular
state of the system at some point in time is to insure against the possibility of

16In the RISE toolbox, this is triggered by the option “unique”.
17This approach is the default behavior in the RISE toolbox.
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switching to a different state, and not to the ergodic mean. On the other hand, from
a practical point of view, the point to which the system is to return matters for
forecasting. Many inflation-targeting countries have moved from a regime of high
inflation to a regime of lower inflation. Approximating the system around the ergodic
mean in this case implies that the unconditional forecasts will be pulled towards a
level that is consistently higher than the recent history of inflation, which is likely
to yield substantial forecast errors. All this contributes to reinforcing the idea that
the ergodic mean is not necessarily an attractor.

Approximation around an arbitrary point18 In the second possibility, one can
impose an arbitrary approximation point. If the point of approximation is chosen
arbitrarily, obviously, none of the two equations above will hold and a correction
will be needed in the dynamic system, with consequences for the solution as well.
This approach may be particularly useful in certain applications, e.g. a situation
in which one of the regimes persistently deviates from the reference steady state
for an extended period of time. The approach also bears some similarity with the
constant-parameter case where the approximation is sometimes taken around the
risky or stochastic steady state (e.g. Coerudacier et al. (2011), Juillard (2011)).

Suppose we want to take an approximation around an arbitrary point
[
s̆, p̆, b̆, f̆

]
.

The strategy we suggest is to evaluate that point in each regime. More specifically
we will have

d̆rt ≡ d̃rt

(
b̆, f̆ , s̆, p̆, b̆, f̆ , p̆, b̆, 0, θrt

)
The quantity d̆rt , which is potentially different from zero is then forwarded to the

first-order approximation when solving the first-order coefficients.
Interestingly, both the regime-specific approach and the ergodic approach are

special cases. In the former, because
[
s̆, p̆, b̆, f̆

]
= [st (rt) , pt (rt) , bt (rt) , ft (rt)], d̆rt

is zero. In the later case,
[
s̆, p̆, b̆, f̆

]
=
[
sergodic, pergodic, bergodic, f ergodic

]
and d̆rt need

not be zero.
The approach suggested here is computationally more efficient than that sug-

gested by Foerster et al. (2014) and does not require any partitioning of the switching
parameters between those that affect the steady state and those that do not. It will
be shown later on in an application that we easily recover their results.

18In the RISE toolbox, this is triggered by the option “imposed”. When the steady state is not
imposed, RISE uses the values provided as an initial guess in the solving of the approximation
point.
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3.2 First-order perturbation

At first order we seek to approximate T rt in (3) with a solution of the form

T rt (z) ' T rt (z̄rt) + T rtz (zt − z̄rt) (8)

With the approximation point in hand, the only unknown at this stage is T rtz .
Before finding its solution, we formally show that we can replace future parameters
with auxiliary variables and thereby rationalize equation (5).

Proposition 1. Let an equation in the system (2) be such that auxt−θrt = 0, where
auxt is an endogenous variable and θrt is a switching parameter. Suppose the model
is approximated around an arbitrary point yielding the first-order expansion of auxt
as auxt = aux∗ + τ rtx x̂t−1 + τ rtε εt + τ rtσ σ. Then the following hold:

• τ rtx = 0 and τ rtε = 0

• τ rtσ = θrt − aux∗

Proof. The fact that τ rtx = 0 and τ rtε = 0 is obvious because conditional on being
in a regime rt, auxt = θrt and is independent of any state variable. This leads to
auxt = aux∗ + τ rtσ σ, implying that aux∗ + τ rtσ σ = θrt or τ rtσ σ = θrt− aux∗. Setting
the perturbation parameter σ = 1 gives the result.

Finding the solution of T rtz requires differentiating (7) with respect to zt and
keeping in mind that at the approximation point, d̆rt need not be equal to zero.
Using tensor notation, we have

[
d̆rt

]i
+ Et

h∑
rt+1=1

[drt,rt+1
v ]iα [vz]

α
j = 0 (9)

where [drt,rt+1
v ]iα denotes the derivative of the ith row of d with respect to the αth row

of v and, similarly, [vz]
α
j denotes the derivative of the αth row of v with respect to

the jth row of z.
Unfolding the tensors this problem reduces to

d̆rt +
h∑

rt+1=1

drt,rt+1
v Etvz = 0

Let us define d
rt,rt+1

gq ≡ ∂drt,rt+1

∂gq
for g = s, p, f, b referring to static, predeter-

mined, forward looking and “both” variables and for q = 0,+,− referring to current
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variables, future variables and past variables respectively. Let us also define the
coefficient matrix on contemporaneous variables as

A0
rt,rt+1

≡
[
d
rt,rt+1

s0 d
rt,rt+1

p0 d
rt,rt+1

b0 d
rt,rt+1

f0

]
we have

dv =
[
d
rt,rt+1

b+ d
rt,rt+1

f+ A0
rt,rt+1

d
rt,rt+1

p− d
rt,rt+1

b− d
rt,rt+1

ε0 d
rt,rt+1

θ+

]
The derivatives of v with respect to z are given by

vz = a0
z + a1

zu (10)

where the definitions of a0
z and a1

z are given in appendix (A.1).
An important ingredient in the calculation of vz is, as can be seen in (6), the

derivative of h with respect to z. This derivative is given by

hrtz =
[

(λxT rtz )′ m′σ m′ε,1 · · · m′ε,k 0n2
z×nε

]′
With all these expressions in hand, the problem to solve for finding T rtz can be

expanded into

h∑
rt+1=1

 [
d
rt,rt+1

b+ d
rt,rt+1

f+

]
λbfT rt+1

z hrtz + A0
rt,rt+1

T rtz +[
d
rt,rt+1

p− d
rt,rt+1

b−

] [ mp

mb

]
+ d

rt,rt+1

ε0 mε,0 + d
rt,rt+1

θ+ θ̂rt+1mσ

 = 0

Looking at T rtz and hrtz in detail, we see that they can be partitioned. In particular,
with T rtz,x ≡

[
T rtz,p T rtz,b

]
, we have

T rtz =
[
T rtz,x T rtz,σ T rtz,ε0 T

rt
z,ε1 · · · T

rt
z,εk

]

hrtz =



λxT rtz,x λxT rtz,σ λxT rtz,ε0 λxT rtz,ε1 · · · λxT rtz,εk
01×nx 1 01×nε 01×nε · · · 01×nε
0nε×nx 0nε×1 0nε Inε · · · 0nε

...
...

...
...

. . .
...

0nε×nx 0nε×1 0nε 0nε · · · Inε
0nε×nx 0nε×1 0nε 0nε · · · 0nε


Hence the solving can be decomposed into small problems
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3.2.1 Impact of endogenous state variables

The problem to solve is

A0
rtT

rt
z,x + A−rt +

∑h
rt+1=1A

+
rt,rt+1

T rt+1
z,x λxT rtz,x = 0 (11)

with A0
rt ≡

∑h
rt+1=1 A

0
rt,rt+1

and A−rt ≡
∑h

rt+1=1

[
d
rt,rt+1

p− d
rt,rt+1

b−

]
and

A+
rt,rt+1

≡
[

0nd×ns 0nd×np d
rt,rt+1

b+ d
rt,rt+1

f+

]
(12)

Since there are many algorithms for solving (11), we delay the presentation of
our solution algorithms until Section 5. For the time being, the reader should note
the way A+

rt,rt+1
enters (11). This says that our algorithms will be able to handle

cases where the coefficient matrix on forward-looking terms is known in the current
period (A+

rt,rt+1
= A+

rt,rt) as in Farmer et al. (2011) but also the more complicated
case where A+

rt,rt+1
6= A+

rt,rt as in Cho (2014). This is part of the reasons why the
notation of Schmitt-Grohe and Uribe (2004), where one can stack variables, is not
appropriate in this context. This assumption is very convenient in the Farmer et al.
(2011) algorithm as it allows them to derive their solution algorithm, which would be
more difficult otherwise. It is also convenient as it leads to substantial computational
savings. But as our derivations show, the assumption is incorrect in problems where
A+
rt,rt+1

6= A+
rt,rt .

3.2.2 Impact of uncertainty

For the moment, we proceed with the assumption that we have solved for T rtz,x. Now
we have to solve for T rtz,σ using

d̆rt +
h∑

rt+1=1

A+
rt,rt+1

T rt+1
z,σ + Artσ T rtz,σ +

h∑
rt+1=1

d
rt,rt+1

θ+ θ̂rt,rt+1 = 0

which leads to

T rtz,σ = −


A1
σ + A+

1,1 A+
1,2 · · · A+

1,h

A+
2,1 A2

σ + A+
2,2 · · · A+

2,h
...

...
. . .

...
A+
h,1 A+

h,2 · · · Ahσ + A+
h,h


−1

d̆1 +

∑h
rt+1=1 d

1,rt+1

θ+ θ̂1,rt+1

d̆2 +
∑h

rt+1=1 d
2,rt+1

θ+ θ̂2,rt+1

...

d̆h +
∑h

rt+1=1 d
h,rt+1

θ+ θ̂h,rt+1


(13)

where Artσ ≡ A0
rt +

∑h
rt+1=1

(
d
rt,rt+1

f+ λfT rt+1
z,p λp + d

rt,rt+1

b+ λbT rt+1

z,b λb

)
.

15



It follows from equation (13) that in our framework, it is the presence of (1)
future parameters in the current state system and/or (2) an approximation taken
around a point that is not the regime-specific steady state that creates non-certainty
equivalence.

3.2.3 Impact of shocks

Define

Urt ≡

(
h∑

rt+1=1

A+
rt,rt+1

T rt+1
z,x

)
λx + A0

rt (14)

Contemporaneous shocks We have

T rtz,ε0 = −U−1
rt

∑h
rt+1=1 d

rt,rt+1

ε0 (15)

Future shocks For k = 1, 2, ... we have the recursive formula

T rt
z,εk

= −U−1
rt ×

(∑h
rt+1=1A

+
rt,rt+1

T rt+1

z,ε(k−1)

)
(16)

3.3 Second-order perturbation

The second-order perturbation solution of T rt in (3) takes the form

T rt (z) ' T rt (z̄rt) + T rtz (zt − z̄rt) + 1
2
T rtzz (zt − z̄rt)

⊗2

Since T rt (z̄rt) and T rtz have been computed in earlier steps, at this stage we only
need to solve for T rtzz . To get the second-order solution, we differentiate (9) with
respect to z to get

Et

h∑
rt+1=1

(
[drt,rt+1
vv ]iαβ [vz]

β
k [vz]

α
j + [drt,rt+1

v ]iα [vzz]
α
jk

)
= 0 (17)

so that unfolding the tensors yields

h∑
rt+1=1

(
drt,rt+1
vv Etv

⊗2
z + drt,rt+1

v Etvzz
)

= 0 (18)

We use the notation A⊗k as a shorthand for A ⊗ A ⊗ ... ⊗ A. We get vzz by
differentiating vz with respect to z, yielding
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vzz = a0
zz + a1

zzu
⊗2 + a1

zz (u⊗ hrtz + hrtz ⊗ u) (19)

where the definitions of a0
zz, a

1
zz as well as the expressions for Ev⊗2

z , Evzz and Eu⊗2

needed to solving for T rtzz are given in appendix (A.2).
With those expressions in hand, expanding the problem to solve in (18) gives

Artzz +
h∑

rt+1=1

A+
rt,rt+1

T rt+1
zz Crt

zz + UrtT rtzz = 0 (20)

with Artzz ≡
∑h

rt+1=1 d
rt,rt+1
vv Etv

⊗2
z and Crt

zz ≡ (hrtz )⊗2 + Eu⊗2.

3.4 Third-order perturbation

The third-order perturbation solution of T rt in (3) takes the form

T rt (z) ' T rt (z̄rt) + T rtz (zt − z̄rt) + 1
2
T rtzz (zt − z̄rt)

⊗2 + 1
3!
T rtzzz (zt − z̄rt)

⊗3

Now the unknown is T rtzzz. We get its solution first by differentiating (17) with
respect to z. This leads to

Et

h∑
rt+1=1

 [drt,rt+1
vvv ]iαβγ [vz]

γ
l [vz]

β
k [vz]

α
j +

[drt,rt+1
vv ]iαβ

∑
rst∈Ω1

[vzz]
β
rs [vz]

α
t +

[drt,rt+1
v ]iα [vzzz]

α
jkl

 = 0

with Ω1 ≡ {klj, jlk, jkl}.
This tensor operation is unfolded into

Et

h∑
rt+1=1

(
drt,rt+1
vvv

(
v⊗3
z

)
+ ωΩ1 (drt,rt+1

vv (vz ⊗ vzz)) + drt,rt+1
v vzzz

)
= 0

where ωΩ1 (.) is a function that computes the sum of permutations of tensors of type
A (B ⊗ C) and where the permutations are given by the indices in Ω1.

We get vzzz by differentiating vzz with respect to z, yielding

vzzz = a0
zzz + a1

zzzP
(
(hrtz )⊗2 ⊗ u

)
+ a1

zzzP (hrtz ⊗ u⊗2)
+a1

zzzu
⊗3 + ωΩ1 (a1

zz (u⊗ hrtzz))
(21)
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where hrtzz, defined in (33) is the second derivative of hrt with respect to z19.
In equation (21), the function P (.) denotes the sum of all possible permutations

of Kronecker products. That is P (A⊗B ⊗ C) = A⊗B⊗C+A⊗C ⊗B+B⊗A⊗
C +B⊗C ⊗A+C ⊗A⊗B+C ⊗B⊗A. Only one product needs to be computed.
The remaining ones can be derived as “perfect shuffles” of the computed one (see
e.g. Van Loan (2000)).

The definitions of a0
zzz and a1

zzz as well as expressions for Evzzz, E (vz ⊗ vz ⊗ vz),
E (vzz ⊗ vz), E (vz ⊗ vzz) needed to solve for T rtzzz are given in appendix (A.3). With
all those expressions in hand, finding T rtzzz reduces to solving

Artzzz +
h∑

rt+1=1

A+
rt,rt+1

T rt+1
zzz Crt

zzz + UrtT rtzzz = 0 (22)

withArtzzz ≡
∑h

rt+1=1

{
drt,rt+1
vvv Ev⊗3

z + ωΩ1

(
drt,rt+1
vv E (vz ⊗ vzz) +(

d
rt,rt+1

b+ λb + d
rt,rt+1

f+ λf

)
T rt+1
zz (hrtz ⊗ hrtzz)

)}
and Crt

zzz ≡ P (hrtz ⊗ Eu⊗2) + Eu⊗3 + (hrtz )⊗3.

3.5 Higher-order solutions

The derivatives of (7) can be generalized to an arbitrary order, say p. In that case
we have

0 = Et

h∑
rt+1=1


p∑
l=1

[
d
rt,rt+1

v(l)

]i
α1α2···αl

∑
c∈Ml,p

l∏
m=1

[vz|cm| ]
αm
j(cm)


where:

• Ml,p is the set of all partitions of the set of p indices with class l. In particular,
M1,p = {{1, 2, · · · , p}} and Mp,p = {{1} , {2} , · · · , {p}}

• |.| denotes the cardinality of a set

• cm is the m-th class of partition c

• j (cm) is a sequence of j’s indexed by cm

19For any p ≥ 2, the p-order derivative of hrt with respect to z is given by hrt
z(p)

=[
λxT rtz(p)

0(1+(k+1)nε)×np
z

]
.
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The p-order perturbation solution of T rt takes the form

T rt (z) ' T rt (z̄rt) + T rtz (zt − z̄rt) + 1
2
T rtzz (zt − z̄rt)

⊗2 + 1
3!
T rtzzz (zt − z̄rt)

⊗3 +
1
4!
T rtzzzz (zt − z̄rt)

⊗4 + · · ·+ 1
p!
T rtz...z (zt − z̄rt)

⊗p

(23)

4 Solving the generalized coupled Sylvester equa-

tion

The equations for finding the solution of higher-order terms in (20), in (22) and in all
further orders of approximation can be, after preconditioning, written in a general
form as X̃i+

∑h
j=1 FijX̃jG̃ij = C̃i where X̃j, j = 1, 2, ..., h, are the unknown matrices

of size rx × cx.
In the case where h = 1, we have a simple Sylvester equation for which some

efficient algorithms have already been derived, e.g. Kamenik (2005). Such algorithms
cannot be applied in the switching case, unfortunately. However, there are instances
in which the columns of X̃j, are duplicated. RISE offers the option to exploit that
symmetry by computing those terms only once. For that purpose, we need two
matrices: a compressor matrix K, of size cx×ck, that will gather the unique columns
of Xj, and an expander matrix E , of size ck × cx, that will undo the operation.
Formally, X̃j = X̃jKE . The two matrices are such that KE need not be equal to
Icx×cx , but EK = Ick×ck . Hence, defining Xj ≡ X̃jK, we can solve for Xj and
then expand the result into X̃j = XjE .20 In practice, rather than doing matrix
multiplications, it is even more economical to implement K as a selection vector and
E as a duplication vector. This is what RISE does. The compressed system is then

Xi +
h∑
j=1

FijXjGij = Ci (24)

where Gij ≡ EG̃ijK and Ci ≡ C̃iK.

4.1 The direct approach

Define X ≡ [X1, X2, · · · , Xh] and C ≡ [C1, C2, · · · , Ch]. The h equations can be
stacked and vectorized yielding the direct solution

20In a higher-order perturbation of order p, the number of unique columns of X̃j is ck =
(
cx+p−1

p

)
.
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x =

 I +G′11 ⊗ F11 · · · G′1h ⊗ F1h
...

. . .
...

G′h1 ⊗ Fh1 · · · I +G′hh ⊗ Fhh


−1

c

where x ≡ vec (X) and c ≡ vec (C). The cost of building and inverting the matrix
involved in the direct approach is huge and very often this approach is not feasible.

4.2 The iterative approach

The iterative approach avoids building the huge matrix in the direct approach.21

This can be done in different ways. By default, RISE applies the “transpose-free
quasi minimum residuals” (TFQMR) method due to Freund (1993). This iterative
procedure is defined by a quasi-minimization of the norm of a residual vector over a
Krylov subspace. The advantage of this technique in addressing our problem is that
it involves the huge coefficient matrix only in the form of matrix-vector products,
which we can compute efficiently. Moreover, the TFQMR technique overcomes the
problems of the bi-conjugate gradient (BCG) method, which is known to (i) exhibit
erratic convergence behavior with large oscillations in the residual norm, (ii) have a
substantial likelihood of breakdowns (more precisely, division by 0).22

5 Solving the system of quadratic matrix equa-

tions

One of the main objectives of this paper is to present algorithms for solving (11),
the first-order approximation of the RS-DSGE model. In this context, there are
important contributions in the literature, most of which are ideally suited for small
models. We briefly review the essence of some of the existing solution methods, most
of which are nicely surveyed and evaluated in Farmer et al. (2011), and then present
our own.

21In RISE the computation and storage of Gij , which typically involves Kronecker products, is
also avoided.

22The BCG method, due to Lanczos (1952), extends the classical conjugate gradient algorithm
(CG) to non-Hermitian matrices.
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5.1 Existing solution methods

The FP algorithm: The strategy in this technique by Farmer et al. (2008) is to
stack all the regimes and rewrite a MS-DSGE model as a constant parameter model,
whose solution is the solution of the original model. As demonstrated by Farmer
et al. (2011), the FP algorithm may not find solutions even when they exist.

The SW algorithm: This functional iteration technique by Svensson and Williams
(2007) uses an iterative scheme to find the solution of a fix-point problem, through
successive approximations of the solution, just as the Farmer et al. (2008) approach.
But the SW algorithm does not resort to stacking matrices as Farmer et al. (2008),
which is an advantage for solving large systems. Unfortunately, again as shown by
Farmer et al. (2011), the SW algorithm may not find solutions even when they exist.

The FWZ algorithm: This algorithm, by Farmer et al. (2011), uses a Newton
method to find the solutions of the MS-DSGE model. It is a robust procedure in
the sense that it is able to find solutions that the other methods are not able to
find. The Newton method has the advantage of being fast and locally stable around
any given solution. However, unlike what was claimed in Farmer et al. (2011), in
practice, choosing a large enough grid of initial conditions does not guarantee that
one will find all possible MSV solutions.

The Cho algorithm: This algorithm, by Cho (2014), finds the so-called “forward
solution” by extending the forward method of Cho and Moreno (2011) to MS-DSGE
models. The paper also addresses the issue of determinacy – existence of a unique
stable solution. The essence of the algorithm is the same as that of the SW algorithm.

The FRWZ algorithm23: This technique, by Foerster et al. (2013, 2014), is one
of the latest in the literature. It applies the theory of Gröbner bases (see Buchberger
(1965, 2006)) to find “all possible” solutions and then establishes determinacy by
checking whether there is a unique Mean-Square Stable (MSS) solution24. As argued
earlier, because of their complexity, the Gröbner bases avenue is not very attractive
in the context of models of the size routinely used in central banks. Moreover,

23This algorithm is not implemented in RISE, but the flexibility and modularity of the toolbox
are such that any user with little exposure to RISE is able to apply his own solution method
without having to change anything to the core codes. Therefore the FRWZ algorithm can easily be
incorporated as long as it is written in Matlab or interfaced to Matlab.

24A formal definition of this stability concept is given in Section 5.3.
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the determinacy-checking step is as computationally intensive as the first step, if
not more so. The matrix in equation (30) with its Kronecker products has to be
formed explicitly and then its eigenvalues have to be computed. In fact, for all
the applications we consider in this paper, checking MSS is the most expensive
step. If one attempts estimating a model, which is the goal we have in mind when
deriving the algorithms in this paper, using the Foerster et al. (2013, 2014) strategy is
prohibitively expensive : locating the global peak of the posterior kernel will typically
require thousands of function evaluations and for each of those function evaluations
we need to solve a problem of exponential complexity.

Finally, stability of a first-order approximation does not imply stability of higher-
order approximations even in the constant-parameter case. In the switching case
with constant transition probabilities, the problem gets worse. When we allow for
endogenous probabilities as it is done in this paper, there is no stability concept such
as MSS that applies. Therefore, provided we can even compute all possible solutions,
we do not have a criterion for picking one of them.

5.2 Proposed solution techniques

All of the algorithms presented above use constant transition probabilities. In many
cases, they also use the type of notation used in Klein (2000), Schmitt-Grohe and
Uribe (2004) and Sims (2002). This notation works well with constant-parameter
models.25 When it comes to RS-DSGE models, however, that notation has some
disadvantages as we argued earlier. Among other things, besides the fact that it
often requires considerable effort to manipulate the model into the required form,
the ensuing algorithms may be slow, owing in part to the creation of additional
auxiliary variables.

The solution methods proposed below do not suffer from those drawbacks, but
have their own weaknesses as well. And so they should be viewed as complementary
to existing ones.26

5.2.1 A functional iteration algorithm

Functional iteration is a well established technique for solving models that do not
have an analytical solution, but that are nevertheless amenable to a fix-point type of
representation. It is very much used for instance when solving value functions in the

25This is an attractive feature as it provides a compact and efficient representation of the first-
order conditions or constraints of a system leading to the well known solution methods for constant-
parameter DSGE models such as Klein (2000), Sims (2002), among others.

26These solution algorithms have been part of the RISE toolbox for many years.
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Bellman equations of dynamic programming problems. In the context of RS-DSGE
models, functional iteration has the advantages that (1) it typically converges fast
whenever it is able to find a solution, (2) can be used to solve large systems, (3) is
easily implementable.

We concentrate on minimum state variable (MSV) solutions and promptly re-
write (11) as27

T rtz,x = −
[
A0
rt +

(∑h
rt+1=1A

+
rt,rt+1

T rt+1
z,x

)
λx

]−1

A−rt (25)

which is the basis for our functional iteration algorithm whose pseudo code is given
in algorithm 1.

Data: T (0)
z,x ≡

[
T 1(0)
z,x · · · T h(0)

z,x

]
, A+

rt,rt+1
, A0

rt , A
−
rt , for rt, rt+1 = 1, 2, ..., h

Result: T (k)
z,x

1 k=0 ;
2 set conv=inf ;
3 while conv > 0 do
4 k=k+1 ;
5 for rt = 1 to h do
6 tmp = A0

rt ;
7 for rt+1 = 1 to h do

8 tmp = tmp+ A+
rt,rt+1

T rt+1(k−1)
z,x ;

9 end

10 T rt(k)
z,x = − [tmp]−1A−rt ;

11 end

12 conv =
∥∥∥T (k)

z,x − T (k−1)
z,x

∥∥∥ ;

13 end

Algorithm 1: Pseudo code for the generic Functional iteration algorithm

This algorithm is implemented in RISE under the name MFI full. It has a
variant that further exploits the sparsity brought about by the existence of static
variables. This version of the algorithm is called MFI.

27The invertibility of A0
rt +

(∑h
rt+1=1A

+
rt,rt+1

T rt+1
z,x

)
λx is potentially reinforced by the fact that

all variables in the system appear as current. That is, all columns of matrix A0
rt have at least one

non-zero element.
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Local convergence of functional iteration Now we are interested in deriving
the conditions under which an initial guess will converge to a solution. We have the
following theorem:

Theorem 2. Let rt = 1, 2, ..., h and rt+1 = 1, 2, ..., h be indices over the number of

regimes. Let T ∗rt , be a solution to (11), such that
∥∥λxT ∗rt∥∥ ≤ ϑ and

∥∥∥Ã+
rt,rt+1

∥∥∥ ≤ a+

and

∥∥∥∥(A0
rt +

∑h
rt+1=1A

+
rt,rt+1

T ∗rt+1
λx

)−1
∥∥∥∥ ≤ τ where A+

rt,rt+1
≡ prt,rt+1Ã

+
rt,rt+1

, ϑ > 0,

a+ > 0, τ > 0 and with prt,rt+1 the (steady-state) transition probability of going from

regime rt to regime rt+1. Assume there exists δ > 0 such that
∥∥∥T (0)

rt − T ∗rt
∥∥∥ ≤ δ,

rt = 1, 2, ..., h. Then if τa+ (ϑ+ δ) < 1, the iterative sequence
{
T

(k)
rt

}h
rt=1

generated

by functional iteration with initial guess T
(0)
rt , rt = 1, 2, ..., h, satisfies

∥∥∥T (k)
rt − T ∗rt

∥∥∥ ≤
ϕ
∑h

rt+1=1 prt,rt+1

∥∥∥T (k−1)
rt+1 − T ∗rt+1

∥∥∥, with ϕ ∈ (0, 1).

Proof. See appendix B.

Farmer et al. (2011) show that functional iterations are not able to find all possible
solutions. But still, functional iterations cannot be discounted: they are useful for
getting solutions for large systems. It is therefore important to understand why in
some cases functional iteration may fail to converge.

The theorem establishes some sufficient conditions for convergence of functional
iteration in this context. In other words it gives us hints about the cases in which
functional iteration might not perform well. In particular, inequality τa+ (ϑ+ δ) < 1
is more likely to be fulfilled for low values of τ , a+, ϑ and δ rather than large ones.

5.2.2 Newton algorithms

We define

Wrt (Tz,x) ≡ T rtz,x +

[
A0
rt +

(
h∑

rt+1=1

A+
rt,rt+1

T rt+1
z,x

)
λx

]−1

A−rt (26)

If the current guess T rtz,x is not such that Wrt (Tz,x) = 0 for rt = 1, 2, ..., h, we need
to improve the guess. We do this by perturbing the current guess Tz,x by a factor ∆
and then expanding (26) into

Wrt (Tz,x + ∆) = Wrt (Tz,x) + ∆rt −
(∑h

rt+1=1 L
rt,rt+1

x+ ∆rt+1

)
Lrtx− +HOT
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where28

L
rt,rt+1

x+ ≡ U−1
rt A

+
rt,rt+1

(27)

and
Lrtx− ≡ −λxT rtz,x (28)

Newton ignores HOT and attempts to solve for ∆rt so that

Wrt (Tz,x) + ∆rt −

(
h∑

rt+1=1

L
rt,rt+1

x+ ∆rt+1

)
Lrtx− = 0 (29)

where ∆rt −
(∑h

rt+1=1 L
rt,rt+1

x+ ∆rt+1

)
Lrtx− is the Frechet derivative of Wrt at Tz,x in

direction ∆rt .
Equation (29) is similar to (24) if we let i = rt, j = rt+1, Ci = −Wrt (Tz,x), Fij =

L
rt,rt+1

x+ and Gij = −Lrtx− and so can be solved for ∆rt using the same techniques. This
gives rise to the two main Newton algorithms of RISE: MNK full and MN full.
The former uses a direct approach for solving the Newton step, while the latter uses
the iterative approach. Their variants that exploit the sparsity stemming from the
presence of static variables are called MNK and MN respectively.

Relation to Farmer, Waggoner and Zha (2011) As discussed earlier, Farmer
et al. (2011) consider problems in which the coefficient matrix on the forward-looking
variables is known in the current period. Our algorithms consider the more general
case where those matrices are unknown in the current period. Another difference
between Farmer et al. (2011) and this paper is that rather than perturbing the Tz,x
as we do, they build the Newton by computing derivatives directly. Our approach
is more efficient as it solves a smaller system. In particular, because their algorithm
is a direct extension of Sims (2002), Farmer et al. (2011) also have to solve for
expectational errors in addition to the other variables in the system. By building
the Newton directly through derivatives, they fail to recognize that the problem
of finding the Newton step can recast into solving a system of generalized coupled
Sylvester equations. As a result they have to use the direct approach in section (4.1),
which builds a huge matrix going through Kronecker products and then inverts the
matrix to find the solution.

28HOT are the higher-order terms of the approximation.
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Our Newton solution strategies can be summarized in the pseudo code given in
algorithm 2.

Data: T (0)
z,x ≡

[
T 1(0)
z,x · · · T h(0)

z,x

]
, A+

rt,rt+1
, A0

rt , A
−
rt , for rt, rt+1 = 1, 2, ..., h

Result: T (k)
z,x

1 k=0 ;

2 compute W (k) (Tz,x) ≡
[
W1

(
T (k)
z,x

)
· · · Wh

(
T (k)
z,x

) ]
, using (26) ;

3 while W (k) 6= 0 do
4 for rt = 1 to h do
5 for rt+1 = 1 to h do
6 compute L

rt,rt+1

x+ as in (27);
7 end
8 compute Lrtx− as in (28);

9 end

10 solve (29) for ∆(k) ≡
[

∆
(k)
1 · · · ∆

(k)
h

]
using the results in section (4.1)

or those in section (4.2);
11 k=k+1 ;

12 T (k)
z,x = T (k−1)

z,x + ∆(k−1) ;
13 for rt = 1 to h do
14 tmp = A0

rt ;
15 for rt+1 = 1 to h do

16 tmp = tmp+ A+
rt,rt+1

T rt+1(k−1)
z,x ;

17 end

18 Wrt

(
T (k)
z,x

)
= T rt(k)

z,x + [tmp]−1A−rt ;

19 end

20 end

Algorithm 2: Pseudo code for the generic Newton algorithm

5.3 Stability of first-order approximation under constant tran-
sition probabilities

The traditional stability concepts for constant-parameter linear rational expectations
models do not extend to the regime switching case. Following the lead of Svensson
and Williams (2007) and Farmer et al. (2011) among others, this paper uses the
concept of mean square stability (MSS), to characterize stable solutions of non-time-
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varying transition probabilities.
Consider the RS-DSGE system whose solution is given by equation (8) and with

constant transition probability matrix Q such that Qrt,rt+1 = prt,rt+1 . Using the
selection matrix λx, we can extract the portion of the solution for state endogenous
variables only to get

xt (z) = λxT rt (z̄rt)+λxT rtz,x (xt−1 − λxT rt (z̄rt))+λxT rtz,σσ+λxT rtz,ε0εt+ ...+λxT
rt
z,εk

εt+k

This system and thereby (8) is MSS if for any initial condition x0, there exist a
vector µ and a matrix Σ independent of x0 such that limt−→∞ ‖Ext − µ‖ = 0 and
limt−→∞ ‖Extx′t − Σ‖ = 0. Hence the covariance matrix of the process is bounded.
As shown by Gupta et al. (2003) and (Costa et al., 2005, chapter 3), a necessary
and sufficient condition for MSS is that matrix Υ, as defined in (30), has all its
eigenvalues inside the unit circle29.

Υ ≡
(
Q⊗ In2

x×n2
x

) λxT 1
z,x ⊗ λxT 1

z,x
. . .

λxT hz,x ⊗ λxT hz,x

 (30)

A particular note should be taken of the facts that:

• With endogenous probabilities as this paper discusses, the MSS concept be-
comes useless.

• Even in the constant-transition probabilities case, there are no theorems imply-
ing that stability of the first-order perturbation implies the stability of higher
orders.

5.4 Proposed initialization strategies

Both functional iteration and the Newton methods require an initial guess of the
solution. As stated earlier, we do not attempt to compute all possible solutions of
(11) and then check that only one of them is stable, as is done in Foerster et al.

29It is not very hard to see that a computationally more efficient representation of Υ given by:
p1,1

(
λxT 1

z,x ⊗ λxT 1
z,x

)
p1,2

(
λxT 2

z,x ⊗ λxT 2
z,x

)
· · · p1,h

(
λxT hz,x ⊗ λxT hz,x

)
p2,1

(
λxT 1

z,x ⊗ λxT 1
z,x

)
p2,2

(
λxT 2

z,x ⊗ λxT 2
z,x

)
· · · p2,h

(
λxT hz,x ⊗ λxT hz,x

)
...

...
...

ph,1
(
λxT 1

z,x ⊗ λxT 1
z,x

)
ph,2

(
λxT 2

z,x ⊗ λxT 2
z,x

)
· · · ph,h

(
λxT hz,x ⊗ λxT hz,x

)
.
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(2013, 2014). Initialization is key not only to finding a solution but also, potentially,
for the speed of convergence of any algorithm.

We derive all of our initialization schemes from making assumptions on equa-
tion (25), which, for convenience we report in (31), abstracting from the iteration
superscript.

T rtz,x =

[
A0
rt +

(
h∑

rt+1=1

A+
rt,rt+1

T rt+1
z,x

)
λx

]−1

A−rt (31)

there are at least three ways to initialize a solution:

• The first approach makes the assumption that A−rt = 0, rt = 1, 2, ..., h. In this
case then, the initial guess is the solution that we would obtain in the absence
of predetermined variables. This solution is trivially zero as can be seen from
equation (31). Formally, it corresponds to

T rt(0)
z,x = 0, for rt = 1, 2, ..., h

• The second approach makes the assumption thatA+
rt,rt+1

= 0, rt, rt+1 = 1, 2, ..., h.
While the first approach assumes there are no predetermined variables, this ap-
proach instead assumes there are no forward-looking variables. In that case,
the solution is also easy to compute using (31). In RISE, this option is the
default initialization scheme. It corresponds to setting:

T rt(0)
z,x = −

[
A0
rt

]−1
A−rt , for rt = 1, 2, ..., h

• The third approach recognizes that making a good guess for a solution is dif-
ficult and instead tries to make guesses on the products A+

rt,rt+1
T rt+1
z,x . We

proceed as follows: (i) we would like the guesses for each regime to be related,
just as they would be in the final solution; (ii) we would like the typical element
of A+

rt,rt+1
T rt+1
z,x to have a norm roughly of the squared order of magnitude of

a solvent or final solution. Given those two requirements, we make the as-
sumption that the elements of A+

rt,rt+1
T rt+1
z,x , rt, rt+1 = 1, 2, ..., h are drawn from

a standard normal distribution scaled by the approximate norm of a solvent
squared.30 We approximate the norm of a solvent by

σ ≡ η0 +
√
η2

0 + 4η+η

2η+

30Implicit also is the assumption that A+
rt,rt+1

and T
rt+1
z,x are of the same order of magnitude.
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where η0 ≡ maxrt
(∥∥A0

rt

∥∥), η ≡ maxrt
(∥∥A−rt∥∥), η+ ≡ maxrt

(∥∥A+
rt,rt+1

∥∥). Then
with draws of A+

rt,rt+1
T rt+1
z,x in hand, we can use (31) to compute a guess for

a solution. In RISE this approach is used when trying to locate alternative
solutions. It can formally be expressed as

T (0)
rt = −

(
A0
rt +

(
h∑

rt+1=1

[
A+
rt,rt+1

T rt+1
z,x

]guess)
λx

)−1

A−rt

with
[
A+
rt,rt+1

T rt+1
z,x

]guess
ij

∼ σ2N (0, 1) .

6 Performance of alternative solution methods

In this section, we investigate the performance of different algorithms. These in-
clude our functional iteration algorithms MFI full and MFI; our Newton algorithms
MNK full, MNK, MN full and MN; and the Newton algorithm by Farmer et al.
(2011), which we call FWZ.31 The FWZ algorithm is included for direct comparison
as it was shown to outperform the FP and SW algorithms described above. We
assess the performance of those algorithms in terms of their ability to find solutions
but also in terms of their efficiency. To that end, we use a set of problems found in
the literature.

6.1 Test problems

The details of the test problems considered are given in appendix (C). The models
considered are the following:

1. cho214 EIS is a six-variable model by Cho (2014), with switching elasticity
of intertemporal substitution.

2. cho214 MP is a six-variable model by Cho (2014), with switching monetary
policy parameters.

3. frwz2013 nk 1 is a three-variable New Keynesian model by Foerster et al.
(2013)

4. frwz2013 nk 2 is the same model as frwz2013 nk 1 but with a different
parameterization.

31This algorithm is also included among the solvers in RISE and the coding strictly follows the
formulae in the Farmer et al. (2011) paper.
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5. frwz2013 nk hab is a four-variable New Keynesian model with habit persis-
tence by Foerster et al. (2013).

6. frwz2014 rbc is a three-variable RBC model by Foerster et al. (2014)

7. fwz2011 1 is a two-variable model by Farmer et al. (2011)

8. fwz2011 2 is the same model as fwz2011 1 but with a different parameteri-
zation.

9. fwz2011 3 is the same model as fwz2011 1 but with a different parameteri-
zation.

10. smets wouters is the well-known model by Smets and Wouters (2007). Orig-
inally the model is a constant-parameter model. We turn it into a switching
model by creating a regime in which monetary policy is unresponsive to changes
in inflation and output gap. See Appendix (C) for further details.

All the tests use the same tolerance level for all the algorithms and are run
on a Dell Precision M4700 computer with Intel Core i7 processor running at 2.8
GHz with 16GB of RAM. Windows 7 (64-bit) is the operating system used. The
results included in this paper are computed using MATLAB 8.4.0.150421 (R2014b)
environment.

6.2 Finding a solution: computational efficiency

The purpose of this experiment is to assess both the ability of each algorithm to find
a solution and the speed with which the solution is found. To that end, we solved
each model 50 times for each solution procedure and averaged the computing time
spent across runs.32 The computation times we report include:

• the time spent in finding a solution,

• the time spent in checking whether the solution is MSS, which is oftentimes
the most costly step.33

• some further overhead from various functions that call the solution routines in
the object oriented system.

32Running the same code several times is done simply to smooth out the uncertainty across runs.
33As argued earlier, the matrix in equation (30) with its Kronecker products has to be formed

explicitly and then its eigenvalues have to be computed.

30



The last two elements are constant across models and therefore should not have
an impact on the relative performances of the algorithms.

The results presented in Table 1 are all computed using the default initialization
scheme of RISE, i.e. the one that assumes there are no forward-looking variables
in the model.34 The table reports for each model its relative speed performance.
This relative performance is computed as the absolute performance divided by the
best performance. A relative performance of say, x, means that for that particular
model, the algorithm is x times slower than the best, whose performance is always
1. The table also reports in column 2 the number of variables in the model under
consideration and in column 3 the speed in seconds of the fastest solver.

The speed of computation tends to increase with the size of the model as could
have been expected, although this pattern is not uniform for small models. But we
note that the MNK full algorithm tends to be the fastest algorithm on small models.
The FWZ algorithm comes first in two of the contests but as argued earlier because
it imposes that the coefficient matrix on forward-looking variables depends only on
the current regime, it saves some computations and gives the wrong answer when
the coefficient matrix on forward-looking variables also depends on the future regime.
This is the case in the Cho2014 EIS model.

The MNK full algorithm is also faster than its version that exploits the sparsity of
the problem, namely MNK. This is not surprising however because when the number
of variables is small, the overhead incurred in trying to exploit sparsity outweighs the
benefits. This is also true for the functional iteration algorithms as MFI full tends
to dominate MFI.

For the same small models, the MNK full algorithm, which uses Kronecker prod-
ucts, is also faster than its counterparts that do not use Kronecker products, namely
MN full and MN. Again, here there is no surprise: when the number of variables
is small, computing Kronecker products and inverting small matrices is faster than
trying to avoid those computations, which is the essence of the MN full and MN
algorithms.

The story does not end there, however. As the number of variables increases, the
MN algorithm shows better performance. By the time the number of variables gets
to 40 as in the Smets and Wouters model, the MN algorithm, which exploits sparsity
and avoid the computation of Kronecker products, becomes the fastest. In particular,
on the smets wouters model, the MN algorithm is about 7 times faster than its
Kronecker version (MNK), which also exploits sparsity and about 39 times faster
than the version of the algorithm that builds Kronecker products and does not exploit

34The results for other initialization schemes have also been computed and are available upon
request.
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sparsity (MNK full), which is the fastest on small models. For the parameterization
under consideration, the FWZ and the functional iteration algorithms never find a
solution.35

Table 1: Relative efficiency of various algorithms

nvars best speed mfi mnk mn mfi full mnk full mn full fwz
cho2014 EIS 6 0.01798 4.971 1.624 2.802 3.365 1.177 2.126 1
cho2014 MP 6 0.01259 1 1.221 1.101 1.11 1.124 1.082 Inf
frwz2013 nk 1 3 0.01486 1.34 1.198 1.459 1.219 1 1.435 1.092
frwz2013 nk 2 3 0.01571 1.309 1.111 1.42 1.218 1 1.407 1.059
frwz2013 nk hab 4 0.01622 1.059 1.106 1.134 1 1.009 1.125 1.146
frwz2014 rbc 3 0.01628 2.676 1.259 1.313 2.15 1 1.284 Inf
fwz2011 1 2 0.00924 Inf 1.051 1.139 Inf 1.015 1.068 1
fwz2011 2 2 0.01043 1.57 1.281 1.374 1.27 1 1.265 1.278
fwz2011 3 2 0.01108 1.877 1.185 1.35 1.443 1 1.279 1.112
smets wouters 40 0.2515 Inf 6.514 1 Inf 39.48 1.364 Inf

The table reports for each model (rows), the relative speed performance of each algorithm
(columns 4 to 10) computed as the absolute performance divided by the best performance.
A relative performance of say, x, means that for that particular model, the algorithm is
x times slower than the best, whose performance is always 1. The table also reports in
column 2 the number of variables in the model under consideration and in column 3 the
speed in seconds of the fastest solver. The computations are done using the “backward”
initialization scheme of RISE.

6.3 Finding many solutions

Our algorithms are not designed to find all possible solutions since the results they
produce depend on the initial condition. Although sampling randomly may lead to
different solutions, many different starting points may also lead to the same solution.
Despite these shortcomings, we investigated the ability of the algorithms to find many
solutions for the test problems considered. Unlike Foerster et al. (2013, 2014) our

35Although the Newton algorithms converge fast, rapid convergence occurs only in the neighbor-
hood of a solution (see for instance Benner and Byers (1998)). It may well be the case that the first
Newton step is disastrously large, requiring many iterations to find the region of rapid convergence.
This is an issue we have not encountered so far, but it may be addressed by incorporating line
searches along a search direction so as to reduce excessively long steps or increase excessively short
ones, which in both cases would accelerate convergence even further.
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algorithms only produce real solutions, which are the ones of interest. Starting from
100 different random points sampled using the third initialization scheme described
in Section 5.4, we computed the results given in Table 2. For every combination
of solution algorithm and test problem, there are two numbers. The first one is the
total number of solutions found and the second one is the number of stable solutions.
As the results show, we easily replicate the findings in the literature. In particular,

• for the Cho (2014) problems, we replicate the finding that the model with
switching elasticity of intertemporal substitution is determinate. Indeed all of
the algorithms tested find at least one solution and at most one of the solutions
found is stable in the MSS sense. We do not, however, find that the solution
found for the model with switching monetary policy is stable.

• for the Farmer et al. (2011) examples, we replicate all the results. In the first
parameterization, there is a unique solution and the solution is stable. This
is what all the Newton algorithms find. The functional iteration algorithms
are not able to find that solution. In the second parameterization, our Newton
algorithms return two stable solutions and in the third parameterization, they
return four stable solutions just as found by Farmer et al. (2011).

• Foerster et al. (2013) examples: In the New Keynesian model without habits
our Newton algorithms return 3 real solutions out of which only one is stable.
In the second parameterization, they return three real solutions but this time
two of them are stable. For the New Keynesian model with habits, our Newton
algorithms return six real solutions out of which one is stable.

• for the Foerster et al. (2014) RBC model, there is a unique stable solution.

• the Smets and Wouters (2007) model, shows that there are many real solutions
and many of those solutions are stable. The different algorithms return differ-
ent solutions since they are all initialized randomly in different places. This
suggests that we most likely have not found all possible solutions and that by
increasing the number of simulations we could have found many more solutions.

6.4 Higher orders

Our algorithms do not just solve higher order approximations for RS-DSGE models.
They solve higher-order approximations of constant-parameter DSGE models as a
special case. We have tested our algorithms on various models against some of
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Table 2: Solutions found after 100 random starting values

nvars mfi mnk mn mfi full mnk full mn full fwz
cho2014 EIS 6 1 1 2 1 2 1 1 1 2 1 2 1 2 1
cho2014 MP 6 1 0 1 0 1 0 1 0 1 0 1 0 0 0
frwz2013 nk 1 3 1 1 3 1 3 1 1 1 3 1 3 1 3 1
frwz2013 nk 2 3 1 1 3 2 3 2 1 1 3 2 3 2 3 2
frwz2013 nk hab 4 1 1 6 1 6 1 1 1 6 1 6 1 6 1
frwz2014 rbc 3 1 1 1 1 1 1 1 1 2 1 2 1 0 0
fwz2011 1 2 0 0 1 1 1 1 0 0 1 1 1 1 1 1
fwz2011 2 2 1 1 2 2 2 2 1 1 2 2 2 2 1 1
fwz2011 3 2 1 1 4 4 4 4 1 1 4 4 4 4 3 3
smets wouters 40 0 0 11 2 11 4 0 0 16 2 10 3 0 0

The table reports for each model (rows), the performance of each solution algorithm
(columns 3 to 9). Each entry is a vector of two numbers. The first element in the vector
is the number of real solutions found and the second element the number of stable (MSS)
real solutions.

the existing and freely available algorithms solving for higher-order approximations.
Those algorithms include : dynare, dynare++ and codes by Binning (2013a,b). In
all cases we find the same results.

We have successfully solved a second-order approximation of a version of NEMO,
the DSGE model used by Norges Bank. This model includes upwards of 272 equa-
tions in its nonlinear form.

We have run the Markov-switching RBC model by Foerster et al. (2014) in RISE
and the results for a third-order approximation are presented below. Because in Fo-
erster et al. (2014) the steady state is unique, we simply had to pass this information
to the software, without any further need to partition the parameters. RISE prints
only the unique combination of cross products and uses the sign @sig to denote the
perturbation term. Only the state variables with non-zero coefficients across the
endogenous variables are reported. The first block reports the solution of the model
in the first regime and the second block, the solution in the second regime. In each
block, the second, third and fourth column represent the solution in levels for con-
sumption (C), capital (K) and the technology process (Z) respectively. The steady
state of those variables is given right below each variable name, in the line labeled
“steady state”. Below that line are the coefficients on state variables expressed as
deviations from their steady states as in equation (23). The results produced by
RISE closely replicate the second-order approximation presented by Foerster et al.
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(2014).36

MODEL SOLUTION

SOLVER :: mfi

Regime 1 : a = 1 & const = 1

Endo Name C K Z

steady state 2.082588 22.150375 1.007058

K{-1} 0.040564 0.969201 0.000000

Z{-1} 0.126481 -2.140611 0.100000

@sig -0.009066 -0.362957 0.018459

EPS 0.009171 -0.155212 0.007251

K{-1},K{-1} -0.000461 -0.000167 0.000000

K{-1},Z{-1} 0.001098 -0.047836 0.000000

K{-1},@sig -0.000462 -0.008170 0.000000

K{-1},EPS 0.000080 -0.003468 0.000000

Z{-1},Z{-1} -0.058668 1.168197 -0.044685

Z{-1},@sig 0.000323 0.018293 0.000916

Z{-1},EPS 0.000299 0.007642 0.000360

@sig,@sig -0.024022 0.026995 0.000169

@sig,EPS 0.000023 0.001326 0.000066

EPS,EPS 0.000022 0.000554 0.000026

K{-1},K{-1},K{-1} 0.000011 0.000005 0.000000

K{-1},K{-1},Z{-1} -0.000009 0.000001 0.000000

K{-1},K{-1},@sig -0.000001 -0.000000 0.000000

K{-1},K{-1},EPS -0.000001 0.000000 0.000000

K{-1},Z{-1},Z{-1} -0.000332 0.017407 0.000000

K{-1},Z{-1},@sig 0.000005 0.000269 0.000000

K{-1},Z{-1},EPS 0.000002 0.000115 0.000000

K{-1},@sig,@sig -0.000185 0.000231 0.000000

K{-1},@sig,EPS 0.000000 0.000020 0.000000

K{-1},EPS,EPS 0.000000 0.000008 0.000000

Z{-1},Z{-1},Z{-1} 0.037330 -0.811474 0.028102

Z{-1},Z{-1},@sig -0.000250 -0.006515 -0.000273

Z{-1},Z{-1},EPS -0.000097 -0.002777 -0.000107

Z{-1},@sig,@sig -0.000418 -0.000480 0.000006

Z{-1},@sig,EPS -0.000001 -0.000043 0.000002

Z{-1},EPS,EPS 0.000001 -0.000018 0.000001

@sig,@sig,@sig -0.002111 0.001640 0.000001

@sig,@sig,EPS -0.000028 -0.000038 0.000000

@sig,EPS,EPS -0.000000 -0.000003 0.000000

EPS,EPS,EPS 0.000000 -0.000001 0.000000

Regime 2 : a = 2 & const = 1

Endo Name C K Z

steady state 2.082588 22.150375 1.007058

K{-1} 0.040564 0.969201 0.000000

@sig -0.100434 0.926307 -0.041021

EPS 0.026867 -0.464994 0.021752

K{-1},K{-1} -0.000461 -0.000167 0.000000

K{-1},@sig -0.001160 0.020327 0.000000

K{-1},EPS 0.000233 -0.010399 0.000000

@sig,@sig -0.023223 0.043449 0.000835

@sig,EPS -0.000525 -0.009756 -0.000443

36The second order terms of the RISE output should be multiplied by 2 in order to compare them
with the output presented in Foerster et al. (2014).
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EPS,EPS 0.000187 0.004982 0.000235

K{-1},K{-1},K{-1} 0.000011 0.000005 0.000000

K{-1},K{-1},@sig 0.000007 -0.000003 0.000000

K{-1},K{-1},EPS -0.000002 0.000000 0.000000

K{-1},@sig,@sig -0.000188 0.000476 0.000000

K{-1},@sig,EPS -0.000002 -0.000146 0.000000

K{-1},EPS,EPS 0.000001 0.000075 0.000000

@sig,@sig,@sig -0.001411 0.002643 -0.000011

@sig,@sig,EPS -0.000077 -0.000228 0.000006

@sig,EPS,EPS -0.000002 0.000069 -0.000003

EPS,EPS,EPS 0.000001 -0.000036 0.000002

Finally we can use the same Foerster et al. (2014) model to illustrate in a third-
order approximation, the effect of technology shock that is announced four periods
from now. As argued earlier and as shown in our derivations, this does not require
changing the model file: the model is solved directly under the assumption that
agents have information about future shocks. We compare two economies. In the
first economy, agents fully anticipate the shock and therefore internalize its effects
already in the first period. In the second economy, agents will be aware of the
shock only when it will materialize four periods from now. As figure 1 illustrates,
consumption already increases today while capital falls in the “anticipate” scenario.

7 Conclusion

In this paper we have proposed new solution algorithms for solving regime-switching
DSGE models. The algorithms developed are useful for analyzing economic data sub-
ject to breaks and shifts in a rational expectations environment, where agents, while
forming their expectations, explicitly take into account the probability of a regime
shift. In the process we have derived higher-order perturbations of RS-DSGE models
in which the probability of switching can be endogenous and in which anticipated
future events can affect the current behavior of economic agents.

Despite the many benefits of departing from the assumption of constant parame-
ters, the techniques and the ideas of RS-DSGE modeling have yet to be fully adopted
by many macroeconomists as is the case for constant-parameter DSGE models pop-
ularized through Dynare. Two main reasons could potentially explain this. On the
one hand, such models are a lot more difficult to solve and more computationally
intensive than their constant-parameter counterparts and on the other hand, there
are not many flexible and easy-to-use tools that would allow economists unable or
unwilling to write complex code to take full advantage of these techniques and ad-
dress current policy questions. By providing both efficient solution algorithms and
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Figure 1: Third-order perturbation impulse responses to a TFP shock in the
FRWZ2014 rbc model

the implementation of those algorithms in a toolbox, we hope to have assuaged these
problems.
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A Expressions for various expectations terms

A.1 First order

The definitions of a0
z and a1

z appearing in equation (10) are as follows

a0
z ≡



λbfT rt+1
z hrtz
T rtz
mp

mb

mε,0

θ̂rt+1mσ

 a1
z ≡

(
λbfT rt+1

z

0(ns+2np+2nb+nf+nε+nθ)×nz

)

We have
Evz = a0

z (32)

A.2 Second order

hrtzz =

[
λxT rtzz

0(1+(k+1)nε)×n2
z

]
(33)

The definitions of a0
zz and a1

zz appearing in equation (19) are as follows:

a0
zz ≡

 λbfT rt+1
z,x λxT rtzz + λbfT rt+1

zz (hrtz )⊗2

T rtzz
0(nx+nε+nθ)×n2

z

 a1
zz ≡

 λbfT rt+1
zz

0
0


It follows that

Evzz = a0
zz + a1

zzEu
⊗2 (34)

and

Ev⊗2
z = (a0

z)
⊗2

+ (a1
z)
⊗2
Eu⊗2 (35)

The definition of u in (4) implies that37

37In general, we will have E (u⊗p) =

[
0(np+nb+1+knε)

p×np
z

vec (Mp)m
⊗p
σ

]
, where Mp is the tensor of the

p-order moments of εt. This expression should be cheap to compute since mσ is a sparse vector.
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E (u⊗2) =

[
0(np+nb+1+knε)

2×n2
z

~Inε (mσ ⊗mσ)

]

A.3 Third order

The definitions of a0
zzz and a1

zzz appearing in equation (21) are as follows:

a0
zzz ≡

 λbfT rt+1
zzz (hrtz )⊗3 + ω1 (λbfT rt+1

zz (hrtz ⊗ hrtzz)) + λbfT rt+1
z hrtzzz

T rtzzz
0(nx+nε+nθ)×n3

z

 (36)

a1
zzz ≡

(
λbfT rt+1

zzz

0(nT+nx+nε+nθ)×n3
z

)
(37)

where

hrtzzz =

[
λxT rtzzz

0(1+(k+1)nε)×n3
z

]

∂3T rt+1 (hrt (z)+uz)
∂z3

= T rt+1
zzz (hrtz )⊗3 + ω1 (T rt+1

zz (hrtz ⊗ hrtzz)) + T rt+1
z,x λxT rtzzz+

T rt+1
zzz u⊗3 + ω1 (T rt+1

zz (u⊗ hrtzz)) +

T rt+1
zzz

[
P
(
(hrtz )⊗2 ⊗ u

)
+ P (hrtz ⊗ u⊗2)

]
We have

Evzzz = a0
zzz + a1

zzzP
(
hrtz ⊗ Eu⊗2

)
+ a1

zzzEu
⊗3 (38)

We also need E (v⊗3
z ), E (vz ⊗ vzz). Using (19) and (10), those quantities are

computed as

Ev⊗3
z = (a0

z)
⊗3

+ Ea0
z ⊗ (a1

zu)
⊗2

+

E (a1
zu)
⊗2 ⊗ a0

z + E (a1
zu)⊗ a0

z ⊗ (a1
zu) + E (a1

zu)
⊗3 (39)

E (vz ⊗ vzz) = a0
z ⊗ a0

zz + (a1
z ⊗ a1

zz) (Eu⊗2 ⊗ hrtz + E (u⊗ hrtz ⊗ u)) +
a0
z ⊗ a1

zzEu
⊗2 + (a1

z ⊗ a1
zz)Eu

⊗3 (40)

B Local convergence of functional iteration

Before proving the theorem we first present a Banach perturbation lemma that will
facilitate the subsequent derivations.
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Lemma 3. Banach Perturbation Lemma: Let Ξ be a non-singular matrix. If Ω is

such that ‖Ξ−1‖ ‖Ω‖ < 1, then
∥∥(Ξ + Ω)−1

∥∥ ≤ ‖Ξ−1‖
1−‖Ξ−1‖‖Ω‖

Proof. We have
(Ξ + Ω)−1 = [Ξ (I + Ξ−1Ω)]

−1

=
[∑∞

i=0 (−Ξ−1Ω)
i
]

Ξ−1

which implies that ∥∥(Ξ + Ω)−1
∥∥ ≤ ∥∥∥∑∞i=0 (−Ξ−1Ω)

i
∥∥∥ ‖Ξ−1‖

≤
∑∞

i=0 ‖(−Ξ−1Ω)‖i ‖Ξ−1‖
=

∑∞
i=0 ‖(Ξ−1Ω)‖i ‖Ξ−1‖

= 1
1−‖(Ξ−1Ω)‖ ‖Ξ

−1‖

≤ ‖Ξ−1‖
1−‖Ξ−1‖‖Ω‖

Now we can prove the theorem. Define

Ξrt ≡ A0
rt +

h∑
rt+1=1

A+
rt,rt+1

T ∗rt+1
λx

and

Ω(k−1)
rt ≡

h∑
rt+1=1

A+
rt,rt+1

(
T (k−1)
rt+1

− T ∗rt+1

)
λx

which implies ∥∥∥Ω
(k−1)
rt

∥∥∥ =
∥∥∥∑h

rt+1=1 A
+
rt,rt+1

(
T

(k−1)
rt+1 − T

(∗)
rt+1

)
λx

∥∥∥
≤ a+

∑h
rt+1=1 prt,rt+1

∥∥∥T (k−1)
rt+1 − T

(∗)
rt+1

∥∥∥ (41)

Also, we can write

T
(k)
rt − T

(∗)
rt =

(
Ω

(k−1)
rt + Ξrt

)−1∑h
rt+1=1A

+
rt,rt+1

[
T ∗rt+1

− T (k−1)
rt+1

]
λxT

(∗)
rt
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so that∥∥∥T (k)
rt − T

(∗)
rt

∥∥∥ ≤ ∥∥∥∥(Ω
(k−1)
rt + Ξrt

)−1
∥∥∥∥ ∥∥∥[∑h

rt+1=1A
+
rt,rt+1

(
T

(k−1)
rt+1 − T

(∗)
rt+1

)]∥∥∥ ∥∥∥λxT (∗)
rt

∥∥∥
=

∥∥∥λxT (∗)
rt

∥∥∥∥∥∥∥(Ω
(k−1)
rt + Ξrt

)−1
∥∥∥∥∥∥∥[∑h

rt+1=1 A
+
rt,rt+1

(
T

(k−1)
rt+1 − T

(∗)
rt+1

)]∥∥∥
≤

∥∥∥λxT (∗)
rt

∥∥∥ ∥∥∥∥(Ω
(k−1)
rt + Ξrt

)−1
∥∥∥∥ a+

∑h
rt+1=1 prt,rt+1

∥∥∥(T (k−1)
rt+1 − T

(∗)
rt+1

)∥∥∥
≤ ϑa+

∥∥∥∥(Ω
(k−1)
rt + Ξrt

)−1
∥∥∥∥∑h

rt+1=1 prt,rt+1

∥∥∥(T (k−1)
rt+1 − T

(∗)
rt+1

)∥∥∥
(42)

We can now use induction in the rest of the proof. Suppose
∥∥∥T (0)

rt − T ∗rt
∥∥∥ ≤ δ,

rt = 1, 2, ..., h. Then (41) implies
∥∥∥Ω

(0)
rt

∥∥∥ ≤ a+δ. Hence
∥∥Ξ−1

rt

∥∥∥∥∥Ω
(0)
rt

∥∥∥ ≤ τa+δ. Note

that the requirement that τa+ (ϑ+ δ) < 1 automatically implies that τa+δ < 1.

Therefore we can use the perturbation lemma to establish that

∥∥∥∥(Ω
(0)
rt + Ξrt

)−1
∥∥∥∥ ≤

‖Ξ−1
rt ‖

1−‖Ξ−1
rt ‖

∥∥∥Ω
(0)
rt

∥∥∥ ≤ τ
1−τa+δ . Plugging this result into (42) implies that

∥∥∥T (1)
rt − T

(∗)
rt

∥∥∥ ≤
ϑa+τ

1−τa+δ
∑h

rt+1=1 prt,rt+1

∥∥∥(T (0)
rt+1 − T

(∗)
rt+1

)∥∥∥, essentially defining ϕ ≡ ϑa+τ
1−τa+δ and saying

that the proposition holds for k = 1.
Now suppose that the proposition holds for some arbitrary order k, that is∥∥∥T (k)
rt − T ∗rt

∥∥∥ ≤ ϕ
∑h

rt+1=1 prt,rt+1

∥∥∥T (k−1)
rt+1 − T ∗rt+1

∥∥∥. We now have to show that it also

holds for order k+1. Since by assumption
∥∥∥(T (k−1)

rt+1 − T ∗rt+1

)∥∥∥ ≤ δ, for rt = 1, 2, ..., h,

we have
∥∥∥T (k)

rt − T ∗rt
∥∥∥ ≤ ϕ

∑h
rt+1=1 prt,rt+1

∥∥∥T (k−1)
rt+1 − T ∗rt+1

∥∥∥ ≤ ϕδ ≤ δ. (41) implies∥∥∥Ω
(k)
rt

∥∥∥ ≤ a+δ. Then by the perturbation lemma, if follows that

∥∥∥∥(Ω
(k)
rt + Ξrt

)−1
∥∥∥∥ ≤

τ
1−τa+δ . This implies by (42) that∥∥∥T (k+1)

rt − T (∗)
rt

∥∥∥ ≤ ϑa+

∥∥∥∥(Ω
(k)
rt + Ξrt

)−1
∥∥∥∥∑h

rt+1=1 prt,rt+1

∥∥∥(T (k)
rt+1 − T

(∗)
rt+1

)∥∥∥
≤ ϑa+τ

1−τa+δ
∑h

rt+1=1 prt,rt+1

∥∥∥(T (k)
rt+1 − T

(∗)
rt+1

)∥∥∥
And so, the proposition also holds at order k + 1.
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C Models

C.1 Cho 2014: Markov switching elasticity of intertemporal
substitution

C.1.1 Model equations

πt − κyt = βπt+1 + zS,t
yt + 1

σ(st)
it = 1

σ(st)
πt + σ(st+1)

σ(st)
yt + 1

σ(st)
zD,t

−(1− ρ)φππt + it = ρit−1 + zMP,t

zS,t = ρszS,t−1 + εSt , εSt ∼ N (0, 1)
zD,t = ρdzD,t−1 + εDt , εDt ∼ N (0, 1)
zMP,t = ρmpzMP,t−1 + εMP

t , εMP
t ∼ N (0, 1)

C.1.2 Parameterization

ρ φπ σ(1) σ(2) κ β ρs ρd ρmp p1,1 p2,2

0.95 1.5 1 5 0.132 0.99 0.95 0.95 0 0.95 0.875

C.2 Cho 2014: Regime switching monetary policy

C.2.1 Model equations

πt − κyt = βπt+1 + zS,t
yt + 1

σ
it = 1

σ
πt + yt + zD,t

−(1− ρ)φππt + it = ρit−1 + zMP,t

zS,t = ρszS,t−1 + εSt , εSt ∼ N (0, 1)
zD,t = ρdzD,t−1 + εDt , εDt ∼ N (0, 1)
zMP,t = ρmpzMP,t−1 + εMP

t , εMP
t ∼ N (0, 1)

C.2.2 Parameterization

ρ φπ(1) φπ(2) σ κ β ρs ρd ρmp p1,1 p2,2

0.95 0.9 1.5 1 0.132 0.99 0 0 0 0.85 0.95
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C.3 Farmer, Waggoner and Zha (2011)

C.3.1 Model equations

φπt = πt+1 + δπt−1 + βrt
r = ρrt−1 + εt , εt ∼ N (0, 1)

C.3.2 Parameterization

δ (1) δ (2) β (1) β (2) ρ (1) ρ (2) φ (1) φ (2) p1,1 p2,2

parameterization 1 0 0 1 1 0.9 0.9 0.5 0.8 0.8 0.9
parameterization 2 -0.7 0.4 1 1 0 0 0.5 0.8 0 0.64
parameterization 3 -0.7 -0.2 1 1 0 0 0.2 0.4 0.9 0.8

C.4 Foerster, Rubio-Ramirez, Waggoner and Zha (2014):
RBC model

C.4.1 Model equations

cυ−1
t = βzυ−1

t cυ−1
t+1 (αz1−α

t+1 k
α−1
t + 1− δ)

ct + ztkt = z1−α
t kαt−1 + (1− δ)kt−1

log (zt) = (1− ρ (st))µ (st) + ρ (st) log (zt−1) + σ (st) εt , εt ∼ N (0, 1)

C.4.2 Steady state

zt = exp (µ)

kt =
[

1
αz1−αt

(
1

βzυ−1
t

− 1 + δ
)] 1

α−1

ct = z1−α
t kαt + (1− δ) kt − ztkt

C.4.3 Parameterization

α β υ δ µ(1) µ(2) ρ(1) ρ(2) σ(1) σ(2) p1,1 p2,2

0.33 0.9976 -1 0.025 0.0274 -0.0337 0.1 0 0.0072 0.0216 0.75 0.5
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C.5 Foerster, Rubio-Ramirez, Waggoner and Zha (2013):
NK model

C.5.1 Model equations

1− βEt
(1−κ

2
(πt−1)2)Yt

(1−κ
2

(πt+1−1)2)Yt+1

1
exp(µt+1)

Rt
πt+1

= 0

(1− η) + η
(
1− κ

2
(πt − 1)2)Yt + βκEt

(1−κ
2

(πt−1)2)
(1−κ

2
(πt+1−1)2)

(πt+1 − 1) πt+1 − κ (πt − 1) πt = 0(
Rt−1

Rss

)ρ
π

(1−ρ)ψt
t exp (σεt)− Rt

Rss
= 0 , εt ∼ N (0, 1)

C.5.2 Steady state

πt yt Rt

1 η−1
η

exp(µ)
β

πt

C.5.3 Parameterization

β κ η ρr σr p1,1 p2,2 µ (1) µ (2) ψ (1) ψ (2)
0.9976 161 10 0.8 0.0025 0.9 0.9 0.0075 0.0025 3.1 0.9

C.6 Foerster, Rubio-Ramirez, Waggoner and Zha (2013):
NK model with habits

C.6.1 Model equations

1
Ct−ϕ exp(−µ̄)Ct−1

− β ϕ
Xt+1 exp(µt+1)−ϕCt − λt = 0

βλt+1

exp(µt+1)

Rssπ
ψt
t exp(σεt)

πt+1
− λt = 0 , εt ∼ N (0, 1)

(1− η) + η
λt

+ βκ(πt+1 − 1)πt+1
λt+1

λt

Xt+1

Ct

1−κ
2

(πt−1)2

1−κ
2

(πt+1−1)2
− κ(πt − 1)πt = 0

Xt − Ct = 0

C.6.2 Steady state

πt λt Xt Ct
1 η

η−1
exp(µ)−βϕ
exp(µ)−ϕ

η−1
η

Xt
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C.6.3 Parameterization

β κ η ρr σ p1,1 p2,2 µ (1) µ (2) ψ (1) ψ (2) Rss ϕ

0.9976 161 10 0.8 0.0025 0.9 0.9 0.0075 0.0025 3.1 0.9 exp(µ)
β

0.7

C.7 The Smets-Wouters model with switching monetary pol-
icy

We consider a medium scale DSGE model by Smets and Wouters (2007). We turn
it into a regime switching model by introducing a Markov chain in two regimes,
controlling the behavior of the parameters entering the monetary policy reaction
function. In the good regime, the parameters assume the mode values estimated
by Smets and Wouters (2007) for the constant parameter case. In the bad regime
the interest rate is unresponsive to inflation and the output gap. The table below
displays the parameters: rπ is the reaction to inflation; ρ, the smoothing parameter;
ry, the reaction to output gap; r∆y, the reaction to the change in the output gap;
pgood,good is the probability of remaining in the good regime; pbad,bad is the probability
of remaining in the bad regime.

rπ ρ ry r∆y pgood,good pbad,bad
Good regime 1.4880 0.8762 0.0593 0.2347 0.9 NA
Bad regime 0.0000 0.0000 0.0000 0.0000 NA 0.3
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